[Code of Federal Regulations]
[Title 40, Volume 28]
[Revised as of July 1, 2002]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR798.5460]

[Page 203-205]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
         CHAPTER I--ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)
 
PART 798--HEALTH EFFECTS TESTING GUIDELINES--Table of Contents
 
                       Subpart F--Genetic Toxicity
 
Sec. 798.5460  Rodent heritable translocation assays.

    (a) Purpose. This test detects transmitted chromosomal damage which 
manifests as balanced reciprocal translocations in progeny descended 
from parental males treated with chemical mutagens.
    (b) Definitions. (1) A heritable translocation is one in which 
distal segments of nonhomologous chromosomes are involved in a 
reciprocal exchange.
    (2) Diakinesis and metaphase I are stages of meiotic prophase scored 
cytologically for the presence of multivalent chromosome association 
characteristic of translocation carriers.
    (c) Reference substances. Not applicable.
    (d) Test method--(1) Principle. When a balanced reciprocal 
translocation is induced in a parental male germ cell, the resulting 
progeny is translocation heterozygote.
    (i) Basis for fertility screening. Male translocation heterozygotes 
may be completely sterile. This class consists of two types of 
translocations:
    (A) Translocations between non-homologous chromosomes in which at 
least one of the breaks occurs close to one end of a chromosome.
    (B) Those that carry multiple translocations. The majority of male 
translocation heterozygotes are semisterile--they carry one or (rarely) 
two translocations. The degree of semisterility is dependent upon the 
proportions of balanced and unbalanced (duplication-deficiency) gametes 
produced in the ejaculate as a function of meiotic segregation. Balanced 
and unbalanced sperm are equally capable of fertilizing an egg. Balanced 
sperm lead to viable progeny. Unbalanced sperm result in early embryonic 
lethality.
    (ii) Basis for cytological screening. The great majority of male 
translocation heterozygotes can be identified cytologically through 
analysis of diakinesis metaphase I spermatocytes. Translocation 
heterozygotes are characterized by the presence of multivalent 
chromosome association such as a ring or chain of four chromosomes held 
together by chiasmata in paired homologous regions. Some translocation 
carriers can be identified by the presence of extra long and/or extra 
short chromosomes in spermatogonial and somatic cell metaphase 
preparations.
    (2) Description. Essentially, two methods have been used to screen 
for translocation heterozygosity; one method uses a mating sequence to 
identify sterile and semisterile males followed by cytological 
examination of suspect male individuals; the other method deletes the 
mating sequence altogether and all F1 male progeny are 
examined cytologically for presence of translocation. In the former 
approach, the mating sequence serves as a screen which eliminates most 
fully fertile animals for cytological confirmation as translocation 
heterozygotes.
    (3) Animal selection--(i) Species. The mouse is the species 
generally used, and is recommended.
    (ii) Age. Healthy sexually mature animals shall be used.
    (iii) Number. (A) The number of male animals necessary is determined 
by the following factors:
    (1) The use of either historical or concurrent controls.
    (2) The power of the test.
    (3) The minimal rate of induction required.
    (4) Whether positive controls are used.
    (5) The level of significance desired.
    (B) [Reserved]
    (iv) Assignment to groups. Animals shall be randomized and assigned 
to treatment and control groups.
    (4) Control groups--(i) Concurrent controls. No concurrent positive 
or negative (vehicle) controls are recommended as routine parts of the 
heritable translocation assay. However, investigators not experienced in 
performing translocation testing shall include a substance known to 
produce translocations in the assay as a positive control reference 
chemical.
    (ii) Historical controls. At the present time, historical control 
data must be used in tests for significance. When

[[Page 204]]

statistically reliable historical controls are not available, negative 
(vehicle) controls shall be used.
    (5) Test chemicals--(i) Vehicle. When appropriate for the route of 
administration, solid and liquid test substances should be dissolved or 
suspended in distilled water or isotonic saline. Water-insoluble 
chemicals may be dissolved or suspended in appropriate vehicles. The 
vehicle used shall neither interfere with the test chemical nor produce 
toxic effects. Fresh preparations of the test chemical should be 
employed.
    (ii) Dose levels. At least two dose levels shall be used. The 
highest dose level shall result in toxic effects (which shall not 
produce an incidence of fatalities which would prevent a meaningful 
evaluation) or shall be the highest dose attainable or 5g/kg body 
weight.
    (iii) Route of administration. Acceptable routes of administration 
include oral, inhalation, admixture with food or water, and IP or IV 
injection.
    (e) Test performance--(1) Treatment and mating. The animals shall be 
dosed with the test substances 7 days per week over a period of 35 days. 
After treatment, each male shall be caged with 2 untreated females for a 
period of 1 week. At the end of 1 week, females shall be separated from 
males and caged individually. When females give birth, the day of birth, 
litter size, and sex of progeny shall be recorded. All male progeny 
should be weaned, and all female progeny should be discarded.
    (2) Testing for translocation heterozygosity. When males are 
sexually mature, testing for translocation heterozygosity shall begin. 
One of two methods shall be used; the first method involves mating, 
determining those F1 progeny which are sterile or semisterile 
and subsequent cytological analysis of suspect progeny; the other method 
does not involve mating and determining sterility or semisterility; all 
progeny are examined cytologically.
    (i) Determination of sterility or semisterility--(A) Conventional 
method. Females are mated, usually three females for each male, and each 
female is killed at midpregnancy. Living and dead implantations are 
counted. Criteria for determining normal and semisterile males are 
usually established for each new strain because the number of dead 
implantations varies considerably among strains.
    (B) Sequential method. Males to be tested are caged individually 
with females and the majority of the presumably normal males are 
identified on the basis of a predetermined size of 1 or 2 litters. 
Breeding pens are examined daily on weekdays beginning 18 days after 
pairing. Young are discarded immediately after they are scored. Males 
that sire a litter whose size is the same as or greater than the minimum 
set for a translocation-free condition are discarded with their litter. 
If the litter size is smaller than the predetermined number, a second 
litter is produced with the same rule applying. Males that cannot be 
classified as normal after production of a second litter are tested 
further by the conventional method or by cytological confirmation of 
translocation.
    (ii) Cytological analysis. For cytological analysis of suspected 
semisteriles, the air-drying technique is used. Observation of at least 
2 diakinesis-metaphase 1 cells with mutivalent association constitutes 
the required evidence for the presence of a translocation. Sterile males 
are examined by one of two methods, those with testes of normal size and 
sperm in the epididymis are examined by the same techniques used for 
semisteriles. Animals with small testes are examined by squash 
preparations or, alternatively, by examination of mitotic metaphase 
preparations. If squash preparations do not yield diakinesis-metaphase 1 
cells, analysis of spermatogonia or bone marrow for the presence of 
unusually long or short chromosomes should be performed.
    (f) Data and report--(1) Treatment of results. (i) Data shall be 
presented in tabular form and shall include the number of animals at 
risk, the germ cell stage treated, the number of partial steriles and 
semisteriles (if the fertility test is used), the number of 
cytogenetically confirmed translocation heterozygotes (if the fertility 
test is used, report the number of confirmed steriles and confirmed 
partial steriles), the translocation rate, and either the

[[Page 205]]

standard error of the rate or the upper 95 percent confidence limit on 
the rate.
    (ii) These data shall be presented for both treated and control 
groups. Historical or concurrent controls shall be specified, as well as 
the randomization procedure used for concurrent controls.
    (2) Statistical evaluation. Data shall be evaluated by appropriate 
statistical methods.
    (3) Interpretation of results. (i) There are several criteria for 
determining a positive result, one of which is a statistically 
significant dose-related increase in the number of heritable 
translocations. Another criterion may be based upon detection of a 
reproducible and statistically significant positive response for at 
least one of the test points.
    (ii) A test substance which does not produce either a statistically 
significant dose-related increase in the number of heritable 
translocations or a statistically significant and reproducible positive 
response at any one of the test points is considered nonmutagenic in 
this system.
    (iii) Both biological and statistical significance should be 
considered together in the evaluation.
    (4) Test evaluation. (i) Positive results in the heritable 
translocation assay indicate that under the test conditions the test 
substance causes heritable chromosomal damage in the test species.
    (ii) Negative results indicate that under the test conditions the 
test substance does not cause heritable chromosomal damage in the test 
species.
    (5) Test report. In addition to the reporting recommendations as 
specified under 40 CFR part 792, subpart J, the following specific 
information shall be reported:
    (i) Species, strain, age, weight and number of animals of each sex 
in each group.
    (ii) Test chemical vehicle, route and schedule of administration, 
toxicity data.
    (iii) Dosing regimen, doses tested and rationale for dosage 
selection.
    (iv) Mating schedule, number of females mated to each male.
    (v) The use of historical or concurrent controls.
    (vi) Screening procedure including the decision criteria used and 
the method by which they were determined.
    (vii) Dose-response relationship, if applicable.
    (g) References. For additional background information on this test 
guideline the following references should be consulted:
    (1) Generoso, W.M., Bishop, J.B., Goslee, D.G., Newell, G.W., Sheu, 
G-J, von Halle, E. ``Heritable translocation test in mice,'' Mutation 
Research, 76:191-215 (1980).
    (2) [Reserved]

[50 FR 39397, Sept. 27, 1985, as amended at 52 FR 19081, May 20, 1987]