
Lyng, H., Badiee, A., Svendsrud, D. H., Hovig, E., Myklebost, O., and Stokke, T. (2004).

Profound influence of microarray scanner characteristics on gene expression ratios:

Analysis and procedure for correction. BMC Genom. 5, 10.

Parkinson, H., Sarkans, U., Shojatalab, M., Abeygunawardena, N., Contrino, S., Coulson, R.,

Farne, A., Garcia Lara, G., Holloway, E., Kapushesky, M., Lilja, P., Mukherjee, G.,

Oezcimen, A., Rayner, T., Rocca‐Serra, P., Sharma, A., Sansone, S., and Brazma, A.

(2005). ArrayExpress: A public repository for microarray gene expression data at the EBI.

Nucleic Acids Res. 33, D553–D555.

R Development Core Team (2005). R: A language and environment for statistical computing

R Foundation for Statistical Computing, Vienna, Austria.

Rhee, S. J., Walker, W. A., and Cherayil, B. J. (2005). Developmentally regulated intestinal

expression of IFN‐gamma and its target genes and the age‐specific response to enteric

Salmonella infection. J. Immunol. 175, 1127–1136.
Saal, L., Troein, C., Vallon‐Christersson, J., Gruvberger, S., Borg, Å., and Peterson, C. (2002).

BioArray Software Environment (BASE): A platform for comprehensive management

and analysis of microarray data. Genome Biol. 3, software0003.1‐0003.6.
Sollier, J., Lin, W., Soustelle, C., Suhre, K., Nicolas, A., Geli, V., and de La Roche Saint‐

Andre, V. (2004). Set1 is required for meiotic S‐phase onset, double‐strand break

formation and middle gene expression. EMBO J. 23, 1957–1967.

Spellman, P. T., Miller, M., Stewart, J., Troup, C., Sarkans, U., Chervitz, S., Bernhart, D.,

Sherlock, G., Ball, C., Lepage, M., Swiatek, M., Marks, W. L., Goncalves, J., Markel, S.,

Iordan, D., Shojatalab, M., Pizarro, A., White, J., Hubley, R., Deutsch, E., Senger, M.,

Aronow, B. J., Robinson,A., Bassett, D., Stoeckert, C. J., Jr., andBrazma,A. (2002).Design

and implementation of microarray gene expression markup language (MAGE‐ML).

Genome Biol. 3, research0046.1‐0046.9.
Sturme, M. H., Nakayama, J., Molenaar, D., Murakami, Y., Kunugi, R., Fujii, T., Vaughan,

E. E., Kleerebezem, M., and de Vos, W. M. (2005). An agr‐like two‐component regulatory

system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and

regulation of adherence. J. Bacteriol. 187, 5224–5235.

Wang, X., Wang, M., Amarzguioui, M., Liu, F., Fodstad, O., and Prydz, H. (2004).

Downregulation of tissue factor by RNA interference in human melanoma LOX‐L cells

reduces pulmonary metastasis in nude mice. Int. J. Cancer 112, 994–1002.

[8] bioconductor 119
[8] Bioconductor: An Open Source Framework
for Bioinformatics and Computational Biology

By MARK REIMERS and VINCENT J. CAREY

Abstract

This chapter describes the Bioconductor project and details of its open
source facilities for analysis of microarray and other high‐throughput
biological experiments. Particular attention is paid to concepts of container
and workflow design, connections of biological metadata to statistical
analysis products, support for statistical quality assessment, and calibration
of inference uncertainty measures when tens of thousands of simultaneous
statistical tests are performed.
METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11008-3

120 DNA microarrays, part B [8]
Introduction: Bioconductor in Brief

Bioconductor is a project devoted to the development of software and
methods for statistical analysis and visualization of data from high‐
throughput experimental platforms in biology. The project is fully open
source, with most software released under the Lesser GNU Public License
(see http://www.gnu.org/licenses/licenses.html#LGPL). Most software avail-
able through the Bioconductor project is written in R, an open source data
analysis environment that has become a major tool for quantitative scien-
tists throughout the world.

Bioconductor may be viewed as a collection of specifications of contain-
ers and workflows for preprocessing and analyzing high‐throughput data.

� Containers are defined for management and analysis of expression data
at various levels of technical processing, for management of experiment‐level
metadata in the Minimum Information about a Microarray Experiment
(MIAME) data model (see later; Brazma et al., 2006), for management and
analysis of sample‐level data and custommetadata about samples, and for the
organization and manipulation of large quantities of biological annotation,
such as mappings between proprietary probe identifiers and public database
or ontology identifiers.

� Workflows are defined through high‐level graphical user interfaces for
specific forms of preprocessing and downstream analysis and through the
interaction of software packages that are driven in a command‐line interface.
Documentation of workflows and workflow components is provided in the
form of manual pages for specific modules and functions, vignettes that
document multistep processes, and fully worked use case descriptions
that are distributed with the software.

� Motivations and approaches of Bioconductor have been described
comprehensively by Gentleman et al. (2004). This chapter provides details
of philosophy, use, and future prospects of Bioconductor as a source of
software and software design and distribution methods for critical methods
of bioinformatics and computational biology.
Technical Details

Software Distribution

Bioconductor is rooted in the R language (Ihaka and Gentleman, 1996).
Software resources are organized into packages, which are structured
folders of code, documentation, and illustrative data. The distribution
of packages for Bioconductor can proceed in various ways. At present,
Windows and Macintosh graphical user interfaces for R include buttons

http://www.gnu.org/licenses/licenses.html#LGPL

[8] bioconductor 121
for package installation over the web. These buttons allow selection of the
Bioconductor software repository and selection of specific packages. Alter-
natively, a user may load a publicly available script (http://www.bioconduc-
tor.org/biocLite.R) into an R session, issue the command biocLite(),
and software will travel over the internet into this R distribution, where it is
installed automatically and will persist until removed manually. Software
modules can also be downloaded manually using a web browser pointed at
http://www.bioconductor.org or can be obtained using functions provided
in a Bioconductor package called reposTools.

Containers

There are four basic container types at present. Containers are avail-
able for preprocessed microarray data (e.g., data imported from scanner
outputs or Affymetrix CEL files), for postprocessed microarray data (in-
cluding detailed information on sample characteristics and treatments),
for metadata about microarray experiments (principally satisfying the
MIAME protocol), and for general biological metadata, such as the Gene
Ontology.

The use of containers depends on the internal structures of the contain-
ers, defined in Bioconductor infrastructure packages such as Biobase, and
on the accessor methods that are provided in these infrastructure packages.
An accessor F for a container C is used with the syntax F(C).

Preprocessed Microarray Data. Affymetrix distributes a collection of
CEL files from a Latin square design spike‐in experiment. A subset of
these data is distributed in the SpikeInSubset package of Bioconductor.
The following code loads this package, loads the U133A‐TAG subset
provided there, and requests a report on this subset.
> library(SpikeInSubset)
> data(spikein133)
> spikein133

AffyBatch object

size of arrays¼712x712 features (23781 kb)

cdf¼HG‐U133A_tag (22300 affyids)
number of samples¼6
number of genes¼22300
annotation¼hgu133atag
This structure includes metadata about the samples. These metadata,
often referred to as ‘‘phenotype data,’’ even though they can involve informa-
tion not typically regarded as phenotypic, can be accessed in the form of an R
data.frameusing the pData accessor.Herewe inquire about the dimensions of

http://www.bioconductor.org/biocLite.R
http://www.bioconductor.org/biocLite.R
http://www.bioconductor.org

122 DNA microarrays, part B [8]
the pData component and select, using the matrix [row, column] selection
idiom, a small fraction of the metadata available for the spike‐in study. This
is organized as samples in rows and attributes in columns. The attributes
are probe set identifiers, and the values of attributes are the picomolar
concentrations of the spike‐in material.
> dim(pData(spikein133))
[1] 6 42

> pData(spikein133)[1:3, c(1, 5, 10)]

203508_at
 204959_at
 207777_s_at
Expt6_R1
 2
 4
 16

Expt6_R2
 2
 4
 16

Expt6_R3
 2
 4
 16
The preprocessed expression intensities can be accessed using the pm()
function. This submatrix is organized with probes in rows, and samples in
columns:
> pm(spikein133)[c(1, 5, 10), 1:3]
Expt6_R1
 Expt6_R2
 Expt6_R3

[1,]
 245.0
 238
 238.0

[2,]
 2325.0
 2238
 2591.0

[3,]
 541.8
 445
 564.8
For cDNA platforms, containers named marrayRaw or RGList are
used frequently. See the documentation of marray and limma packages
for details.

Processed Microarray Data. Container design for corrected and normal-
ized expression data emphasizes tight binding of experimental data and
sample‐level metadata, including probe identifiers and rich sample‐level
data. These containers have been implemented through preservation of
manipulation idioms that are familiar through the use of simple data objects
in pure R.

While it is possible to work with pure R matrices to represent gene
expression experiments, Bioconductor enriches the data structure consider-
ably. In the context of microarray data, let G denote the number of genes
measured in a microarray experiment, let N denote the number of samples
on which measurements were made, and let p denote a number of variables,
such as treatment type, sample identifier, and sample characteristics, that
identify important aspects of the experiment that should be known in any
downstream analysis. Bioconductor defines a class of objects called exprSets
that can represent all the relevant experimental data and metadata in a
unified way. Specifically, if E is an instance of the exprSet class, then exprs
(E) returns the GxN matrix of expression measures. pData(E) returns the

[8] bioconductor 123
Nxp table of sample‐level attributes, and description(E) returns a list of
MIAME‐defined experiment metadata attributes.

To illustrate this container concept, we interact with the golubMerge
exprSet, which is supplied in the golubEsets package of Bioconductor. First
we attach the data package and then we mention the ‘golubMerge’ exprSet,
which combines the training and test data used in Golub et al. (1999).
> library(golubEsets)
> golubMerge
Expression Set (exprSet) with

7129 genes
72 samples

phenoData object with 11 variables and 72 cases
varLabels

Samples: Sample index
ALL.AML: Factor, indicating ALL or AML
BM.PB: Factor, sample from marrow or peripheral

blood
T.B.cell: Factor, T cell or B cell leuk.
FAB: Factor, FAB classification
Date: Date sample obtained
Gender: Factor, gender of patient
pctBlasts: pct of cells that are blasts
Treatment: response to treatment
PS: Prediction strength
Source: Source of sample
Note that this report about golubMerge data tells the number of genes
and samples and provides details on the sample‐level variables that are
available. The exprSet can be treated as a ‘‘two‐dimensional’’ object:
> sm <‐ golubMerge[1:3, 1:2]
This computes a new exprSet with three genes and two samples. All the
appropriate sample level data are carried along.

Of particular interest are the numerical values of gene expression. This
is obtained using the exprs() accessor function:
> exprs(sm)

[,1]
 [,2]
AFFX‐BioB‐5_at
 ‐342
 ‐87

AFFX‐BioB‐M_at
 ‐200
 ‐248

AFFX‐BioB‐3_at
 41
 262
Sample‐level data can be accessed very conveniently using a list accessor
idiom:

124 DNA microarrays, part B [8]
> table(pData(golubMerge)$ALL.AML
ALL AML

47 25
This gives the clinical leukemia classifications of the 72 patients.
Metadata about Microarray Experiments. The MIAME data model

(Brazma et al., 2001) provides an informal protocol for documenting mi-
croarray data sets in a uniform manner. The ‘‘MIAME’’ class has slots
corresponding to the MIAME fields:

> getClass(‘‘MIAME’’)
Slots:
Name:
 name
 lab
 contact
 title

Class:
 character
 character
 character
 character
Name:
 abstract
 url
 samples
 hybridizations

Class:
 character
 character
 list
 list
Name:
 norm-Controls
 preprocessing
 other

Class:
 list
 list
 list
Extends: ‘‘characterORMIAME’’

A graphical user interface (GUI) for eliciting MIAME metadata can be
run from R.

The phenoData class is used to manage sample‐level metadata.
> getClass(‘‘phenoData’’)

Slots:
Name:
 pData
 varLabels
 varMetadata

Class:
 data.frame
 list
 data.frame
General Biological Metadata. The Bioconductor approach to biological
annotation is somewhat complex, reflecting a variety of objectives that are
difficult to harmonize simply. Some of the most prominent aims are as
follow.

� To support substantive filtering of high‐throughput data structures,
allowing, for example, restriction of differential expression analysis to
thoseprobes thathavebeenassociatedwith specificmolecular functions.

� To meld statistical analysis workflows with biological interpretation
so that, for example, estimated contrast coefficients can be labeled
with genome or pathway annotations as desired.

� To support visualization of assay data in meaningful genomic
contexts, such as chromosomal location or pathway topology.

[8] bioconductor 125
� To support stability of underlying annotation resources for statistical
analyses that may take months to complete.

The data infrastructure meeting these objectives consists of collections
of R environments. An example is the GO (Gene Ontology) package.
Upon loading this package, executing the GO() function produces a listing
of environments and information on their contents.
> GO()

Quality control information for GO
Date built: Created: Tue May 17 10:04:27 2005

Mappings found for non‐probe based rda files:
GOALLLOCUSID found 9287
GOBPANCESTOR found 9529
GOBPCHILDREN found 4765
GOBPOFFSPRING found 4765
GOBPPARENTS found 9529
GOCCANCESTOR found 1536
GOCCCHILDREN found 561
GOCCOFFSPRING found 561
GOCCPARENTS found 1536
GOLOCUSID2GO found 62424
GOLOCUSID found 7770
GOMFANCESTOR found 7220
GOMFCHILDREN found 1366
GOMFOFFSPRING found 1366
GOMFPARENTS found 7220
GOOBSOLETE found 1020
GOTERM found 18285
Data package environments are all named according to a convention.
The environment name begins with the data package name and has a suffix
indicating the specific contents. For example, GOBPANCESTOR is the
environment that maps from GO identifiers to ancestors (generalizations)
of the associated term in the Biological Process subontology.

In conjunction with the annotate package, high‐level reports on envi-
ronment contents can be extracted. The lookUp function takes an identi-
fier token, the name of the data package of interest, and the suffix of the
name of the environment to be searched.

126 DNA microarrays, part B [8]
> lookUp(‘‘GO:0000001’’, ‘‘GO’’, ‘‘TERM’’)

GOID ¼ GO:0000001
Term ¼ mitochondrion inheritance
Definition ¼ The distribution of mitochondria, in-

cluding the mitochondrial genome, into daughter
cells after mitosis or meiosis, mediated by interac-
tions between mitochondria and the cytoskeleton.

Ontology ¼ BP
> lookUp(‘‘GO:0000001’’, ‘‘GO’’, ‘‘BPPARENTS’’)
isa
 isa
‘‘GO:0048308’’
 ’’GO:0048311’’
Accessing a description of the path(s) to the root of GO employs the
environment GOBPANCESTOR.

The GO metadata package is a very general metadata resource, with
information only about the gene ontology structure and content and, on
some mappings, between gene catalogs and GO categories. Other meta-
data packages include

� KEGG—a series of environments providing information on the
KEGG (Kyoto Encylopedia of Genes and Genomes) pathway catalog

� cMAP—environments that address the NCI Cancer Molecular
Analysis Project unification of KEGG and BioCarta pathway and
molecule catalogs

� humanLLMappings—environments that encode the mapping be-
tween Entrez Gene identifiers of human genes and other systems,
such as UniGene clusters and GO categories

� YEAST—a collection of environments that map ORF identifiers to
alias gene names, enzyme codes, PubMed entries, GO, and KEGG
pathway catalog entries

Workflows

A hallmark of Bioconductor’s approach to software design and dissem-
ination is the support of user‐constructed custom workflows. Because the
software is provided in a loosely coupled system of packages, analysts can
select and sequence tasks with great freedom.

Some developers have taken advantage of the component‐based de-
sign to build unified graphical user interfaces. Prominent examples are
limmaGUI and affylmGUI, which allow users to step from raw scanner
outputs, through quality control and gene filtering, through linear modeling

[8] bioconductor 127
for differential expression, to the development of hyperlinked lists of
genes and associated annotations. Active discussion of further development
occurs on the Bioconductor mailing list (https://stat.ethz.ch/mailman/listinfo/
bioconductor).

Documentation Strategies

The Bioconductor project recognized early on that broad utility would
require a commitment to outstanding documentation resources. All Bio-
conductor software must be linked to manual pages that include executable
examples. The project also developed a concept of ‘‘vignette,’’ which is a
document that combines code, narrative, and graphics to illustrate an
analysis process that may involve multiple packages. Vignettes can be
processed by various software components to (1) export all code illustrated
in the vignette computations, (2) transform code into an interactive graph-
ical user interface so that the user can step through sequences of computa-
tions by pushing buttons and can evaluate effects of code execution in the
current R environment, and (3) transform narrative, code, and graphics
into PDF format documents. Bioconductor packages annotate, DynDoc,
and tkWidgets coordinate the implementation of these functionalities.

Array Preprocessing

Spotted Array Quality Control and Preprocessing

Bioconductor includes a number of packages designed primarily for
spotted array data. These include marray, limma, vsn, arrayMagic, which
builds on vsn, and arrayQuality, which builds on marray. The primary raw
data structures are the marrayRaw class of marray and the RGList class of
limma; the convert package allows users to convert between them. Several
functions read in raw data from each of several types of image quantitation
programs. For example, for GenePix files, read.marrayInfo reads in
target information; read.Galfile reads in the GAL files, and read.
GenePix reads in the .GPR files.

Quality control (QC) is a first step. Microarray specialists can now
recognize several kinds of common defects affecting individual spots, and
also problems affecting whole regions of microarrays (Minor, 2006). Spot
defects are often caused by printing problems; regional variations in ratios
often reflect nonuniform hybridization or washing. We think the ability to
examine microarray data using statistical QC measures provides an impor-
tant safety net to uncover biases or artifacts in these data. The R statistical
environment provides a number of general‐purpose graphical tools for
statistical QC, such as box plots for visualizing distributions at various time

https://stat.ethz.ch/mailman/listinfo/bioconductor
https://stat.ethz.ch/mailman/listinfo/bioconductor

128 DNA microarrays, part B [8]
points or for different batches of chips. The Bioconductor packages offer
several special purpose QC tools adapted to dense microarray data. The
marrayRaw class and the function image() conveniently allow the user to
display the spatial distribution of signals on spotted microarrays. This is
illustrated by the following command, which produces an image of the green
spot intensities for the third array of the data stored in the marrayRaw
instance raw.data:
> image(raw.data[, 3], xvar ¼ ‘‘maGf’’, bar ¼ TRUE)
The arrayMagic package can display many different types of quality
control plots. The package arrayQuality displays a number of common QC
graphics in one web page. One of the pages produced by the command
maQualityPlots (raw.data) is shown in Fig. 1.
FIG. 1. Quality control plots from arrayQuality.

[8] bioconductor 129
The plot shown in Fig. 1 shows the ratio‐intensity (M‐A) plot in the upper
left, with separately colored loess traces for each print‐tip group. The center
shows two images of the ratios across the chip: before and after normalization.

The next step in analyzing spotted arrays is normalization. The marray
classes offer options for both two‐channel (with each array separately), and
single‐channel (between array) normalization. The command
> norm.data <‐ maNorm(raw.data, norm ¼ ‘‘l’’)
produces the now widely used loess normalization of red‐green ratios
by compensating for an estimated intensity‐dependent bias. Other options
include location‐scale normalizations, print‐tip loess, and two‐dimensional
loess smoothing of ratios. A further step that adjusts ratios between arrays
may improve replicability between arrays.

Further analysis of spotted microarray data can be done with functions in
the limma package (andmany of the preprocessing steps can be done entirely
within limma or using the convert utilities to transfer data between formats).
The limma package has especially good facilities for specifying design matri-
ces for spotted array experiments (i.e., which samples are in which dye on
which slides). The function lmFit uses design matrix information together
with the ratios on all slides, to give the best consensus estimate of relative
mRNA abundance in each sample. The function eBayes gives estimates of
probability of differential expression for each gene.

Preprocessing of Affymetrix Data

The Affymetrix GeneChip poses inviting challenges for the biostatisti-
cian, and Biconductor incorporates a wealth of statistical thinking about
Affymetrix outputs. The basis for all analysis is the affy package, particu-
larly the methods for reading in and organizing information from Affyme-
trix raw data (CEL) files.

The Affymetrix GeneChip provides a number of probes for each target
mRNA; these probes are distributed over the chip surface (see Dalma‐
Weiszhausz et al., 2006). Affymetrix provides indexing information for
probes on the array via the chip definition file (CDF) for each chip type.
This information is made available to the affy package by R environments,
which are a way of storing key value pairs.

To read in a set of CEL files in the current directory the user types
> cel.data <‐ ReadAffy()
Then to obtain the default expression measures (the RMA estimates),
the user types
> expr.set <‐ rma(cel.data)

130 DNA microarrays, part B [8]
As for spotted arrays, quality control is vital for Affymetrix chips. Thus
function is served by the nuse function in the affyPLM package and by new
packages harshlight and bias.display. These packages produce false‐color
images displaying the discrepancies between individual probes on a chip,
and the expected values of those probes, based on averaging across chips.

The affy package divides up the process of obtaining expression esti-
mates into four steps: background correction, normalization, adjustment
for nonspecific binding, and combining ratios from different probes. The
basic affy package provides a number of options for each of these steps via
the expresso function, and users may mix and match their favorite
methods. Other more specialized packages offer some different variants
on the multichip method.

The expresso function offers two methods for estimating and compen-
sating background. The user specifies bg.correct.method¼‘‘mas’’ to
compute a regional estimate of the lowest 2% of the probe intensities and
to subtract them from the original values; this procedure follows the practice
of Affymetrix’ own MAS5.0 software. The ‘‘rma’’ method estimates em-
pirically the density of nonspecific hybridization over the whole chip. Then it
computes a Bayesian estimate of the specific hybridization for any individual
probe by averaging over the distribution of possible nonspecific signals.

The issue of normalization is contentious. The affy package offers
several options: setting normalize.method ¼ ‘‘constant’’ invokes
a scaling transformation to bring the mean of all chips into agreement, as is
done by Affymetrix’ MAS5.0. The ‘‘quantiles’’ method computes an
estimate of the distribution of all background‐corrected signals and then
shoehorns all individual distributions into that shape. There is active infor-
mal discussion of this normalization; some researchers feel that it is too
strong, and they note that replicates for the most abundant genes are less
consistent than by a simpler normalization. However, replicates for the
majority of genes are more concordant, especially for the least abundant
genes.

Much probe signal comes from nonspecific hybridization. The intent
of Affymetrix was that the ‘‘mismatch’’ probes would provide a specific
estimate of hybridization of similar but not identical cRNAs to the cor-
responding ‘‘perfect match’’ probes. It has been the experience of many
statisticians that computations based on PM only give more consistent
results (T. Speed, personal communication). However, the user may speci-
fy either option. The current thinking is that the relevant background signal
for probe intensities is the nonspecific signal, and so steps 1 and 3 should be
combined. This more sophisticated approach is implemented by the sepa-
rate package gcRMA, which estimates nonspecific signals using the model
developed in Zhang et al. (2004).

[8] bioconductor 131
The final step in the expresso paradigm is synthesis of a single gene
abundance estimate from the evidence of multiple probe signals. MAS5.0
constructs a measure by computing an average of corrected PM signals
independently for each chip. The user may construct the MAS5.0 measure
by specifyingsummary.method¼‘‘mas5’’ inexpresso. However, there
is much information to be found by comparing across chips. A simple linear
model for how the probe signal depends on gene abundance is that S¼afþe,
where s represents signal, a is gene abundance, and f represents the affinity of
a specific probe for its target gene; e is noise. Raw data contain many outliers,
and hence a robust fit is necessary. An adaptation of Tukey’s median polish
procedure provides a robust fit specified via the summary.method ¼
‘‘medianpolish’’ option. A more sophisticated (and time‐consuming)
fit may be obtained by the function fitPLM in the affyPLM package.
Addressing Multiple Comparisons

When searching among thousands of genes for evidence of differential
expression, there are bound to bemany genes that exceed even fairly rigorous
p value thresholds. Statisticians have developed several approaches to esti-
mating and limiting the number of false positives. Two approaches that are
implemented in Bioconductor are developing (1) more powerful genome‐
wide test statistics (limma and siggenes) and (2) methods for estimating the
number of false positives (multtest) in a genome‐wide test.

The basic idea behind moderated t test statistics is that the t statistic
depends on an estimate of within‐group variability. For small sample sizes
(the usual case with microarray data), this variability estimate is itself
highly variable; mistaken underestimates of within‐group variability give
rise to many false positives. However, by adjusting individual estimates of
variation closer to a common value (such as their common mean), one can
improve the majority of single estimates of variability, at the cost of
introducing errors for a small number of genes.

The siggenes package implements ideas similar to those of the Statistics
Applied to Microarrays program, whose approach was first described in
Tusher and colleagues (2001).

The limma package implements an ‘‘empirical Bayes’’ method to es-
timating both variability and the probabilities that specific genes are
expressed differentially. The user may choose a prior expectation of the
number of changed genes (the conservative default is 1% of all genes on
the array). Then the program returns a set of probabilities of differential
expression for all genes.

The multtest package allows the user to compute several different
estimates of the probability (or fraction) of false positives selected by a

132 DNA microarrays, part B [8]
statistical procedure. The most useful estimates are the family‐wide error
rate, the false discovery rate (FDR), and the tail probability of proportion
of false positives (TPPFP). The family‐wide error rate is the probability
of any false positive being selected by the test procedure. Researchers
commonly care about the typical confidence in a large list of genes. The
FDR is an estimate of the expected proportion of false positives in a list
(Benjamini and Hochberg, 1995). The TPPFP provides a probability bound
for the fraction of false positives.
Conclusions: Data Analysis for High‐Throughput Biology
and Bioconductor

In the coming decade, statistical methods will play a central role in dealing
with the volume of data coming from high‐throughput measurements such as
microarrays. Through a collaborative process that is primarily informal, the
Bioconductor project has engendered widely used software tools that address
data translation and quality control, gene filtering, inference on differential
expression, and phenotype prediction. The project has led to innovations in
the production and dissemination of process‐level documentation (vignettes
and related dynamic documents) and in the important activity of reporting on
statistical findings in biologically interpretable fashion, by allowing conve-
nient binding of genomic, pathway, or functional ontology annotation to lists
of features found to be statistically interesting, and by supporting straightfor-
ward creation and export of hypertext documents encoding these associa-
tions. The project has also spearheaded the use of a new object‐oriented
programming paradigm in R, the S4 system detailed in Chambers (1998).

Many open source software development and distribution projects have
emerged in response to the challenges of the human genome project and to
the excitement of postgenomic research agendas. These include projects
focused on laboratory information management (BASE, Troein et al.
(2006), base.thep.lu.se), scripting and programming language appli-
cation (bioperl, biopython, biojava, bioruby, coordinated at open‐bio.org),
and data model and ontology development (open biological ontologies at
obo.sourceforge.net, biopax at www.biopax.org).

The fundamental objectives of the Bioconductor project have been
(a) promotion of advanced statistical technique in high‐throughput biology
and (b) reduction of barriers to interdisciplinary research. Through Biocon-
ductor, statisticians have been given ready access to data examples and
analysis practices in high‐throughput biology. Biologists have been given
access to the classic statistical analysis workflow components latent in
Rand also to emerging analysis strategies targeteddirectly at high‐throughput

http://www.biopax.org

[8] bioconductor 133
biology. This objective has been pursued under appropriate constraints of
transparency (all software and data provided by the project are ‘‘open
source’’). An extensive community of developers and users has emerged,
united by an active mailing list and the software/documentation portal at
www.bioconductor.org. We believe that the current situation of Bioconduc-
tor represents a partial achievement of the fundamental objectives. More
work needs to be done to reduce the complexity of workflows, to help users
match scientific needs to software capabilities, and to help developers
integrate new techniques with existing structures. We are grateful to the
Bioconductor Developers Core and to the many users and contributors
who made this project possible.
Acknowledgment

V. Carey’s contributions are supported in part by NIH Grant 1R33 HG002708,

a statistical computing framework for genomic data.
References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and

powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300.

Brazma, A., Hingamp, P., Quackenbush, J., Quackenbush, J., Sherlock, G., Spellman, P.,

Stoeckert, C., Aach, J., Ansorge, W., Ball, C. A., Causton, H. C., Gaasterland, T.,

Glenisson, P., Holstege, F. C., Kim, I. F., Markowitz, V., Matese, J. C., Parkinson, H.,

Robinson, A., Sarkans, U., Schulze‐Kremer, S., Stewart, J., Taylor, R., Vilo, J., and

Vingron, M. (2001). Minimum information about a microarray experiment (MIAME):

Toward standards for microarray data. Nature Genet. 29, 365–371.

Brazma, A., Kapushesky, M., Parkinson, H., Sarkins, U., and Shojatalab, M. (2006). Data

storage and analysis in ArrayExpress. Methods Enzymol. 411, 370–386.

Chambers, J. M. (1998). ‘‘Programming with Data: A Guide to the S Language.’’ Springer‐
Verlag, New York.

Dalma‐Weiszhausz, D. D., Warrington, J., Tanimoto, E. Y., and Miyada, C. G. (2006). The

Affymetrix GeneChip platform: An overview. Methods Enzymol. 410, 3–28.

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B.,

Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R.,

Leisch, F., Li, C., Maechler, M., Rossini, A. J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L.,

Yang, J. Y., and Zhang, J. (2004). Bioconductor: Open software development for

computational biology and bioinformatics. Genome Biol. 5, R80URL:http://genomebiology.

com/2004/5/10/R80.

Golub, T. R., Slonim, D. K., Tamayo, P., Slonim, D., Golub, T. R., and Kohane, I. S. (1999).

Molecular classification of cancer: Class discovery and class prediction by gene expression

monitoring. Science 286, 531–537.

Ihaka, R., and Gentleman, R. (1996). A language for data analysis and graphics. J. Comput.

Graph. Statist. 5, 299–314.

Minor, J. M. (2006). Microarray quality control. Methods Enzymol. 411, 233–255.

http://www.biopax.org
http://genomebiology.com/2004/5/10/R80
http://genomebiology.com/2004/5/10/R80

134 DNA microarrays, part B [9]
Troein, C., Vallon‐Christersson, J., and Saal, L. H. (2006). An introduction to BioArray

Software Environment. Methods Enzymol. 411, 99–119.
Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied

to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121.

Zhang, L., Miles, M. F., and Aldape, K. D. (2004). A model of molecular interactions on short

oligonucleotide microarrays: Implications for probe design and data analysis. Nature

Biotechnol. 21(7), 818–821.
[9] TM4 Microarray Software Suite

By ALEXANDER I. SAEED, NIRMAL K. BHAGABATI, JOHN C. BRAISTED,
WEI LIANG, VASILY SHAROV, ELEANOR A. HOWE, JIANWEI LI,

MATHANGI THIAGARAJAN, JOSEPH A. WHITE, and JOHN QUACKENBUSH

Abstract

Powerful specialized software is essential for managing, quantifying, and
ultimately deriving scientific insight from results of a microarray experiment.
We have developed a suite of software applications, known as TM4, to support
such gene expression studies. The suite consists of open‐source tools for data
management and reporting, image analysis, normalization andpipeline control,
and data mining and visualization. An integrated MIAME‐compliant MySQL
database is included. This chapter describes each component of the suite and
includes a sample analysis walk‐through.

Introduction

The Human Genome Project was envisioned as a grand endeavor that
would change biology by providing a catalog of genes in humans and other
model organisms. Although a large number of genome sequencing pro-
jects, including that of the human genome, have been declared finished, the
collection of the sequence itself has not fundamentally altered our ap-
proach to understanding biological systems. Rather, it has been the devel-
opment of techniques and technologies that allow us to analyze patterns of
expression for sets of genes, proteins, or metabolites approaching the total
number that are active in an organism at any given point in time.

Since thei r intro duction in 1995 (Lipshu tz, 1995 ; Schena, 1995), DNA
microarrays have matured significantly to become the most widely used
technique for the analysis of global patterns of expression and represent a
technology that is now used routinely as a means of generating testable
hypotheses prior to other studies. DNA microarrays consist of an arrayed

METHODS IN ENZYMOLOGY, VOL. 411 0076-6879/06 $35.00
Copyright 2006, Elsevier Inc. All rights reserved. DOI: 10.1016/S0076-6879(06)11009-5

	Bioconductor: An Open Source Framework for Bioinformatics and Computational Biology
	Introduction: Bioconductor in Brief
	Technical Details
	Software Distribution
	Containers
	Preprocessed Microarray Data
	Processed Microarray Data
	Metadata about Microarray Experiments
	General Biological Metadata

	Workflows
	Documentation Strategies

	Array Preprocessing
	Spotted Array Quality Control and Preprocessing
	Preprocessing of Affymetrix Data

	Addressing Multiple Comparisons
	Conclusions: Data Analysis for High-Throughput Biology and Bioconductor
	Acknowledgment
	References

