HPCRD Logo

Scalable Methods for Electronic Excitations and Optical Responses of Nanostructures

References

[Abr02]   Mark Abramson. Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems. PhD thesis, Rice University, Houston, TX, August 2002.

[Abr06]   M. Abramson. NOMADm software, 2006.

[BC05]   M. Barad and P. Colella. A fourth-order accurate local refinement method for Poisson's equation. Journal of Computational Physics, 209(1):1-18, 2005.

[Bec00]   T. L. Beck. Real-space mesh techniques in density-functional theory. Reviews of Modern Physics, 72(4):1041-1080, October 2000.

[BHS82]   G.B. Bachelet, D.R. Hamann, and M. Schlüter. Pseudopotentials that work: from H to Pu. Phys. Rev. B, 26:4199, 1982.

[BKS05]   C. Bekas, E. Kokiopoulou, and Y. Saad. Polynomial filtered Lanczos iterations with applications in density functional theory. Technical Report UMSI-2005-117, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2005.

[BKS07]   C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Applied Numerical Mathematics, 2007. To appear.

[BSB96]   E. L. Briggs, D. J. Sullivan, and J. Bernholc. Real-space multigrid-based approach to large-scale electronic structure calculations. Physical Review B, 54(20):14362-14375, November 1996.

[BSTC05]   C. Bekas, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Computing charge densities with partially reorthogonalized Lanczos. Computer Physics Communications, 171(3):175-186, 2005.

[Che00]   J. R. Chelikowsky. The pseudopotential-density functional method applied to nanostructures. J. Phys. D: Appl. Phys., 33:R33-R50, 2000.

[CPC05]   V. Cocula, C. J. Pickard, and E. A. Carter. Ultrasoft spin-dependent pseudopotentials. J. Chem. Phys., 123:214101, 2005.

[CR05]   Andrew Canning and David Raczkowski. Scaling first-principles plane-wave codes to thousands of processors. Computer Physics Communications, 169:449, 2005.

[CST^{+}04]   R.B. Capaz, C.D. Spataru, P. Tangney, M.L. Cohen, and S.G. Louie. Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes. Phys. Stat. Sol. B, 241(14):3352-3359, 2004.

[CST^{+}05a]   R.B. Capaz, C.D. Spataru, P. Tangney, M.L. Cohen, and S.G. Louie. Family behavior of the pressure and temperature dependences of the band gap of semiconducting carbon nanotubes. AIP Conf. Proc., 786:411, 2005.

[CST^{+}05b]   R.B. Capaz, C.D. Spataru, P. Tangney, M.L. Cohen, and S.G. Louie. Temperature and hydrostatic pressure effects on the band gap of semiconducting carbon nanotubes. AIP Conf. Proc., 772:1047, 2005.

[CST^{+}05c]   R.B. Capaz, C.D. Spataru, P. Tangney, M.L. Cohen, and S.G. Louie. Temperature dependence of the band gap of semiconducting carbon nanotubes. Phys. Rev. Lett., 94(3), 2005.

[CSWC03]   V. Cocula, F. Starrost, S. C. Watson, and E. A. Carter. Spin-dependent pseudopotentials in the solid state environment: Applicationsto ferromagnetic and antiferromagnetic metals. J. Chem. Phys., 119:7659, 2003.

[CTS94]   J. R. Chelikowsky, N. Troullier, and Y. Saad. Finite-difference-pseudopotential method: Electronic structure calculations without a basis. Phys. Rev. Lett., 72, 1994.

[DC]   G. Dalpian and J.R. Chelikowsky. Self-purification on semiconductor nanocrystals. Submitted to Phys. Rev. Lett.

[dPTVC05]   M. Lopez del Puerto, M.L. Tiago, I. Vasiliev, and J.R. Chelikowsky. Real space pseudopotential calculations of the ground state and excited state properties of the water molecule. Phys. Rev. A, 72:52504, 2005.

[DvH96]   R. Döll and M.A. van Hove. Global optimization in LEED structure determination using genetic algorithms. Surface Science, 355, 1996.

[EK85]   G. Ertl and J. Küppers. Low Energy Electrons and Surface Chemistry. Weinheim, Verlag Chemie, 1985.

[FN03]   J.-L. Fattebert and M. Buongiorno Nardelli. Finite difference methods for ab initio electronic structure and quantum trasport calculations of nanostructures. Technical Report UCRL-JC-147118, Lawrence Livermore National Laboratory, April 2003.

[GGT^{+}05]   P.M.W. Gill, A.T.B. Gilbert, S.W. Taylor, G. Friesecke, and M. Head-Gordon. Decay behavior of least-squares coefficients in auxiliary basis expansions. J. Chem. Phys., 123(6), 2005.

[Gri05]   S. Grimme. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. J. Phys. Chem. A, 109(13):3067-3077, 2005.

[GTJ96]   S. Goedecker, M. Teter, and J. Jutter. Separable dual-space Gaussian pseudopotentials. Physical Review B, 54(3):1703-1710, July 1996.

[GWdSC98]   N. Govind, Y. A. Wang, A. J. R. da Silva, and E. A. Carter. Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment. Chem. Phys. Lett., 295:129, 1998.

[HC]   P. Huang and E.A. Carter. Self-consistent embedding approach for locally-correlated wave functions in condensed matter. To be submitted.

[HC06]   P. Huang and E.A. Carter. Local electronic structure around a single kondo impurity. Nano Letters, 2006. In press.

[Hei88]   K. Heinz. Structural analysis of surfaces by LEED. Surface Science, 239, 1988.

[HG91]   M. Henzler and W. Göpel. Oberflächenphysik des Festkörpers. Teubner Verlag, Stuttgart, 1991.

[HJO00]   T. Helgaker, P. Jorgensen, and J. Olsen. Molecular electronic structure theory. Wiley, Chichester, 2000.

[HL86]   MS Hybertsen and SG Louie. Electron correlation in semiconductors and insulators - band-gaps and quasi-particle energies. Phys. Rev. B, 34(8):5390-5413, 1986.

[HLC05]   X. Huang, E. Lindgren, and J.R. Chelikowsky. Surface passivation method for semiconductor nanostructures. Phys. Rev. B, 71:165328, 2005.

[HMCK05]   X. Huang, A. Makmal, J. R. Chelikowsky, and L. Kronik. Size dependent spintronic properties of dilute magnetic semiconductor nanocrystals. Phys. Rev. Lett., 94:236801, 2005.

[HWC86]   M. A. Van Hove, W. H. Weinberg, and C.-M. Chan. Low energy electron diffraction. In Springer Series in Surface Sciences 6. Springer, Berlin, 1986.

[JLDHG04]   Y.S. Jung, R.C. Lochan, A.D. Dutoi, and M. Head-Gordon. Scaled opposite-spin second order Moller-Plesset correlation energy: An economical electronic structure method. J. Chem. Phys., 121(20):9793-9802, 2004.

[JMT97]   H. Jiang, S. Mizuno, and H. Tochihara. Adsorption mode change from adlayer- to restructuring-type with increasing coverage, evidenced by structural determination of a sequence c(2x2)-(4x4)-(5x5) formed on Ni(001) by Li deposition. Surface Science, 380:L506-L512, 1997.

[JSGHG05]   Y. Jung, A. Sodt, P.M.W. Gill, and M. Head-Gordon. Auxiliary basis expansions for large-scale electronic structure calculations. Proc. Natl. Acad. Sci. U. S. A., 102(19):6692-6697, 2005.

[KB82]   L. Kleinmann and D. Bylander. Efficacious form for model pseudopotentials. Phys. Rev. Lett, 48:1425-1428, 1982.

[KJC04]   L. Kronik, M. Jain, and J.R. Chelikowsky. Electronic structure and spin-polarization of MnGaP. Applied Phys. Lett., 85:2014, 2004.

[KMT^{+}06]   L. Kronik, A. Makmal, M.L. Tiago, M.M.G. Alemany, M. Jain, X. Huang, Y. Saad, and J.R. Chelikowsky. PARSEC-the pseudopotential algorithm for real space electronic structure calculations. Phys. Stat. Sol., 243:1063, 2006.

[Kny01]   A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM Journal of Scientific Computing, 23(2):517-541, 2001.

[LAC04]   S. Li, M.M.G. Alemany, and J.R. Chelikowsky. Ab initio calculations for the photoelectron spectra of vanadium clusters. J. Chem. Phys., 121:5893, 2004.

[LAC05]   S. Li, M.M.G. Alemany, and J.R. Chelikowsky. Ab initio calculations of the photoelectron spectra of transition metal clusters. Phys. Rev. B, 71:165433, 2005.

[LJHG05]   R.C. Lochan, Y. Jung, and M. Head-Gordon. Scaled opposite spin second order moller-plesset theory with improved physical description of long-range dispersion interactions. J. Phys. Chem. A, 109(33):7598-7605, 2005.

[LSS^{+}05]   E. Lorin de la Grandmaison, S. B. Gowda, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Efficient computation of the coupling matrix in time-dependent density functional theory. Computer Physics Communications, 167:7-22, 2005.

[LW05]   B. Lee and L.-W. Wang. Electronic structure of calcium hexaborides. Appl. Phys. Lett., 87:262509, 2005.

[LW06]   B. Lee and L.-W. Wang. Electronic structure of zinc-blende Al_xGa_{1-x}N: screened-exchange study. Phys. Rev. B (in press), 2006. Also available as LBNL-59272 Technical Report.

[MC96]   D. F. Martin and K. L. Cartwright. Solving Poisson's equation using adaptive mesh refinement. Technical Report UCB/ERL M96/66, U.C. Berkeley Electronics Research Laboratory, October 1996.

[MC04a]   D.V. Melnikov and J.R. Chelikowsky. Electron affinities and ionization energies of semiconductor nanocrystals. Phys. Rev. B, 69:113305, 2004.

[MC04b]   D.V. Melnikov and J.R. Chelikowsky. Quantum confinement in phosphorus-doped silicon nanocrystals. Phys. Rev. Lett., 92:46802, 2004.

[MLE00]   HC Manoharan, CP Lutz, and DM Eigler. Quantum mirages formed by coherent projection of electronic structure. Nature, 403(6769):512-515, 2000.

[MVBF05]   Y.Z. Ma, L. Valkunas, S.M. Bachilo, and G.R. Fleming. Exciton binding energy in semiconducting single-walled carbon nanotubes. J. Phys. Chem. B, 109(33):15671-15674, 2005.

[NKC05]   G. Nesher, L. Kronik, and J.R. Chelikowsky. Ab initio absorption spectra of Ge nanocrystals. Phys. Rev. B, 71:35344, 2005.

[NKSL05]   J.B. Neaton, K.H. Khoo, C.D. Spataru, and S.G. Louie. Electron transport and optical properties of carbon nanostructures from first principles. Comput. Phys. Commun., 169(1-3):1-8, 2005.

[Pro92]   Protein Data Bank. Atomic Coordinate and Bibliographic Entry Forman Description, February 1992.

[RBL^{+}00]   C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Y. Crutchfield, and J. B. Bell. Parallelization of structured, hierarchical adaptive mesh refinement algorithms. Computing and Visualization in Science, 3(3):147-157, 2000.

[RC04]   N.J. Russ and T.D. Crawford. Potential energy surface discontinuities in local correlation methods. J. Chem. Phys., 121(2):691-696, 2004.

[RCW01]   D. Raczkowski, A. Canning, and L.-W. Wang. Thomas-Fermi charge mixing for obtaining self-consistency in density functional calculations. Physical Review B, 64(121101(R)), 2001.

[RL00]   M Rohlfing and SG Louie. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B, 62(8):4927-4944, 2000.

[RWA^{+}06]   E. Rotenberg, Y.Z. Wu, J.M. An, M.A. van Hove, A. Canning, L.-W. Wang, and Z.Q. Qiu. Non-free-electron momentum and thickness dependent evolution of quantum well states in the Cu/Co/Cu(001) system. Phys. Rev. B, 2006. In press.

[RWC06]   D. Raczkowski, L.-W. Wang, and A. Canning. An all-band iterative diagonalization method for total energy calculations of metallic systems. LBNL Report 53523, Lawrence Berkeley National Laboratory, 2006.

[Saa05]   Y. Saad. Filtered conjugate residual-type algorithms with applications. Technical Report UMSI-2005-042, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2005. To appear, SIAM J. Mat. Anal.

[SDHG05]   J.E. Subotnik, A.D. Dutoi, and M. Head-Gordon. Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates. J. Chem. Phys., 123(11), 2005.

[SHG05a]   J.E. Subotnik and M. Head-Gordon. A local correlation model that yields intrinsically smooth potential-energy surfaces. J. Chem. Phys., 123(6), 2005.

[SHG05b]   J.E. Subotnik and M. Head-Gordon. A localized basis that allows fast and accurate second-order moller-plesset calculations. J. Chem. Phys., 122(3), 2005.

[SIBBL04a]   C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett., 92(7), 2004.

[SIBBL04b]   C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie. Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Appl. Phys. A, 78(8):1129-1136, 2004.

[SIBBL05]   C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie. Excitonic effects and optical spectra of single-walled carbon nanotubes. AIP Conf. Proc., 772:1061, 2005.

[SIBCL05]   C.D. Spataru, S. Ismail-Beigi, R.B. Capaz, and S.G. Louie. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett., 95(24), 2005.

[SKW^{+}01]   F. Starrost, H. Kim, S. C. Watson, E. Kaxiras, and E. A. Carter. Density-functional theory modeling of bulk magnetism with spin-dependent pseudopotentials. Phys. Rev B, 64:235105, 2001.

[SP93]   S. Saebo and P. Pulay. Local treatment of electron correlation. Annu. Rev. Phys. Chem., 44:213-236, 1993.

[SSLHG04]   J.E. Subotnik, Y.H. Shao, W.Z. Liang, and M. Head-Gordon. An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: Applications to localized occupied orbitals. J. Chem. Phys., 121(19):9220-9229, 2004.

[Sto98]   G.S. Stone. A scalable genetic algorithm package for global optimization problems with expensive objective functions. Master's thesis, San Francisco State University, 1998.

[SW01]   M. Schutz and H. J. Werner. Low-order scaling local electron correlation methods. iv. linear scaling local coupled-cluster (lccsd). J. Chem. Phys., 114(2):661-681, 2001.

[TC]   M.L. Tiago and J.R. Chelikowsky. Optical excitations in organic molecules, clusters and defects from first principles green's function methods. In press.

[TC05]   M.L. Tiago and J.R. Chelikowsky. First-principles GW-BSE excitations in organic molecules. Solid State Comm., 167:7, 2005.

[TCS^{+}05]   P. Tangney, R.B. Capaz, C.D. Spataru, M.L. Cohen, and S.G. Louie. Structural transformations of carbon nanotubes under hydrostatic pressure. Nano Lett., 5(11):2268-2273, 2005.

[TM91]   N. Troullier and J.L. Martins. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43:1993-2006, 1991.

[Van90]   D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, 1990.

[Wan05]   L.-W. Wang. Elastic quantum transport calculations using auxiliary periodic boundary conditions. Phys. Rev. B, 72:45417, 2005.

[WC98]   S. C. Watson and E. A. Carter. Spin-Dependent pseudopotentials. Phys. Rev. B, 58:13309, 1998.

[WC00]   S.C. Watson and E.A. Carter. Linear-scaling parallel algorithms for the first principles treatment of metals. Comput. Phys. Commun., 128(1-2):67-92, 2000.

[WD86]   D. P. Woodruff and T. A. Delchar. Modern Techniques of Surface Science. Cambridge University Press, 1986.

[WDBH05]   F. Wang, G. Dukovic, L.E. Brus, and T.F. Heinz. The optical resonances in carbon nanotubes arise from excitons. Science, 308(5723):838-841, 2005.

[WGC98]   Y.A. Wang, N. Govind, and E.A. Carter. Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys. Rev. B, 58(20):13465-13471, 1998.

[WGC01]   Y.A. Wang, N. Govind, and E.A. Carter. Orbital-free kinetic-energy functionals for the nearly free electron gas (vol b 58, pg 13465, 1998). Phys. Rev. B, 6412(12), 2001.

[WVC03]   D. Walter, A. Venkatnathan, and E.A. Carter. Local correlation in the virtual space in multireference singles and doubles configuration interaction. J. Chem. Phys., 118(18):8127-8139, 2003.

[YMW05]   C. Yang, J. C. Meza, and L.-W. Wang. A constrained optimization algorithm for total energy minimization in electronic structure calculation. LBNL Report 57434, Lawrence Berkeley National Laboratory, to appear in Journal of Computational Physics, 2005.

[YMW06]   C. Yang, J. C. Meza, and L.-W. Wang. The use of trust region in Kohn-Sham total energy minimization. LBNL Report 59841, Lawrence Berkeley National Laboratory, 2006.

[ZMvH05]   Z. Zhao, J. Meza, and M. van Hove. Using pattern search methods for surface structure determination of nanomaterials. Technical Report LBNL-57541, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, 2005.

[ZS04]   Y. Zhou and Y. Saad. Block Krylov -Schur method for large symmetric eigenvalue problems. Technical Report UMSI-2004-215, Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, MN, 2004.

[ZS05]   Y. Zhou and Y. Saad. A Chebyshev-Davidson algorithm for large symmetric eigenproblems. Technical Report UMSI-2005-xx1, Minnesota Supercomputer Institute, University of Minnesota, 2005.

[ZSTC05]   Y. Zhou, Y. Saad, M. L. Tiago, and J. R. Chelikowsky. Self-consistent-field calculations with Chebyshev filtered subspace iteration. Technical report, Minnesota Supercomputer Institute, University of Minnesota, 2005.

[ZWM06]   Z. Zhao, L.-W. Wang, and J. Meza. Motif based hessian matrix for ab initio geometry optimization of nanostructures. Submitted to Rapid Communication of Physical Review B, 2006.

About LBNL | Privacy Policy | Contact Us