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• Can we use geochemical scenarios to categorize 
potential As mobilization? 

• How do we optimize kinetics of biogeochemical 
processes to enhance natural As attenuation?

Geochemical Parameters:
-- Amount of labile iron
-- Amount of sulfur available for reduction/oxidation
-- pH & Eh (local and gradients)
-- Role of nitrogen species?

Mechanistic understanding of arsenic 
speciation can help predict its behavior in 

subsurface environments
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Arsenic Speciation in the Environment
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Arsenic Speciation & Partitioning: 
Tied to Major Element Chemistry

• Precipitation important 
for sulfides and sulfates

• Microbial coupling/
competition with 
Nitrogen species?

• Adsorption: Strongly 
associates with Iron 
hydroxides/oxides; 
competitive sorbates?

• Organic carbon and 
microbial activity



Haiwee Reservoir, Owens Valley

• Aqueduct water dosed with FeCl3 to remove As
• Deposition of high Fe, low S sediments with 

sorbed  As(V)



Haiwee Reservoir, Owens Valley



Haiwee Reservoir: Core Sediments
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Kneebone et al. (2002) ES&T 36, 381-386 
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High Iron, low Sulfur, Carbon System

?

Dixit & Hering (2003) ES&T 37, 4182-4189 
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• Low potential for Sulfur reduction -- no removal by 
sulfides

• As(III) sorption depends on pH, competitive sorbates, 
available sorbents

• Reduction of As(V) to As(III) -- may remain 
sorbed

• Reductive dissolution of sorbent Fe(OH)3 
releases As

High Iron, low Sulfur, Carbon System
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Bay Road Site
East Palo Alto CA.

• Tidal influence
• Sulfate reducing



Contaminant Plume:
[AsT] in Groundwater 
 Up to 100 mg l-1
[AsT] in Sediments 
 Up to 1000 mg kg-1
Down-gradient of Plume:
[AsT] in Groundwater 
 <0.01 mg l-1
[AsT] in Sediments 
 Natural Background

Natural Arsenic Attenuation
Bay Road Site, East Palo Alto 
(CA, USA): 
Subsurface plume below former 
sodium arsenite herbicide & 
pesticide manufacturing facility 
(1926-71)





TIDAL VARIATION

RAIN FALL

WATER LEVEL

Seasonal variation in well water level compared to 
tidal variation and rainfall (8/15/01-1/15/02)



Sediment Arsenic, Iron, & Organic Carbon

Root, 2003

Adsorbed 
As(V)

Adsorbed
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As-Fe-S Speciation

Green Rust: GRII: FeII6FeIII2(OH)16(SO4).4H2O

Pyrite
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[As]T =100 uM
[SO4]T = 28 mM
pH = 7

O’Day et al., in review

Deciphering biotic vs. abiotic 
reaction rates

O’Day et al. (2004) PNAS 101, 13703-13708



Soil Amendments for As Stabilization
Bay Road Site

Amendments: 
Ferrous sulfate (3% w/w)
Portland Cement (Type V, 10% w/w)

As Concentrations: 
500-5000 mg/kg

Treatments: 
1992, 1996, 2000
1-9 m depth
surface capped



Microfocused Synchrotron XRD: 
Bay Road Field Samples

SEM



Soil Amendments for As Stabilization

• High pH stabilized

• No evidence for reduction 
to As(III) after 10+ years

• Arsenate incorporated into 
crystalline sulfate phases

• Aging process relatively rapid -- weeks?
(experiments in progress)



-- Rates?
-- Sorption Capacity?

-- Limited by rate of 
sulfate reduction





Assessing the Potential for  Arsenic 
Mobilization

• Rates of reductive dissolution of Fe(III) and Fe(II,III) 
(hydr)oxides and potential release of sorbed As

• pH-dependent desorption and competitive effects 
(phosphate, sulfate, silica) 

• Rates of sulfate reduction and production of As-
bearing sulfides; rates of re-oxidation

• Influence of N species on As-Fe-S redox rates 
• Cost/benefit of amendment stabilization
• Validation of reactive transport models: accurate 

coupling of biogeochemical and hydrologic processes
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