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INTRODUCTION 

Transformations and bioaccumulation of trace metals and metalloids, especially arsenic, 
are wel l  known to occur in modern microorganisms, including the bacteria (1,2) molds (3), and 

organic forms of elements, and in some instances, a r e  shown to involve biomethylation of inorganic 
substrates which result in cellular incorporation of organometal(loid)s, e. g. , methylarsonic acid 
or dimethylarsonic acid (5). Arsenic is known to bioaccumulate in higher marine organisms to a 
substantial degree (6,7) where i t  resides in some shellfish tissues as arsenobetaine (8). 

able for primordial microflora, especially the algae which account for the present ubiquitous dis- 
tribution of kerogen in shale rocks (9, IO). In general, the fossil deposition record suggests that 
substantial metal(1oid) accumulation also occurred in higher plants which underwent diagenesis to 
form modern petroleum and coal deposits (11,12). In many instances, various present-day species 
of plants are known to both selectively and extensively hyperaccumulate various metal(1oid)s to such 
a degree that geochemical prospecting is feasible by correlating metal concentration profiles with 
local flora (13). It is not unexpected, therefore, to discern characteristic concentration patterns 
for trace elements in various fossil deposita - whether we regard these as essential or toxic to life - 
and to expect gross differences in the profiles between the three main types: coal, kerogen, and 
petroleum, as summarized in  Table I (14-18). Similarly expected, though fa r  more subtle, we might 
anticipate that element distributions for these three main fossil sources also depend upon specific sites, 
and reflect their terrestrial or marine origins, subsequent geochemical history, and maturation (19-21). 

i marine plankton or algae (4,5). Such microflora demonstrate capacities for uptake of both in- 

Similar considerations for ancient metal(1oid) uptake or transformations appear quite reason- 

TABLE I 

COMPARISON OF SELECTED ELEMENTAL CONCENTRATIONS* IN 
PETROLEUM, COAL, AND OIL SHALE 

Element Petroleum Petroleum Coal 

A s  
Be 
Cd 
Cr  
Fe 
Ge 
Hg 
N i  
S 
se 
Si 
U 
V 

0.111 -- 
_ _  
0.093 
10.8 _ _  
0.051 
9.38 
0.83% 
0.052 _ _  
_ _  
13.6 

0.263 _ _  
_ _  
0.008 

40.7 -- 
3.236 

1.31% 
0.530 

0.060 

165.8 

-_ 

87.7 

15 
2.0 
1.3 

L6:% 
0.71 
0.18 

2.0% 
4.1 
2.6% 
1.6 

15 

15 

20 

Oil Shale 

44.3 _ _  
0.64 

2.07% 

0.089 

0.573% 
2.03 
15% 
4.5 
94.2 

34.2 

-- 

27.5 

*Concentrations in  ppm except as noted. 

177 



The molecular forms of trace metal(1oid)s in fossil deposita is doubtless complex, probably 
consisting of varying proportions of inorganic, metallo-organic (no covalent element-carbon bonds), 
and true organometallic chemical species residing in unspecified sites within the carbonaceous 
matrix. Over the years a very substantial solvent differentiation methodology has emerged (22-24). 
which greatly aids the analyst in assessing the broad matrix categories of fossil materials, and 
produces reproducible information concerning possible ligation, elements present, and approximate 
molecular size (weight) of the soluble components. 

requires a technique with extreme selectivity, lack of interferences, sensitivity ta the sub-ppm 
level, and the ability to deal with heterogeneous samples. The state-of-the-art analytical methods 
which a r e  capable of meeting these criteria to varying degrees, without extensive sample prepara- 
tion, a r e  quite limited and have only recently been applied to limited types of fossil samples. 

with instrumental techniques, which a r e  capable of providing further selectivity and the necessary 
sensitivity, has been an active area of analytical research, being performed in both off-line and 
on-line modes. The recent emergence of a number of on-line "hyphenated" techniques (24). GC-MS, 
MS-MS, LC-ESD (including variable- and scanning UV, IR, NMR, GFAA, FAA and electrochemical 
detectors) appears to be the most effective and versatile method to quantitate organic, inorganic, 
organometallic and metalleorganic compounds in complex matrices. Among these, automated 
coupling of high performance liquid chromatography (HPLC) i n  normal, reverse phase, ion exchange, 
o r  size exclusion modes with element-selective detectors appears most promising for the char- 
acterization of metal(1oid) containing molecules in complex matrices (25). 

The determination of the molecular forms of trace metal(1oid)s in fossil materials ideally 

The coupling of chemical separations, which provide selectivity and reduce intefferences, 

RESULTS AND DISCUSSION 

Reports of on-line, element-selective detection of chromatographic effluents of fossil mater- 
ials have appeared more recently and offer the advantages of increased resolution and easier chromato- 
graphic optimization because of the real  time acquisition of elemental distributions during the 
chromatographic run. Recently, Brinckman et al. (26), have coupled a graphite furnace atomic 
absorption (GFAA) spectrometer to a high performance liquid chromatograph, which has been applied 
by Fish e t  al. (27), and Weiss e t  al. (28) to the analysis of arsenic compounds in process waters 
and oils generated during oil shale retorting, 

In order to answer questions on the biogeochemical origin of the methyl and phenylarsonic 
acids, and arsenate, found in oil shale retorting products (27,28), we extracted a Green River 
Formation oil shale sample (NBS standard reference material) with refluxing methanol. By using 
HPLC-GFAA analysis of the extract, and catecholorganoarsonic acid (29) and trimethylsilylation- 
arsenate derivatization reactions, we have identified, in an unequivocal fashion, methyl- and 
phenylarsonic acids and arsenate, by the former technique And by capillary column gas chromatography 
mass spectrometry analysis with the latter derivatization technique. 

arsonic acid, phenylarsonic acid, and arsenate, based on retention times of the authentic arsenic 
compounds. An unknown neutral organoarsenic compound eluted with the solvent front. 

The methanol extract was purified by preparative HPLC (the area from 22 to 35 min. was 
collected, see Figure 1) , lyophilized and dissolved in benzene. To this solution was added excess 
3-methylcatechol and the reaction mixture was refluxed for 5 h and worked up to remove the excess 
3-methylcatechol. A concentrated sample was subjected to GC-EIMS analysis to provide spectra and 
scan numbers (retention times) that were identical to the known samples of the 3-methylcatecholates 
of both methyl- and phenylarsonic acids (29). Additionally, the inorganic anion, arsenate ( A ~ 0 4 ~ - ) ,  
was verified in a similar fashion (preparative HPLC of the region from 35.5-41 min) by preparation 
of the tris(trimethylsily1-) derivative of the ammonium salt of arsenate and analyzing the purified 
extract by GC-EIMS. The organoarsenic compound (Figure 1) that elutes with the solvent front 
has not been a s  yet identified and further work is in progress to verify ita structure. 

characterizations of trace organometallic compounds to be reported for any fossil fuel precursors 
and initiates the area of organometallic geochemistry, a field that has hithertofore been totally 
unexplored (30). 

Figure 1 gives the arsenic-specific chromatogram of the compounds we identified as  methyl- 

We believe these identifications of the organoarsonic acids to be the first such molecular 

EXPERIMENTAL 

The HPLC-GFAA instrumentation and analyses conditions have been described previously 
(see Literature Cited 25-27). 
was a Monex anion exchange column with 0.2M (NH4)2CO3 in aqueous methanol as  the eluting 
solvent. 
with a 30 m x 0.3 mm DB-5 (J and W) capillary column, conditions: 55' (3 min.) - 3OOe/min. 

The AA detection of arsenic was a t  193.7 nm. The HPLC column 

The GC-MS analyses were accomplished using a Finnigan 4023 mass spectrometer system 
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Standard 

Methyl- and 
Phenyl arsonic 

Unknown Organo- Acids 
arsenic Compounds .) 4-3 

I .  I I  , I 1  I , (  

F1 
Me As (OH l2 

Arsenate 

4F-7 

I I  I l l .  

L 

F i g u r e  1. The HPLC-GFM! a n a l y s i s  o f  Green River  Formation 
o i l  s h a l e  e x t r a c t e d  w i t h  r e f l u x i n g  methanol. 
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Reconstructed ion chromatograms and single ion chromatogram data was done with the INCOS Data 
System. 
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