

NTP BSC December 1, 2006

Multiple-Mouse Strain Studies of Genetic Variation and Host Susceptibility to Toxicity

HSI Concept Review

John E. (Jef) French (919) 541-2569 french@niehs.nih.gov

Prior Public Discussions/Reviews

- NTP BSC 13 June 2006
- Extramural Experts (Mouse Genomics) 21 July 2006
- Intramural Research Scientists (Series)
- NTP Retreat 18-19 October 2006

A new (non-GLP) research contract is required to study -

• Gene-Environment Interaction

• Focus - individual susceptibility to environmental agents of public health importance

Cho et al. AJRCMB 24:42 (2002)

Nuclear factor, erythroid derived 2, like 2 (Nfe2l2)

Based upon Perlegen-NIEHS Resequencing

1 – simMat Hap Size = 3

The Approach (Non-GLP)

Objective: The purpose of this contract is to provide the capacity to use multiple isogenic mouse strains to study the genetic basis for variation in quantitative measures of chemical toxicity *in vivo*.

AIMS

- To use the significant genetic diversity within different laboratory and/or wild-derived (isogenic) mouse strains to model and <u>predict</u> <u>potential population-level ranges of response</u> to toxicant exposure.
- To identify and to understand the <u>functional characterization of</u> <u>specific genes and their allelic variants that are associated with</u> <u>individual differences in response</u> to toxicant exposure.
- To use comparative genetic analysis of susceptibility genes discovered in individual strains of mice to identify risks specific to <u>susceptible human populations harboring genetic variations in</u> <u>orthologous genes and pathways</u> (NIEHS Environmental Genome Project).

- A new initiative to leverage NTP expertise and data to gain insight into critical genes and basic disease processes contributing to the individual response to environmental exposures.
- Intended to foster greater use of NTP data in the understanding of complex human disease.
- Ultimately, to increase our understanding of Gene-Environment interactions leading to: 1) identification of new biomarkers for detection of exposure and/or effect of environmental agents and 2) new candidate genes and signaling pathways for clinical intervention.

Discussion

Petkov Genome Res 14:1806, 2004

Xrcc6 (Ku70) Haplotype Map

C57BL/61	DBA/21	Δ/1	BALB/cBy J	C3H/He I	AKR/1	EVB/U1	129S1/Svlm	NOD1t1	WSB/ELL	PWD/Ph I	BTBR T+ tf/J	CAST/Fil	MOLE/EIJ	HZW1 ac.1	KK/HLI
A	A	A	A	A	A	A	A	A	А	G	А	А	G	А	A
С	С	С	С	С	С	С	С	С	С	С	С	Т	С	С	С
G	G	Ģ	G	G	G	G	G	G	G	A	G	G	A	G	G
	C	N	C	N	N	C	L L	N	1	1		1	1	N	1
T		T	T				T	T.		ç	T	C	ç	T.	T
Δ	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>	Δ	Δ	<u>A</u>	Δ.	<u>A</u>	G	A	<u>A</u>	<u>A</u>
A	A	A	A	A	Ä	A	A	A	N	A	A	G	A	A	A
0		0	0		0		0		0	U O	0	N	C		0
A T	A T	A	A	A	A T	A T	A	A	A	C C	A	N N	N	A	A
ć	ċ	Ċ	ć	Ċ	ć	Ċ	Ċ	ć	Ċ	т	Ċ	C IN	T	Ċ	ċ
Č.	č	č	č	č	č	č	Ğ	č	G	Ċ	G	G	Ċ	č	č
Ť	т	Ť	Ť	T	Ť	T	т	Ť	т	č	T	N	č	Ť	Ť
G	G.	G	G	G	G	G	G	G	G	A	G	G	A	G	Ġ
G	G	G	G	G	G	G	G	G	G	Т	G	N	т	G	G
С	С	С	С	С	С	С	С	С	С	A	С	С	А	С	С
A	N	N	N	A	N	A	N	A	A	G	N	A	N	A	A
С	С	С	С	С	С	С	С	С	С	Т	С	N	Т	С	С
С	С	С	С	С	С	С	С	С	С	A	С	С	A	С	С
A	A	A	A	A	A	A	A	A	A	С	A	A	С	А	A
A	G	G	G	G	G	G	A	G	A	G	A	N	G	G	G
C	C	C	c	C	C	C	C	С	С	T	С	C	Т	С	C
Ţ		1	1	Į.	1	1	1	1	1	G	1	I	Ģ	1	1
	N		1	-						A	1	A	A		A
A	G.	G A		G A	<u>ل</u>	G A		a	G A	C	<u>с</u>	G A	C		ل ۸
ĉ	<u> </u>	Č.	ĉ	Č.	C C	ĉ	2	6	ĉ	A	ĉ	ĉ	A	ĉ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ğ	Ā	Å	Δ	Δ	Δ	Å	Ğ	Ă	Ğ	N	Ğ	Ğ	N	Δ	A
Ğ	G	G	G	G	G	G	Ğ	G	G	A	Ğ	Ğ	A	G	G
Ť	c	C	c	c	c	c	Ť	c	Т	c	Ť	T	С	c	C
G	A	A	A	A	A	А	G	А	G	G	G	G	G	А	N
G	А	A	A	A	A	A	G	А	G	A	G	N	A	A	A
С	С	С	С	С	С	С	С	С	С	Т	С	С	Т	С	С
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	С	Т	Т	С	Т	Т
С	С	С	С	С	С	С	С	С	С	A	С	С	A	С	C
A	G	G	G	G	G	G	A	G	A	N	A	N	N	G	G
A	A	A	A	A	A	A	A	A	A	G	A	A	G	A	A
C	C T	C	C	C	C	C	C	C	N	T	c	C	T	C T	C
C		1	-	1	T	1	Ç		C T	C	C T	C T	C	-	C T
0	0	0	1	0	0	0	0	0	0	G	0	0	G	0	0
A	A	A	A	A	A	A	A	A	A	0	A	A	0	A	A
т	T	Ť	÷	T	T	Ť	т	Ť	Ť	G	T	N	G	Ť	Ť
G	G	G	6	6	G	G	G	G	G	Т	6	G	Т	G	G
A	A	N	A	A	N	N	A	N	Д	G	N	N	G	A	N
G	G	G	G	G	G	G	6	G	G	Δ	G	G	A	G	G

1 – simMat Hap Size = 3

Casc1 susceptible haplotype segregation

Dendrogram for Casc1.

- Over 100 B6xD2 RI lines have been created – if all were phenotyped and genotyped by SSLP, QTLs 1 cM apart could be identified by statistical association
- By SNP genotyping this could be reduced to 5000 base pairs or less

