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Metastases arise following the spread of cancer from a
primary site and the formation of new tumours in dis-
tant organs. When cancer is detected at an early stage,
before it has spread, it can often be treated successfully
by surgery or local irradiation, and the patient will be
cured. However, when cancer is detected after it is
known to have metastasized, treatments are much less
successful. Furthermore, for many patients in whom
there is no evidence of metastasis at the time of their ini-
tial diagnosis, metastases will be detected at a later time.
These metastases can show an organ-specific pattern of
spread — for example, breast and prostate cancer often
metastasize to bone — that might occur years or even
decades after apparently successful primary treatment.

Surprisingly though, in spite of the clinical impor-
tance of metastasis, much remains to be learned about
the biology of the metastatic process. In part, knowledge
is limited because metastasis is a ‘hidden’ process, which
occurs inside the body and so is inherently difficult to
observe. Many molecular factors have been identified as
contributing to the formation of detectable metastases,
and additional factors will rapidly be identified from
studies that use microarray expression profiling.
However, the identification of molecules and genes that
are associated with a metastatic end point does not, in
itself, provide information about how these molecules
contribute to the metastatic process. Studies using 
in vivo video microscopy, and quantitative approaches
that follow the fate of cancer cells in the body, are 
shedding light on this ‘occult’ process. This knowledge

will be important for providing the biological context in
which to apply the rapidly increasing information about
molecular contributors to metastasis. So, which
metastatic steps are inefficient, and how can we use this
knowledge to better design cancer therapies?

Steps in the metastatic process
The metastatic process consists of a series of steps (FIG. 1),
all of which must be successfully completed to give rise
to a metastatic tumour1–4. As a primary tumour grows,
it needs to develop a blood supply that can support its
metabolic needs — a process called ANGIOGENESIS. These
new blood vessels can also provide an escape route by
which cells can leave the tumour and enter into the
body’s circulatory blood system5 — known as  intrava-
sation. Tumour cells might also enter the blood circu-
latory system indirectly via the lymphatic system. The
cells need to survive in the circulation until they can
arrest in a new organ; here, they might extravasate
from the circulation into the surrounding tissue. Once
in the new site, cells must initiate and maintain growth
to form pre-angiogenic micrometastases; this growth
must be sustained by the development of new blood
vessels in order for a macroscopic tumour to form.

The process of metastasis has been modelled
experimentally. In these assays, cancer cells are
injected into experimental animals, either ORTHOTOPI-

CALLY or directly into the circulation to model the lat-
ter phases of the process. These assays are called,
respectively, spontaneous or experimental metastasis
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Quantitative studies using in vivo videomicroscopy
and cell-fate analysis to determine the efficiency of
each step in the metastatic process have revealed sev-
eral surprises about the biology of the process of
metastasis18, which provide a physical and biological
context in which to interpret molecular findings.

Organ-specific metastasis: ‘seed and soil’
It has long been recognized that some types of cancer
show an organ-specific pattern of metastasis. Breast
cancer frequently metastasizes to bone, liver, brain and
lungs; prostate cancer preferentially spreads to bone.
Patients with colorectal cancer, by contrast, often
develop initial metastases in liver.

In 1889, Stephen Paget published an article in 
The Lancet that described the propensity of various
types of cancer to form metastases in specific organs,
and proposed that these patterns were due to the
‘dependence of the seed (the cancer cell) on the soil
(the secondary organ)’19–21. This idea was challenged
in the 1920s by James Ewing, who suggested that cir-
culatory patterns between a primary tumour and spe-
cific secondary organs were sufficient to account for
organ-specific metastasis22 (BOX 1).

In fact, these theories are not mutually exclusive, and
current evidence supports a role for both factors. In a
series of autopsy studies23–26, Leonard Weiss documented
that larger numbers of bone metastases than would be
expected based solely on blood-flow patterns were iden-
tified for both breast and prostate cancer, for example. By
contrast, fewer numbers of skin metastases than
expected based on blood-flow patterns were found for
osteosarcomas, stomach and testicular cancers. Of the 16
primary tumour types and 8 target organs that were
analysed, metastasis in 66% of the tumour-type–organ
pairs seemed to be adequately explained on the basis of
blood flow alone, whereas the remainder were not. For
these remaining tumours, negative interactions — that
is, fewer metastases than expected based on blood flow
between the primary and secondary sites — between
cancer cells and the environment of the metastatic site
were found in 14% of cases, and positive interactions
were found in 20% of cases26.

Experimental data from metastasis assays in labora-
tory mice also support the concept that both mechanical
factors (how many cells are delivered to an organ?) and
seed–soil compatibility factors (does the organ preferen-
tially support or suppress the growth of the specific can-
cer-cell type?) contribute to the ability of specific types of
cancer to spread to various target organs27–29.

Vascular pathways affect metastatic spread. FIGURE 2

shows the blood-flow pathways for cancers growing
in two different primary sites: breast and colon.
Breast cancer cells that escape from the primary site
into the blood circulation would be taken by the flow
through the heart to the capillaries of the lungs,
where many would arrest. Any cells that managed to
pass through these capillaries would then enter the
systemic arterial circulation, where they would be
taken to capillary beds in all organs of the body.

assays6,7, and the end point of both assays is the 
formation of visible metastases at a secondary site.
These assays have led to the identification of many
molecular alterations in cancer cells that can con-
tribute to their ability to metastasize (see REFS 8–14 for
reviews). However, end-point assays are poorly able
to clarify which steps in the metastatic process are
affected by specific molecules11,15. For example, it was
assumed early on that matrix metalloproteinases
(MMPs), which had been shown by many end-point
metastasis assays to affect metastatic outcome, must
have a primary effect on facilitating the escape of
cancer cells from the circulation. However, in vivo
videomicroscopy studies — either using cells trans-
fected to overexpress the MMP inhibitor TIMP1 (tis-
sue inhibitor of metalloproteinase 1), or treating mice
with the MMP inhibitor BB-94 — showed that
MMPs have a much broader role in the metastatic
process and have a significant effect on the ability 
of cancer cells to grow in a secondary site11,16,17.
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Figure 1 | The metastatic process. a | Escape of cancer cells from a primary tumour, and
arrest in secondary sites. Cells that are able to escape from a primary tumour into the blood
circulation are then carried by the flow to secondary sites, where they are arrested by size
restriction in small capillaries in the new organ. Cancer cells are deformed to fit the vasculature in
the new sites, depending on the blood pressure in the new organ. Examples shown are cells
arrested in muscle, where blood pressure is high, and in liver, where the pressure is lower. (Cells
also might escape from a primary tumour into lymphatic channels in the tumour — see FIG. 2). 
b | Possible fates of cancer cells in a secondary site, following the arrival of circulating cancer
cells in an organ. Cancer cells can exist in a secondary site as solitary cells, small pre-angiogenic
metastases or larger vascularized metastases. At each step, only a subset will proceed, and the
remainder of cells or micrometastases might either go into a state of dormancy, or die. Only a
proportion of vascularized metastases are clinically detectable, and solitary cells and
micrometastases are generally clinically undetectable. Dormant solitary cells refer to cells that
are undergoing neither proliferation nor apoptosis, whereas ‘dormant’ pre-angiogenic
micrometastases refer to those in which active proliferation is balanced by active apoptosis,
resulting in no net increase in the size of the metastases.
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Alternatively, some breast cancer cells might
invade lymphatics in the primary site and would be
taken first to the draining lymph node, where they
might grow (FIG. 2). From the lymph nodes, however,
there are no direct lymphatic routes to the sites where
breast cancer metastases are often found — bone,
liver, brain and lungs — so cells in the lymphatic sys-
tem would eventually need to enter the blood circula-
tion to be transported to these sites. This could occur
indirectly, through efferent lymphatic vessels that
eventually flow into the venous system, or directly
into newly formed blood vessels that serve lymph-
node metastases. Although lymph-node metastasis is
a negative prognostic factor for breast and other can-
cers, it is still not known whether metastasis to other
organs proceeds sequentially from lymphatic spread
or in parallel by a HAEMATOGENOUS route.

In contrast to the spread patterns for breast cancer
cells by means of the venous system, cancer cells leaving
a primary colon tumour would enter the hepatic-portal
system and would be taken first to the capillaries (sinu-
soids) of the liver (FIG. 2). Any cells that were able to pass
through this first capillary bed would then be taken via
the venous circulation through the heart to the capillar-
ies of the lung, and access to the arterial circulation
(and other organs of the body) could occur if any cells
were then able to pass through the capillaries of the
lung. So, cells leaving a tumour will be taken preferen-
tially to specific organs, depending on blood-flow pat-
terns, and the initial steps in the metastatic process
depend on these patterns18.

Do cancer cells ‘home’ to specific organs? How efficient
are capillaries at ‘filtering’ out these circulating cancer
cells? Studies using in vivo video microscopy and 

HAEMATOGENOUS METASTASIS

Metastasis via the bloodstream.
Summary 

• Metastasis consists of a series of sequential steps, all of which must be successfully completed. These include
shedding of cells from a primary tumour into the circulation, survival of the cells in the circulation, arrest in a new
organ, extravasation into the surrounding tissue, initiation and maintenance of growth, and vascularization of the
metastatic tumour.

• Some types of tumour show an organ-specific pattern of metastasis. Both ‘seed’ (the cancer cell) and ‘soil’ (factors in the
organ environment) contribute to this organ specificity.

• Mechanical factors influence the initial fate of cancer cells after they have left a primary tumour. Blood-flow patterns
from the primary tumour determine which organ the cells travel to first. There, the relative sizes of cancer cells and
capillaries lead to the efficient arrest of most circulating cancer cells in the first capillary bed that they encounter.

• After cells have arrested in an organ, their ability to grow is dictated by molecular interactions of the cells with the
environment in the organ.

• Metastasis is an inefficient process. In vivo videomicroscopy and cell-fate analysis have led to the conclusion that early
steps in metastasis are completed very efficiently. By contrast, later steps in the process are inefficient. Metastatic
inefficiency is due primarily to the regulation of cancer-cell growth in secondary sites.

• Metastases can occur many years after primary cancer treatment. Tumour dormancy might be due to pre-angiogenic
micrometastases that subsequently acquire the ability to become vascularized, or solitary cells that persist for an
extended period of time without division in a secondary site. These cells would be resistant to current cancer therapies
that target actively dividing cells.

• Because growth of metastases is a primary determinant of metastatic outcome, the growth phase of the metastatic
process is a promising therapeutic target. Treatments that target the specific ‘seed–soil’ compatibility that results in
organ-specific metastatic growth would be especially useful.

Box 1 | ‘Seed’ or ‘Soil’

Stephen Paget (1855–1926) was an English surgeon — son of the famed surgeon Sir
James Paget. Stephen Paget trained at St Bartholomew’s Medical School, and then
practiced surgery in London. He developed a strong interest in supporting research
into cancer, and in 1908 he founded the Royal Defense Society to provide scientific
input into the animal-welfare debate and to support the need for animal research for
the benefit of cancer patients. On the basis of his numerous observations of cancer
patients, he published an article in 1889 in The Lancet, which commented on the
propensity of some types of cancer to give rise to secondary growth (‘metastasis’) in
specific organs. This paper led to the formulation of the ‘seed and soil’ theory of
cancer spread.

The following are some key quotes from this 1889 paper19:

“An attempt is made in this paper to consider ‘metastasis’ in malignant disease, and to
show that the distribution of the secondary growths is not a matter of chance.”

“What is it that decides which organs shall suffer in a case of disseminated cancer?”

“When a plant goes to seed, its seeds are carried in all directions; but they can only live
and grow if they fall on congenial soil.”

James Ewing (1866–1943) was an American pathologist who trained at the College of
Physicians and Surgeons in New York. He was appointed as the first Professor of
Pathology at Cornell University in New York in 1899 — a post he held for the
following 33 years. He was a leading cancer pathologist and also maintained an active
interest in cancer research. He co-founded the American Association for Cancer
Research and the current American Cancer Society, and was also instrumental in
establishing the Memorial Sloan–Kettering Cancer Center. He wrote the successful
textbook Neoplastic Diseases. In the text, he actually says relatively little about the role
of ‘seed’ and ‘soil’ in metastasis; the following is a quote from the metastasis chapter
that deals with this subject 22:

“‘Genius loci,’ or the particular susceptibility of a tissue to develop secondary tumors, is
an interesting phase of study of metastases...The mechanisms of the circulation will
doubtless explain most of these peculiarities, for there is as yet no evidence that any one
parenchymatous organ is more adapted than others to the growth of embolic tumor cells.
The spleen seems to escape with peculiar frequency.”
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when the endothelium has been activated by the
cytokine interleukin (IL)-1α37. This treatment would
not cause a change in the total proportion of cells that
arrest in the organ, but would merely cause more cells
to be arrested in the organ before reaching the small
capillaries. So, given the very high initial arrest of can-
cer cells in the first capillary bed they encounter, it is
reasonable to propose that organ-specific adhesive
interactions are indicative of organ-specific signalling,
rather than factors that enhance the physical arrest of
cancer cells in specific sites.

Unlike WBCs, which can recirculate until they arrive
at a site that is conducive to adhesion, most cancer cells
that leave a primary tumour do not have the opportunity
to seek out a ‘compatible’ secondary site. Instead, they are
taken passively to the first (or perhaps the second) capil-
lary bed they encounter — based on blood-flow patterns
from the primary tumour site — and then most of them
are arrested there by size restriction.Although cancer cells
are sometimes said to ‘home’ to specific organs — based
on the end point of detectable metastases in those organs
(for example, breast tumours metastasizing to bone) — it
is more likely that this organ specificity is due to efficient
organ-specific growth rather than preferential ‘homing’of
cells to a particular organ. So, the initial delivery and
arrest of cancer cells to specific organs seems to be pri-
marily ‘mechanical’. Once cells have been ‘seeded’ to an
organ, however, their subsequent growth will depend on
the compatibility of the ‘seed’ with the ‘soil’ that they
encounter in the organ. This growth regulation must
depend on the molecular interactions between cancer
cells and the environment of the new organ.

Molecular regulation of metastatic growth. A consider-
able amount of evidence indicates that molecular 
factors that are present in specific organs can, indeed,
influence whether or not various types of cancer cell
will grow there29,38–41. These studies indicate that
tumour cells will respond quite differently — in terms
of gene expression, growth ability, responsiveness to
therapy and so on — depending on the environment
that they encounter in the new organ. So, any breast or
prostate cancer cells that happen to arrive in bone
might be stimulated to grow with high efficiency
because of reciprocal molecular interactions that occur
between the cancer cells and cells in the bone — such
as osteoblasts and osteoclasts. Molecules such as
parathyroid hormone-related protein and transform-
ing growth factor-β (TGF-β) that are produced by the
cancer cells or are present in the bone microenviron-
ment might mediate this growth42. Conversely, other
types of cancer cell that happened to be taken by the
circulation to the bone might not be similarly stimu-
lated to grow — and would therefore remain unde-
tected and clinically irrelevant. For example, Yoneda 
et al.43 selected MDA-MB-231 breast cancer cells for
increased ability to grow in bone after intracardiac
injection, and found that the in vitro growth of the
bone-selected cells — but not the parental cells — was
promoted by insulin-like growth-factor 1 and was not
inhibited by TGF-β.

quantitative cell-fate analyses indicate that both lung
and liver are very efficient at arresting the flow of cancer
cells4,15,18,30–32, and that most circulating cancer cells
arrest by size restriction (FIG. 1a,3a). Capillaries are small
(typically 3–8 µm in diameter33) and are designed to
allow the passage of red blood cells — which average 
7 µm in diameter and are highly deformable — whereas
many cancer cells are quite large (20 µm or more in
diameter). The actual percentage of circulating cancer
cells that arrest by size restriction in any given organ
will be determined by physical factors, such as the rel-
ative sizes of the cells and the capillaries, the blood
pressure in the organ and the deformability of the cell.
By contrast, white blood cells (WBCs), which are
smaller than many cancer cells, are carried by the
blood flow through the capillaries into the venules,
where WBCs often arrest by adhering to the walls of
vessels that are much larger in diameter than the cells
themselves (FIG. 3b). This type of adhesive interaction
— mediated by selectins and integrins — has been
well described34, but cancer cells do not usually arrest
in this manner when injected into normal
mice4,14,18,30–32,35,36. However, cancer cells can undergo
adhesive arrest in the liver in pre-capillary vessels
(portal venules) that are larger than the cell diameter,

a b

Figure 2 | Vascular flow patterns and corresponding movement of cancer cells arising in
different organs. a | Blood from most organs of the body is carried directly to the heart by the
venous system and passes to the lungs (blue). It then returns to the heart and is circulated to all
organs of the body by the systemic arterial system (red). Blood from splanchnic organs, such as
the intestines, passes first to the liver (pink) before entering the venous system. Throughout the
body, excess extravascular fluid enters lymphatic vessels (yellow), passes through lymph nodes
and is returned to the venous system. b | Breast cancer cells that leave the primary tumour by
blood vessels will be carried by the blood flow first through the heart and then to the capillary
beds of the lungs. Some cancer cells might pass through the lung to enter the systemic arterial
system, where they are transported to remote organs, such as bone. Others might form
metastases in the lung, which might then shed cells to the arterial flow. By contrast, colon cancer
cells will be taken by the hepatic-portal circulatory system first to the liver. There is no direct flow
from the lymphatic system to other organs, so cancer cells within it — for example, breast cancer
cells — must enter the venous system to be transported to remote organs.
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not alter tumorigenic ability at a primary site — are
consistent with the idea that growth regulation in sec-
ondary sites is a crucial regulator of metastatic ability. So
far, six such genes have been identified, and, although
their mechanisms are poorly understood and molecu-
larly diverse, their functional effect seems to be to regu-
late the ability of cells to initiate and maintain growth
after the cells have arrived in a secondary site51–53.
Interestingly, the metastatic ability of mammary
tumours in different mouse strains has been shown to
be linked to allelic variations in one of these genes, the
BRMS1 metastasis suppressor gene54. Regulation of can-
cer-cell growth ability in secondary sites has therefore
been identified by this independent line of research as
key to determining metastatic outcome.

Studies on the contribution of chemokine recep-
tors to organ-specific metastasis are providing impor-
tant clues about why some cancers metastasize to 
specific organs. Chemokines and their receptors are
known to have a role in the ‘homing’ of lymphocytes
and haematopoietic cells to specific organs55–57. Recent
elegant studies have shown that tumour cells express
patterns of chemokine receptors that ‘match’
chemokines that are specifically expressed in organs to
which these cancers commonly metastasize58. For
example, both breast cancer cells and primary breast
tumours were found to express the chemokine recep-
tors CXCR4 and CCR7 at high levels. The specific lig-
ands for these receptors — CXCL12 and CCL21 —
are found at elevated levels in lymph nodes, lung, liver
and bone marrow — organs to which breast tumours
often metastasize. Furthermore, blocking CXCR4 was
found to inhibit metastasis of breast cancer cells in
experimental animal models58.

Because chemokines are involved in the ‘homing’
of lymphocytes, it was reasonable to suppose that
chemokines also caused cancer cells to ‘home’ to spe-
cific secondary sites, thereby promoting organ-
specific metastasis58–61. However, this idea is difficult
to resolve with the physical factors that seem to deter-
mine where circulating cancer cells arrest, as most
circulating cells do not have the physical opportunity
to recirculate and arrest by specific adhesive interac-
tions. This apparent discrepancy is easily resolved
when it is realized that chemokine–receptor interac-
tions can initiate signalling pathways that lead to
diverse cellular functions such as actin polymeriza-
tion, invasion and the formation of pseudopodial
projections, as well as activation of the RAS/MAPK
(mitogen-activated protein kinase) pathways57,58,62.
So, by placing information about molecular factors
that are shown to affect metastatic end points in the
context of the physical and mechanical factors that
affect the metastatic process, a better understanding
of the way in which these molecular factors might
function in metastasis will be obtained (FIG. 4). This,
in turn, will aid the development of molecularly 
targeted anti-metastatic treatments.

RAS signalling pathways have long been known to
affect metastatic outcome8,63–67. Numerous molecular
consequences of RAS signalling have been identified,

Some molecular factors that influence the ability of
colon and other cancer cells to grow in the liver have
also been identified. These include the expression of
specific growth-factor receptors on the cancer cells —
for example, the epidermal growth-factor receptor —
coupled with expression of growth factors in the tissue,
such as transforming growth factor-α (TGF-α)38–41. In a
study in which colorectal cancer cells of differing
metastatic ability were implanted directly into liver, it
was found that growth regulation in the liver environ-
ment determined the metastatic phenotype, although
the molecular basis for this growth regulation remains
to be determined44.

The organ microenvironment can markedly change
the gene-expression patterns of cancer cells, and there-
fore their behaviour and growth ability. For example,
the same cancer cells, grown experimentally in two dif-
ferent sites, can express different levels of various pro-
teolytic enzymes45,46. Cancer cells that are present in
different organ microenvironments can also be differ-
entially responsive to chemotherapy 47. Research by
Dalton48 has identified soluble cytokines, such as 
IL-6, as well as cell-adhesion molecules, as contribu-
tors to microenvironment-mediated responses to
chemotherapy and therapy-induced apoptosis.
Furthermore, cancer cells might be differentially
dependent on angiogenesis to support their growth,
and differentially sensitive to anti-angiogenic therapy,
depending on their p53 status49. In addition, ISCHAEMIA

in the organ microenvironment has been shown to
induce VASCULAR MIMICRY, which could lead to enhanced
cancer-cell survival and decreased dependence on the
induction of host-derived neovasculature50.

Recent studies on metastasis suppressor genes —
which suppress the ability of metastases to form, but do

ISCHAEMIA

A reduction in local tissue
oxygen levels due to inadequate
blood supply.

VASCULAR MIMICRY 

The formation of blood-flow
channels that lack an
endothelium, which might be
formed by tumour cells in some
tumours.
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Figure 3 | Cancer and normal cells arrest in the circulation. a | In vivo videomicroscopic
image of a mammary carcinoma cell arrested in mouse liver sinusoid by size restriction in a small
tapering sinusoid of the liver, following injection of cells via a mesenteric vein to target them to
the liver microcirculation. b | In vivo videomicroscopic image of white blood cells adhering to the
endothelial wall of a venule in murine spleen — a vessel with a diameter that is larger than the
cells — with blood flow continuing past the cells. The endothelial walls can clearly be seen. In
non-cytokine treated mice, cancer cells arrest in organs by size restriction in small capillaries, or
liver sinusoids as seen in a, and do not arrest in vessels larger than their own diameter, as do
white blood cells (b). Schematics of the in vivo videomicroscopic images are shown on the right.
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human cancers77, and the RAS pathways are activated
in many other tumours through other mechanisms78.
However, the steps in metastasis that are affected by
RAS activation have not been identified. Recent stud-
ies have shown that RAS-transformed and control
NIH-3T3 fibroblasts extravasate equally well in exper-
imental animal models32,79. In a liver metastasis
model, both cell types were also shown to initiate
micrometastatic growth from a subset of cells that
arrested in the liver32. However, only the micrometas-
tases that formed from cells with activated RAS were
able to maintain metastatic growth — the
micrometastases formed from the control cells disap-
peared. In that study, it was found that the balance
between apoptosis and proliferation was tipped in
favour of growth in the cells with activated RAS sig-
nalling, and in favour of death in the control
micrometastases (FIG. 5). Therefore, an activated RAS
pathway was shown in this experimental model to
support metastasis through regulation of the growth
ability of the cells after they had arrived at the sec-
ondary site. Activation of RAS signalling by means of
other routes (for example, through growth-factor or
chemokine signalling) might also have similar effects
on the proliferation:apoptosis balance — and there-
fore growth — of cells that arrive in a secondary
organ, indicating one mechanism by which oncogenic
signalling might affect growth (or growth failure) of
cells that find themselves in a new organ.

The ability of cancer cells to grow in a specific site
therefore depends on features that are inherent to the
cancer cell, features inherent to the organ and the active
interplay between these factors. Much remains to be
learned about the detailed molecular interactions
between specific cancer cells and specific secondary
sites, and many organ-specific growth-factor pathways
probably remain to be identified. But there is strong evi-
dence to indicate that these interactions are important
in determining whether a cell that arrives in an organ —
or at a particular site within an organ31 — has a high or
low probability of growing.

Metastasis is an inefficient process
It has been recognized for many years that metastasis
is inherently an inefficient process80,81, but which par-
ticular steps are inefficient? Millions of cancer cells
can be injected into an experimental mouse, and these
might give rise to only a few metastases that are
detectable in ‘end-point’ assays. Similarly, large num-
bers of cancer cells might be detected in the blood in
cancer patients, and yet very few of these develop into
overt metastases. What, then, is the fate of most cancer
cells that enter the circulation?

This question has been addressed using high-resolu-
tion in vivo video microscopy and quantitative cell-fate
analyses that monitor the loss of cells over time during
metastasis4,14,18,30–32. These studies have led to the conclu-
sion that early steps in the haematogenous metastatic
process — from the time that cancer cells enter the
bloodstream until they extravasate into secondary organs
— are completed remarkably efficiently, at least in the

and much has been learned about the molecular
details of RAS signalling (see REFS 68–76). RAS genes
are activated by mutation in a large percentage of
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Figure 4 | Chemokines can influence organ-specific
metastatic growth of cancer cells. a | Breast cancer cells
express high levels of the CXCR4 chemokine receptor, whereas
melanoma cells express high levels of the CCR10 receptor (and
lower levels of CXCR4, not shown). Lung tissue expresses high
levels of CXCL12, a soluble ligand for the CXCR4 receptor,
whereas skin tissue expresses high levels of CCL27, a soluble
ligand for the CCR10 receptor. Therefore, breast cancer cells
that are taken to the lung by the blood flow would find a strong
chemokine–receptor ‘match’, which would lead to chemokine-
mediated signal activation. By contrast, breast cancer cells taken
to skin would not find such a match. Melanoma cells, however,
taken to skin by the circulation (or by local invasion) would find a
CCL27–CCR10 chemokine–receptor ‘match’ that would lead to
the activation of chemokine-mediated pathways. b | Activation of
chemokine signalling can result in several changes in cells,
including activation of RAS/MAPK (mitogen-activated protein
kinase) signalling pathways, polymerization of intracellular actin
and cytoskeletal changes, formation of pseudopodia, and
increased cell motility, migration and tissue invasion. Any of these
changes could contribute to the ability of cancer cells to survive
and to initiate and maintain metastatic growth, and could
therefore contribute to the regulation of organ-specific metastatic
growth. Information on the tumour and tissue specificity of
chemokine-ligand and -receptor expression is as presented in
REF. 58, and information on chemokine signalling is as presented
in REFS 57,58 and 62.
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liver parenchyma and remained there, but only a very
small proportion of them (2% of the injected cells) had
formed micrometastases30. Furthermore, not all of these
micrometastases persisted, and the progressively grow-
ing metastases that would have killed the mice arose
from a tiny subset (only 0.02%) of the injected cells.

So, the initial steps in haematogenous metastasis —
arrest in the organ and extravasation — were performed
with very high efficiency (FIG. 1a). Subsequent steps —
the initiation of growth to form micrometastases and
persistence to form macroscopic metastases — were
considerably less efficient (FIG. 1b). Regulation of growth
of a subpopulation of cells that arrested in an organ was
therefore responsible for the overall metastatic ineffi-
ciency. Similar conclusions have been obtained for
mouse B16F10 melanoma cells that were injected to tar-
get the lung31, and for RAS-transformed and control
mouse fibroblasts32 and mouse mammary carcinoma
cells83 that were injected to target them to the liver. In all
cases, the initial arrest of cells was very efficient, but the
initiation and persistence of growth was much less effi-
cient. In the case of B16F10 cells that were injected to
target them to the lung, 98% of the injected cells were
arrested in the lung and found there 1 hour after injec-
tion31, indicating that very few cells were able to pass
through the lung and go to other organs. Metastatic
inefficiency, as reflected in the end point of visible
metastases, would therefore seem to be due primarily to
the regulation of cancer-cell growth in secondary sites.

Metastases can arise long after the apparently suc-
cessful treatment of a primary tumour. In breast cancer
or melanoma, for example, metastases have been
known to occur decades after primary treatment84,85.
Where are the cancer cells during this period of dor-
mancy, and what awakens them? These questions are
clinically important, but are largely unanswered at pre-
sent86,87. Studies that have modelled dormancy mathe-
matically indicate that continuous slow growth is
unlikely, favouring instead a model of discontinuous
growth and periods of quiescence88,89.

Like the metastatic process itself, dormancy is a ‘hid-
den’ state, and is difficult to observe and study directly.
Experimental studies, however, are now shedding some
light on tumour dormancy. Judah Folkman and his col-
leagues have provided evidence for the existence of pre-
angiogenic micrometastases, in which cells actively
divide, but at a rate that is balanced by the apoptotic rate
because of failure of the micrometastases to become
vascularized90,91. Pre-angiogenic micrometastases could
therefore be one source of tumour dormancy. If these
small metastases subsequently acquire the ability to
become vascularized, dormancy might cease and
tumour growth would occur.

Another possible contributor to tumour dormancy
is the persistence of solitary cells in secondary
sites30–32,83,87,92,93. Large numbers of solitary cells, which
arrive in a secondary site but fail to initiate cell divi-
sion, can persist for long periods of time in the organ.
Furthermore, these cells can persist in a background
of actively growing metastases, indicating that both
dormant and non-dormant cells can be present in a

experimental models studied. By contrast, subsequent
steps in the metastatic process are completed ineffi-
ciently, with only a small subset of cancer cells in a 
secondary site initiating cell division to form
micrometastases, and only a small proportion of these
micrometastases persisting to become vascularized and
progressively growing macroscopic metastases.

For example, the fate of B16F1 murine melanoma
cells — after their injection into mice through the
mesenteric vein, to target the cells to the liver — was fol-
lowed over time using quantitative cell-fate analysis30.
(This technique uses 10 µm inert plastic microbeads,
co-injected with the cancer cells in a defined ratio — for
example, one bead for every ten cancer cells. The beads
are carried to the target organ along with the cells and
arrest there, providing a permanent reference to quan-
tify any cell loss at later times18.) It was found that over
87% of the injected cells were arrested in the liver and
were present there 90 minutes after injection30. Whether
the remaining 13% of cells were killed or passed
through the organ could not be determined in that
study, but other studies have indicated that apoptosis
might contribute to early loss of cancer cells in a new
organ82, which is consistent with the idea that very few
cells pass through the first capillary bed that they
encounter. Three days after injection, 83% of the cells
that were originally injected had extravasated into the

NIH-3T3 PAP2

3 Days
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a b

c d

Figure 5 | Activation of RAS signalling pathways can protect small metastases and
promote their early growth. When metastatic HRAS-transformed (PAP2) and non-
tumorigenic control NIH-3T3 fibroblasts were injected into mesenteric veins of mice to target
them to the liver, both cell lines initiated growth of micrometastases (panels a and b, 3 days
after injection), as seen in histological sections. However, only the micrometastases that were
formed from the RAS-transformed PAP2 cell line persisted to form macroscopic metastases
(panel d), whereas the NIH-3T3 micrometastases disappeared (panel c). In the RAS-
expressing PAP2 micrometastases, the balance between apoptosis and proliferation was
tipped to favour progressive growth, whereas in the NIH-3T3 micrometastases, this balance
was tipped to favour apoptosis and disappearance of early metastases. Reprinted with
permission from REF. 32 © (2002) American Association for Cancer Research.
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secondary site (FIG. 1b). After recovery from liver tissue,
solitary dormant mammary carcinoma cells retained
their ability to form tumours when re-injected into
mammary fat pads of mice83. So, despite their apparent
dormancy at a secondary site, the recovered cells still
retained their tumorigenic phenotype. A better under-
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Therapeutic implications
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cells that are not dividing; active pre-angiogenic

TRASTUZUMAB

(Herceptin). A humanized
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ERBB2 receptor that is used to
treat breast cancers that are
shown to be positive for this
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IMATINIB

(Glivec). A small-molecule
therapy that targets the Abelson
leukaemia (ABL) kinase. It is
used to treat patients with
chronic myelogenous leukaemia.

FARNESYLTRANSFERASE

INHIBITORS

Therapeutic agents that target a
specific post-translational
modification — farnesylation —
which allows the RAS protein to
attach to the inner cell
membrane and which is
necessary for RAS-mediated
signalling.

BISPHOSPHONATES

A class of compounds that
inhibit the bone-resorptive
activity of osteoclasts, and are
used to treat osteoporosis. They
might also be useful in the
treatment and prevention of
metastases growing in the bone.
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Online links

DATABASES
The following terms in this article are linked online to:
Cancer.gov: http://www.cancer.gov/cancer_information/
bone cancer | brain cancer | breast cancer | colorectal cancer |
liver cancer | lung cancer | melanoma | prostate cancer | stomach
cancer | testicular cancer
LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/
actin | BRMS1 | CCL21 | CCL27 | CCR7 | CCR10 | CXCR4 |
epidermal growth-factor receptor | HRAS | IL-1α | IL-6 | insulin-like
growth-factor 1 | MAPK | MMPs | parathyroid hormone-related
protein | RAS | TGF-α | TGF-β | TIMP1
Medscape DrugInfo:
http://promini.medscape.com/drugdb/search.asp
Glivec | Herceptin

FURTHER INFORMATION
Ann Chambers’ lab:
http://www.lrcc.on.ca/research/staff/achambers/index.xml
PBS Nova show ‘Cancer Warrior’:
http://www.pbs.org/wgbh/nova/cancer/cells.html
Access to this interactive links box is free online.


