THE THALASSEMIAS

James G. Taylor VI, MD Vascular Medicine Branch, NHLBI, NIH Bethesda, MD

OVERVIEW

- Review of human globin genes
- α-thalassemias
- β-thalassemias
- β-thalassemia mutations affecting fetal hemoglobin
- Thalassemic hemoglobinopathies

GLOBIN GENE CLUSTERS

 α Globin gene cluster: Chromosome 16

β Globin gene cluster: Chromosome 11

HUMAN HEMOGLOBINS

	Hb Species			
Embryonic – 1 st two trimesters	Hb Gower 1	$\zeta_2 \epsilon_2$	Zeta	Epsilon
	Hb Gower 2	$\alpha_2\epsilon_2$	Alpha	Epsilon
	Hb Portland	$\zeta_2\gamma_2$	Zeta	Gamma
Post-natal	Hb A	$\alpha_2\beta_2$	Alpha	Beta
	Hb F	$\alpha_2 \gamma_2$	Alpha	Gamma
	Hb A ₂	$\alpha_2\delta_2$	Alpha	Delta
α-thalassemia	Hb H	β4	-	Beta
	Hb Bart's	γ4	-	Gamma

GLOBIN GENE EXPRESSION DURING HUMAN DEVELOPMENT

OVERVIEW

- Review of human globin genes
- α-thalassemias
- β-thalassemias
- β-thalassemia mutations affecting fetal hemoglobin
- Thalassemic hemoglobinopathies

THALASSEMIA

- Thalatta Greek for the "sea" in Xenophon's Anabasis
- Historical ties to Mediterranean populations in Greece and Italy
- Quantitative disorders of hemoglobin synthesis
 - α thalassemia
 - β thalassemia
- Abnormal α:β globin ratio

THALASSEMIA

α-THALASSEMIA

- α thalassemia most common single gene disease syndrome in the world
- α thal prevalence:
 - 5-10% Mediterranean
 - 20-30% West African
 - Up to 68% in Asia/Pacific Rim
- Increased prevalence of malaria in α^+ thal: ? A natural vaccination

α-THALASSEMIA

Normal:

 -4α globin genes

Abnormal:

- 0-3 alpha globin genes
- Small DNA deletions (meiotic crossover events)
- Large DNA deletions (Southeast Asian)
- Less common point mutations (Hb Constant Spring)

α-THALASSEMIA DNA DELETIONS

- Small DNA deletions: Remove 1 α gene
 - -3.7 kb deletion, rightward (z box); ($-\alpha^{3.7}$)
 - -4.2 kb deletion, leftward (x box); ($\alpha^{4.2}$)
 - Nonreciprocal homologous recombination event: $-\alpha / \alpha \alpha$ and $\alpha \alpha \alpha / \alpha \alpha$

Asia $\alpha^{4.2}$

α-THALASSEMIA DNA DELETIONS

- Large DNA deletions:
 - Remove 2 α genes, gives rise to α^0 phenotype
 - Southeast Asian variant (SEA; ∆20 kb)
 - Mediterranean variant (MED)

HB CONSTANT SPRING

Nondeletional α Globin Variant ($\alpha^{CS}\alpha$)

- Common in Asia (Thailand, Cambodia)
- Slow migration on electrophoresis due to increased size of α globin protein

Mutation at Stop Codon

- TAA (stop) → CAA (glutamine)
- Longer globin chain, 141 AA → 172 AA
- Thalassemic phenotype (1%) as elongated globin is unstable and denatures in cell

α -THALASSEMIA

α-THALASSEMIA

Clinical Disease	Deletion	Genotype	α:β ratio
Silent Carrier	1 gene	α α/- α	0.75:1
lpha-Thalassemia Trait	2 genes	- α/- α α α/	0.5:1
Hb H Disease	3 genes	- a/	0.25:1
Hydrops Fetalis	4 genes	/	0:1

- 30% of African Americans are silent carriers
- 1-2 % of African Americans have α -thal trait

α-THAL: SILENT CARRIER

Silent carrier = 1 gene deletion

- Birth: 1-2% Hb Bart's (γ_4)
- No anemia and normal morphology of rbcs

α-THAL TRAIT

• 2 gene deletion: either $-\alpha/-\alpha$ or $\alpha\alpha/--$

- Birth: Excess γ-globin production; 3-8% Hb Bart's
- Adult: Minimal HbH (β₄; excess β chains)
- Anemia: hypochromic, microcytic
 - Hb 9-11 gm/dL
 - MCV 65-75 fL

HB H DISEASE

3 gene deletion

• Birth: 20-50% Hb Bart's

MCV < 100 fL

• Adult: excess β chains = 5-30% HbH (β_4)

Heinz body positive (denatured Hb)

Anemia: hypochromic, microcytic

HB H DISEASE

- Anemia: hypochromic, microcytic (MCV 60 fL)
 - Moderate anemia
 - Hb 9.5 + 1.5 gm/dL
 - Hct 25-32%
 - Smear: rbc fragments, tear drops, targets

HB H DISEASE

Clinical Features

Mild to moderate hemolytic anemia

Heinz body positive- Hb Bart's and Hb H both precipitate and cause rbc lysis

Most often non-transfusion dependent

Symptomatic transfusion

+/- icterus, gallstones, leg ulcers, splenomegaly

Splenectomy possible if transfusion dependent Supportive care

Increased Fe²⁺ absorption - iron overload common in pts. > 35 years

NONDELETIONAL HB H DISEASE

2 gene deletion and unstable structural variant

- A more severe <u>hemolytic anemia</u>
 - Diagnosis: younger age due to symptoms
 - Larger spleen
 - More red cell transfusions
 - Higher Hb H: average 16%
 - Higher Hb Bart's: 3%
 - Maybe 30% require splenectomy

HB CONSTANT SPRING

Normal α -globin transcription

Constant Spring α -globin transcription

- Explains more severe phenotype of nondeletional Hb H disease

 \downarrow normal α 1 transcript

HYDROPS FETALIS

- 4 gene deletion no α-globin
- A nonimmune hydrops
- Birth:

100% Hb Bart's and Hb H

Embryonic hemoglobins

Fetal demise from severe anemia

 Rx: Transfusion support in utero and after birth; stem cell transplantation

EFFECT OF α -THALASSEMIA IN SS

Adapted from Higgs et al. 1982

SS MOUSE: HBA IS A MODIFIER

	400	400	490	450
Variable	Transgenic Mouse	Transgenic Mouse	Transgenic Mouse	Knockout— Transgenic Mouse
Human globin genes expressed	β^{S} , α	β ^{SAD} , α	β S, β S Antilles, α	β ^s , α
Mouse globin genes expressed	β, α	β, α	β, α	None
Expression of sickle or sickle-related genes	β\$, 75%	β ^{SAD} , 26%	β ⁵ , 42% β ⁵ Antilles, 38%	β ^s , 100%
Hemolytic anemia	No	Compensated	Compensated	Severe
Micro-occlusive disease	Mild	Moderate	Moderate	Severe

Nagel. NEJM: (1999)

OVERVIEW

- Review of human globin genes
- α-thalassemias
- β-thalassemias
- β-thalassemia mutations affecting fetal hemoglobin
- Thalassemic hemoglobinopathies

β-THALASSEMIA

- Normal
 - 2 β globin genes
 - Large gene cluster on chromosome 11

- Abnormal
 - 0 or 1 β gene
 - Majority are point mutations: β^+ or β^0 thal
 - Rare DNA deletions
 - \cdot $\delta \beta$ -thalassemia versus HPFH (hereditary persistence of fetal hemoglobin)

β-THALASSEMIA MUTATIONS

Hundreds of single nucleotide mutations giving rise to absent or decreased beta globin message

β-THALASSEMIA TRAIT

- A β^0 or β^+ mutation on 1 allele
- Imbalance of α : β chain synthesis ratio
- Hypochromic, microcytic anemia
 - Hb 9-11 gm/dL
 - Low MCV (65 fL)
 - Normal RDW (nl range 11.5-14.5)
 - Must differentiate from Iron Deficiency
 - MCV/RBC < 13 = β thal trait
- Elevated Hb A₂ (>3.5%) and Hb F

β-THAL TRAIT WORKUP

- Family History
- CBC with differential
 - Look at MCV, RDW, RBC
- Smear
- Hemoglobin electrophoresis
 - Cellulose acetate
 - Citrate agar
 - HPLC for quantitative Hb A₂ and F

β-THAL TRAIT WORKUP

Hb 12.3 MCV 67.5 ARC 56,600

HPLC: HbA 95.8% HbA₂ 4.2%

β-THALASSEMIA INTERMEDIA

- Moderate disease severity
- By definition, non-transfusion dependent
- Wide allelic spectrum of disease
 - $-\beta^0/\beta^+$ thalassemia
 - $-\beta^0/\beta^0$ thal plus α -thalassemia
 - Elevated Hb F production
- Increased absorption of iron

β-THALASSEMIA MAJOR

- β^0 alleles on both chromosomes
- By definition, transfusion dependent
- Imbalance of α:β chains
- Severe hypochromic, microcytic smear with severe poikylocytosis
- Hb Electrophoresis
 - Birth: F
 - Later: FA₂

β-THALASSEMIA MAJOR

- By definition, transfusion dependent
- Untreated = massive HSM, hypersplenism, skeletal dysplasia, life threatening infections, premature death
- Hb 2.0 4.0: mostly fetal Hb
- Transfusion therapy to turn off patient's own blood generation!

β-THALASSEMIA MAJOR

By definition, transfusion dependent

- Monthly transfusion replacement therapy
- Long term complications: Too much iron
 - Liver
 - Heart
 - Endocrine organs

OVERVIEW

- Review of human globin genes
- α-thalassemias
- β-thalassemias
- β-thalassemia mutations affecting fetal hemoglobin
- Thalassemic hemoglobinopathies

β-THAL MUTATIONS AFFECTING HB F

- β-thalassemia ordinarily has elevation of Hb A₂ (>3% with slight ↑Hb F)
- Deletional mutations significantly increasing Hb F production classically grouped into 2 broad categories:
 - ^Gγ^Aγ Hereditary Persistence of Fetal Hemoglobin (HPFH)
 - ^Gγ^Aγ (δβ)⁰ Thalassemia

HPFH AND δβ-THALASSEMIA

Clinical Phenotypes in Heterozygotes

	HPFH	δβ-Thalassemia
Red cell morphology	Normal	Abnormal
МСН	Nearly normal	Decreased
Hematocrit	Normal	Slightly decreased
Hb F (%)	15-30	1-15
HB F distribution in RBCs	Pancellular	Heterocellular

PANCELLULAR VS. HETEROCELLULAR HB F

Pancellular HbF in HPFH (an F cell)

Heterocellular HbF In ^Gγ^Aγ (δβ)⁰ Thalassemia

- A rare and extreme example of effect of HbF
- Molecular basis <u>large</u>
 <u>β-globin gene cluster</u>
 <u>deletions</u>
 - Deletional HPFH
 - δβ-thalassemia
- Increased total HbF and F cells in HPFH

OVERVIEW

- Review of human globin genes
- α-thalassemias
- β-thalassemias
- β-thalassemia mutations affecting fetal hemoglobin
- Thalassemic hemoglobinopathies

THALASSEMIC HEMOGLOBINOPATHIES

Defined:

- Structural change in the hemoglobin molecule AND
- Thalassemia phenotype (↓ globin expression)

Examples

- Hb E (most common)
- Hb Kenya
- Hb Knossos
- Hb Lepore
- Hb Malay
- Hb Constant Spring

HEMOGLOBIN E

- Creates an alternate splice donor site in exon 1 which decreases β expression
- Only a % of Hb E is aberrantly spliced (nonfunctional + creating β⁺ transcript)

HEMOGLOBIN E TRAIT

- Asymptomatic
- Mild hypochromic, microcytic anemia
 - Hb >12 gm/dL
 - Low MCV (74 fL)
 - Smear no nucleated red cells, occasional target cells
- Hb A₂ comigrates with HbE on cellulose acetate: 19-34% total Hb

HOMOZYGOUS HB E

- Usually asymptomatic
- Mild hypochromic, very microcytic anemia
 - Hb >10 gm/dL
 - Very Low MCV (50 to 66 fL)
 - Smear usually no nRBCs, frequent target cells
- Hb A₂ + HbE accounts for >90% of total hemoglobin
- Occasionally require splenectomy

HB E β-THALASSEMIA

- A common, severe thalassemia in Southeast Asia
- Transfusion dependent (ie. Thalassemia major phenotype)
- Compound heterozygosity
 - Untransfused Hb 2.3 7.0 gm/dL
 - Nucleated RBCs on smear (absent in homozygous Hb E)
 - Untreated = thal major with massive HSM, hypersplenism, skeletal dysplasia, life threatening infections, premature death

HEMOGLOBIN LEPORE

HOMOZYGOUS HB LEPORE

At least three Lepore variants depending on site of meiotic recombination

Washington, Hollandia, and Baltimore

Clinical and laboratory findings are identical to β thal major (except electrophoresis)

Electorphoresis

Cellulose acetate: co-migrates with Hb S (experienced lab :Lepore migrates slightly faster as a faint band)

Citrate agar: Lepore co-migrates with Hb A

Laboratory diagnosis of homozygous Hb Lepore

Hb F 80 - 90%

Hb A absent

Hb A₂ absent

Hb Lepore 10% (co-migrates with Hb S)

HB LEPORE TRAIT

 Clinical and laboratory findings are identical to β thal trait (except electrophoresis)

Slight anemia with slight reticulocytosis (eg. Hb 12.0 gm/dL and absolute reticulocyte count 109,000)

Microcytic (typical MCV 65)

Electorphoresis results for Hb Lepore trait

Hb A decreased (eg. 75%)

Hb F slight elevation (2-3%)

Hb A₂ decreased or normal

Hb Lepore 5-15%

HEMOGLOBIN KENYA

