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Abstract --- This paper discusses a data mining approach for
overcoming common problems with the traditional red-line
limit-checking approach to fault detection and state
summarization. It essentially involves learning and adapting
parametric functions which provide context-sensitive bounds
on historic time-series engineering data.   Such bounds are
suitable as dynamic plug-in replacements for static red-line
values.  They enable significantly earlier detection while
maintaining low false alarm rates.  An example will be
discussed from recent onboard tests of this technology
during the NASA Deep Space 1 (DS1) mission.
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1. INTRODUCTION

Autonomous fault detection in space systems typically
involves comparing real-time data to predefined static "red-
line" limits.  For example, a fault in a heat regulator might
be detected when a particular temperature gets higher than a
given threshold.  Such limits are popular because they are
relatively easy to specify and use.  But they have numerous
weaknesses, which are becoming increasely significant as
we move toward more autonomous spacecraft, including:

 1) late or missed alarms --- red-lines are relatively weak
(wide) bounds, detecting faults only once they become
critical, and often even dangerous.  Earlier detection would
support a wider range of recovery procedures, including
preventative maintenance that would extend mission life.

 2)  false alarms --- red-lines are traditionally made quite
wide intensionally, in large part to avoid false (“nuisance”)

alarms.  Nevertheless, such false alarms still occur routinely,
sometimes resulting in mission operators eventually ignoring
red-line alarms in those troublesome sensors altogether.

 3) failure to track system changes --- predefined red-lines
fail to capture changes during a mission, such as gradual
spacecraft degraduation, environmental changes, and early
mission "shake-out" (e.g. versus testbed performance).

Handling these problems autonomously is essential to
autonomous fault diagnosis and recovery, since fault
detection is the critical first step.

Addressing the above problems typically involves
substantial manual effort.  One common approach is to
manually develop expert system rule bases or state models,
to allow different red-line values to be associated with key
different contexts (e.g. spacecraft operating modes).  A
second common approach is to continually monitor
performance during the mission, manually refining and
uploading new red-lines as warranted.

To address these problems without such high manual costs
and in an automous manner, we have been developing data
mining techniques which essentially extract red-line
functions from mission data.  We call this approach ELMER
(Envelope Learning and Monitoring using Error
Relaxation).  For each sensor, we learn a pair of upper and
lower bounding functions, called its “envelope”.  The inputs
for each envelope are automatically restricted to a subset of
the sensors --- those which are most relevant to determining
the tightest bounds for which nominal historic data seldom
falls outside of them.

2. ENVELOPE LEARNING

Consider the task of predicting high H(y[t]) and low L(y[t])
bounding values for sensor y at each time t, based on input
values from various other sensors Xi at various time lags,
say t+1, t, and t-1.  Note that one distinction between classic
time-series prediction and our similar use here for detection
tasks is that for detection it often makes considerable sense



to use current (i.e. at t) and future (e.g. at t+1) values of the
input sensors.

For brevity, we will denote the set of all input sensors as X
and the full input set at each time t, over all those sensors
and time lags as:

Z[t] = X[t+1], X[t], X[t-1].

 Denote the parametric form of these bounds as follows:

H(y[t]) = f(wH, Z[t])

L(y[t]) = f(wL, Z[t])

for some suitable functional family f, such as sigmoidal
forms popular in neural networks or even simple linear
weight sums.  In this paper we will assume we are given Z
and f. Candidates can be supplied by users and further
refined using a wide variety of automated model selection
and feature selection techniques explored in statistics and
machine learning work.

 In practice, it is not critical that Z contain only relevant
quantities, since the parameter optimization process will
tend to associate small parameters with useless inputs. 
Selecting an appropriate family f might seem more
fundamentally critical to good prediction performance. 
However, practical constraints often dictate this decision as
well.  For example, in recent onboard experiments we were
restricted to simple linear-weighted sums, due to both RAM
and CPU limitations.

To handle such practical constraints, our focus has been on
how to learn values for the parameter vectors wH and wL  that
lead to good results (e.g. low false alarm rates and better
detectability than red-lines) even when given higher non-
ideal inputs Z and function family f.

Bounds Estimation Techniques

We view ELMER as a collection of techniques for
performing the task of bounds estimation, as opposed to
traditional regression techniques which emphasis means
estimation or general probability density estimation. We
have formulated several methods for bounds estimation and
have been exploring their various tradeoffs as well as
comparing them to traditional techniques.  Common to all
our techniques is the notion that bounds estimation’s key
distinction is that it involves a special form of constrained
optimization.  In particular, a prediction from a learned high
bounding function should not only be as close to the training
target value as possible, but also strictly above that target.

Our envelope learning process is essentially a generalization
of standard least squared regression, in which constraints to
ensure that most data falls within the resulting bounds are
enforced. There are a variety of ways to do so.  The various

techniques we have implemented and explored fall into two
broad categories:

Memory-Based Methods --- In classic k-nearest neighbors
regression [1], an estimation of the input-conditional mean
for y[t] is given by averaging the values  y[ti] associated
with the k training examples Z[ti] “closest” to the new test
example Z[t], based on some distance metric (often
Euclidian) and value of k.  This technique can be used to
estimate high (low) bounds instead of means by essentially
taking the maximum (minimum) of the y[ti] values, instead
of averaging them.

Model-Based Methods ---  A common “error bars” [6]
approach involves estimators of input-conditional means and
variances (see Figure 1). Consider a variant, where the
input-conditional mean estimation is used to divide the
training set into “target is above the mean”  and “target is
below the mean” subsets.  A prediction model of the error
residual for each subset is learned, allowing error
distributions which are asymmetric around the mean to be
easily handled.  The final learned high bounding function is
H(y[t]) = Hb + Hs * M(Z[t]), where M(Z[t]) is the mean
estimation, Hb is a bias shift value and Hs is a scaling factor
playing a role similar to a standard deviation factor in a
Gaussian model.

Figure 1 Network for Input-Conditional Mean and Variance
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Generalizing to Future Test Data

Making such methods generalize well to future data requires
further details beyond the basic sketches given above.  For
example,  one way to determine reasonable values for the Hs
and Hb parameters above is to use a simplex method of
constrained optimization (over only those two variables, for
fixed M(Z[t])) and extensively use cross-validation to select
the widest fit (i.e. highest Hb and Hs values) that any 90%
subset of the training data requires to avoid alarms on 10%
hold out sets.  Similarly, for methods such as min/max k-
nearest neighbors, the best k value and suitable shift offsets
to bound all data can be determined via cross-validation as
well.

Tradeoffs Among Alternatives

The memory-based bounding methods have some key
advantages, including often being more readily understood
by humans during post-detection (e.g. diagnosis) analysis,
since their bounds violations are grounded in terms of
specific previous sensor behavior examples.  We have
focused more to date on model-based methods, mainly
because onboard applications, including the DS1 Beacon
experiment discussed later below, have tight space
constraints that preclude on-line access to vast historic
databases.  However, we are beginning to explore, within
our bounding context, appropriate ways to combine both
approaches.  One such approach involves support vector
machines [9], which identify subsets of examples which are
most valuable for retaining in memory.

An important property of ELMER is that it is very scaleable
with respect to the number of available sensor inputs, the
available training data, the computational time available for
learning and adaptation, and the real-time memory and CPU
restrictions for representing and computing final bounding
functions. It finds the best bounds it can with whatever it is
given (even if that results in almost static red-line bounds at
that point), and can incrementally improve bounds as more
is given later.

3. RELATED WORK

It is useful to view ELMER as a generalization of the static
red-lines traditionally used in NASA fault monitoring
operations.  ELMER's bounds are intended to work just like
red-lines, in that  data outside of those bounds should be
suspect.  A key problem with red-lines is that attempts to
avoid "nuisance alarms", where red-lines are excessively
tight, easily leads to red-lines that are much too wide to
detect faults until very late (and often critical) stages. 
Indeed, our work on ELMER arose from attempting to better
capture the context-sensitivity of the domains, for earlier
detectability, while not making the strong error  distribution
assumptions that common statistical error bars approaches

do.  Note that data outside of error bars based on the mean
plus or minus two standard deviations will still occur about
5% of the time.  That is not acceptable for large-scale
monitoring tasks, for which thousands of sensors are
sampled every second.

The fundamental problem is that for complex engineering
systems such as spacecraft, the error in achievable
predictions based on available sensor data is not primarily
Gaussian, nor any other kind of standard distribution.  Even
when the sensor data is sufficient to find a deterministic
(plus small Gaussian white noise) model, from a practical
point of view that does not help much if the step-wise
regression technique being used has not yet selected all the
right inputs, out of the thousands of (raw and transformed)
candidates to consider. Furthermore, the mission's memory
and CPU limitations might well require limiting each
function to a handful of the relevant inputs.

Asymmetric Error

A key distinction between ELMER and other machine
learning technologies is that it learns and defines its high
and low bounds independently and without assuming a
specific prediction error distribution.  Other techniques, such
as neural networks which learn "error bars" (e.g. estimates
of the mean of the data as well as the variance of the data
[6]), assume specific types of distribution of error, often
symmetric (e.g. Gaussian).  ELMER handles well such
asymmetric error distributions, which are common in
spacecraft data (due to engineering set-points and other
skewed behavior).  The end result is that ELMER can
produce tighter bounds, which leads to better detections and
trending predictions.

Probability Density Estimation

There does exist a class of techniques, called probability
density estimation (PDE) (e.g. [8]), which, like ELMER,
avoid the problems of assuming any specific class of error
distributions.  Conditional probability densities explicitly
represent the probability of each possible output value,
given the inputs. For example, instead of assuming that error
is distributed as a single Gaussian, a PDE approach such as
mixture density estimation might use hundreds of Gaussians
of varying parameters (i.e. centers and widths).  With
sufficiently large mixtures, any distribution can eventually
be modeled to any arbitrary precision using such PDE.

However, the generality of PDE is both its strength and its
major weakness.  To learn the parameters of the mixtures
well typically requires orders of magnitude more data than
the single regression that ELMER requires for each bound.
Similarly, PDE's with hundreds of Gaussians are orders of
magnitude more expensive to store and compute at
execution time, making them much more expensive than
ELMER to use for tasks such as real-time monitoring.



In short, PDE promises more than is necessary for tasks that
only require bounds, and delivering on those promises
requires excessive resources at both training and execution. 
Thus, we argue that ELMER's explicit focus on estimating
bounds is more appropriate for many tasks, such as
monitoring and resource profiling.  For some tasks, most
notably control, invertible models are critical.  For such
tasks, PDE of some precision is generally required.  One
planned extension for ELMER is to generalize it with PDE
capability, so that in an anytime fashion it finds the best
trade-off for a given task between high/low bounds and full
precision PDE.

Extreme Value Theory

Quartile and extreme value theory [7] techniques have been
developed within the field of statistics to help characterize
high and low values without resorting to detailed probability
density estimation. Extreme value work emphasizes the fact
that the vast majority of examples in most data sets are not
extremas, and thus models based on them will be
excessively biased toward the average cases.   These
techniques are based on the mathematical fact that the
distributions of maximum (minimum) values (e.g. annual
maximum rainfall) tends to fall into a small number of
classes that can be characterized by a small number of
parameters that can be estimated.

Extrema value techniques are especially popular for
environmental and insurance studies.  For example, they are
used to estimate maximum annual rainfall or the probability
of flood levels exceeding a given level.  In such cases, there
are natural time periods over which one can compute
maximums (minimums) and the data is univariate or there
are only a couple of relevant input variables.   They seem
less applicable to our general spacecraft monitoring context.

4. EXAMPLE

For example, in a recent experiment to evaluate our
envelope approach onboard the NASA Deep Space 1 (DS1)
mission, the learned envelope for a battery charge
temperature sensor (P-4022) correctly represented the fact
that it's value had historically been within 2 degrees of
related battery temperature sensors (P-4011 and P-4021)
during the first few months of the mission.  A later fault was
then detected because the learned high bound on sensor P-
4022, whose inputs were sensors P-4011 and P-4021, was
violated when this previously reliable historic relation
suddenly no longer held. This fault was much more subtle
than what traditional red-lines on those temperature sensors
would have detected.

The bounding functions (learned using the model-based
approach discussed above) for these three sensors were each
linear weighted sums of the other sensors at time t:

HI(P-4011) = 0.134188 + 1.63289 +
0.448148 * P-4021 + 0.464419 * P-4022

LO(P-4011) = -0.605297 - 2.29489 +
0.837963 * P-4021 + 0.305041 * P-4022

HI(P-4021) = 0.237627 + 1.33672 +
1.19174  * P-4011 - 0.198575 * P-4022

LO(P-4021) = -0.309171 + 1.09749 +
0.138695 * P-4011 + 0.778735 * P-4022

HI(P-4022) = 0.361257 + 1.49832 +
0.393313 * P-4011 + 0.433447 * P-4021

LO(P-4022) = -0.36943 - 2.91208 +
0.718915 * P-4011 + 0.377218 * P-4021

Figure 2 shows time-series plots for sensor P-4022 (and its
bounds) for three data sets: training data (top),  test data
(middle) and test2 data (bottom).   The training set
represented the last 44 days of 1998.  The test set
represented the first 30 days of 1999, during which time the
true anomaly occurred.  The test2 set represented the 22
days before the training set.  As expected, the training and
test2 data did not get (false) alarms, but the test set did alarm
just before and during the anomaly (indicated by dark black
bar along bottom of the middle plot, representing times for
which the data dropped below the low bound values).

Figure 3 shows the training data (and bounds) for all three
sensors.  Similarly, Figure 4 shows the test data and Figure 5
shows the test2 data.

5. CONCLUSIONS

Our bounds estimation techniques are also applicable to
related tasks, such as “resource profiling” [4] to support
planning decisions in dynamic environments (e.g. Mars
Rover [5]).

Despite initial promising results, a couple of key issues must
still be addressed to mature this technology for practical
applications.



First,  ELMER needs to be extended to allow it to determine
at runtime when the current (test) data is so dissimilar from
the training data that the previously learned bounds are not
applicable.  For example, autonomously detecting such
situations is required to avoid false alarms when the test
context is radically different from the training scenarios ---
such as training during cruise phase of a mission and testing
during orbit-insertion phase.  In a general probability density
estimation approach, such determination could be directly
performed by evaluating some (previously learned) joint
density estimate for the current values of all the input
sensors.  That is, a small likelihood in the conditional
probability of some quantity should not itself be the cause
for declaring a fault detection when the inputs for its
estimation are in fact themselves very unlikely.  Capturing
this distinction between inputs joint probability and output
conditional probability sufficiently for the goals of bounds
estimation, without incurring the full cost of general density
estimation, is the goal for this extension.  An advantage of

memory-based approaches to bounds estimation mentioned
earlier is that their use of distance metrics between test and
training data already provides some such distinctions (i.e. a
nearest-neighbor which is still relatively far away could be
an indication that the training data is insufficient to
confidently bound the new data).

Second, ELMER needs to be extended to support robust on-
line adaptation of bounding functions in light of new data
during a mission.  This capability is required to track non-
stationarities due to system drift and degradation, as well
when environmental conditions turn out to be different that
initial expectations (e.g. ground testbed for Mars rover).  To
date, our work has focused on learning envelopes using
batch training, due to its simplicity of implementation and
evaluation.  Also, addressing the issues of when to adapt and
what portions of a model to retain requires first addressing
the above issue of detecting significant differences between
previous (training) and new (test) data.

Figure 2 Sensor P-4022 for Train,  Test, and Test2 Data



Another goal for the ELMER work is to more formally
incorporate an ability to learn probabilistic graphical models
(e.g. Bayesian networks) from the data.  ELMER currently
uses basic concepts from the field of Bayes nets, such as
partial correlations, to (heuristically) identify useful inputs
for each bounding function.  Useful extensions would
include refining Bayes net algorithms for learning causal
(directed) structures so that they work well within the
bounds estimation framework of ELMER.

Finally, near term goals include more comprehensive
evaluation of our various bounds estimation techniques,
across several data sets, including deep space missions,
Mars Rover, and Space Shuttle.
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