Indirect Drive Experiments on the OMEGA Laser at the Laboratory for Laser Energetics of the University of Rochester

Pre-Shot Report Double Shells and ACE LANL ID 00-1 October 25-29, 1999

TABLE OF CONTENTS

OVERVIEW	
DOUBLE SHELLS (TUESDAY, OCTOBER 26, 1999)	
GOALS FOR OCTOBER DOUBLE-SHELL SHOTS	4
HYADES CALCULATIONS	5
TARGET DESIGN AND NOMENCLATURE	5
EXPERIMENTAL PROPOSAL TEMPLATE FOR DOUBLE SHELLS	6
ANTICIPATED SHOT SEQUENCE	7
DIAGNOSTIC BUILD SHEETS	8
EXAMPLE SHOT REQUEST FORM	11
LASER BEAM POINTING SPREADSHEET	13
ACE EXPERIMENT (WEDTHURS., OCT. 27-28, 1999)	14
ACE EXPERIMENT (WEDTHURS., OCT. 27-28, 1999)	14
ACE EXPERIMENT (WEDTHURS., OCT. 27-28, 1999) Experimental Proposal Beam Reouirements	14 14 15
ACE EXPERIMENT (WEDTHURS., OCT. 27-28, 1999) Experimental Proposal BEAM REQUIREMENTS SHOT SCHEDULE	14 14 15 16
ACE EXPERIMENT (WEDTHURS., OCT. 27-28, 1999) Experimental Proposal Beam Requirements Shot Schedule Diagnostic Changes to SXRFC (XRFC4 in TIM6)	14 14 15 16 17
ACE EXPERIMENT (WEDTHURS., OCT. 27-28, 1999) Experimental Proposal Beam Requirements Shot Schedule Diagnostic Changes to SXRFC (XRFC4 in TIM6) Diagnostic Build Sheets	14 14 15 16 17 18
ACE EXPERIMENT (WEDTHURS., OCT. 27-28, 1999) Experimental Proposal Beam Requirements Shot Schedule Diagnostic Changes to SXRFC (XRFC4 in TIM6) Diagnostic Build Sheets Typical Shot Request Form	14 14 15 16 17 18 21
ACE EXPERIMENT (WEDTHURS., OCT. 27-28, 1999) EXPERIMENTAL PROPOSAL BEAM REQUIREMENTS SHOT SCHEDULE DIAGNOSTIC CHANGES TO SXRFC (XRFC4 IN TIM6) DIAGNOSTIC BUILD SHEETS TYPICAL SHOT REQUEST FORM DIAGNOSTIC LIST FOR WEEK	14 14 15 16 17 18 21 23

This document is intended to give an overview of this experimental campaign. Where information conflicts with experimental configurations submitted by official methods, those configurations take precedence. Contact the Principal Investigators prior to making any changes in the configuration to accommodate conflicts of information based on this document.

This document was produced by the Los Alamos National Laboratory under the auspices of the United States Department of Energy under contract No. W-7405-ENG-36.

OVERVIEW

LANL Experimental Week on OMEGA October 25-29, 1999 (ID 00-1)

Super PI: Cris Barnes (505)665-5687, <u>cbarnes@lanl.gov</u>

Tuesday, October 26: Double Shell Implosions PI: Bob Watt, (505)665-2310, <u>watt r@lanl.gov</u> PD: Bill Varnum, (505)667-2803, <u>wsv@lanl.gov</u>

Wednesday&Thursday, October 27-28: ACE Experiment PI: Steve Caldwell, (505)667-2487, <u>scaldwell@lanl.gov</u> PD: Glenn Magelssen, (505)667-6519, <u>grm@lanl.gov</u>

OMEGA will be configured for indirect drive (no phase plates, national lab blast shields) and the beams pointed for the tetrahedral hohlraum experiments of the double shell campaign. All diagnostics for the whole week can be set up and aligned, with unused diagnostics retracted for later use.

At the end of Tuesday, overnight 35 beams will be repointed. All but 5 will be repointed to TCC; the remaining 5 beams will need SG8 DPPs (for smooth, flat backlighter), repointing, and re-timing for the ACE experiment. Diagnostics should be ready for implementation immediately.

In this package are included:

- The experimental proposals for both campaigns, and
- A list of diagnostics for both campaigns.

Please note we should be able to use Target Positioning Procedure # TPS-ID8-7-99 for alignment of the double shell implosions. A mockup target will be used during Steve Caldwell's late September visit to create a Target Positioning Procedure for the ACE experiment.

DOUBLE SHELLS (Tuesday, October 26, 1999)

Goals for October Double-Shell Shots

- For October we plan on target comparisons between a "standard target" and a brominated target at identical convergences to eliminate performance differences due only to convergence. The CR will be 32.
- We will also repeat the GMB+CH inner shell target at 3 different convergences (27,32, and 37) to look for changes in symmetry and performance as the convergence increases. There is a tie-in with the standard and brominated targets at the convergence of 32.
- The above experiments should shed a great deal of light on whether M-band asymmetry is responsible for poor capsule performance at high convergence. This should be strong evidence, but one could still possibly argue that something else is responsible. The only other evidence that could provide further proof is to reduce the M-band asymmetry and/or magnitude by clever hohlraum design. We should perhaps try this for another round of experiments.
- The M-band issue really needs resolution, since it may also be responsible for poor performance of single shells, and ultimately for ignition designs.

HYADES Calculations

Target Design and Nomenclature

Los Alamos

Experimental Proposal Template for Double Shells

• Experiment title, principal investigator's name, and, if related to LLE direct-drive experimental program, which category (i.e., ISE, RTI, etc.) the experiment falls under, and planned shot dates.

Double shell indirect drive implosions #3. R. G. Watt/W. S. Varnum, C. W. Barnes super-PI, Oct 26, 1999

• Summary of the experiment's objectives.

Verify and expand upon March 1999 results utilizing indirectly driven double shell implosions. In particular verify YOC near 1 using the "imaging double shell" target. Verify improvement, over historical behavior, of the "doped ablator double shell" target. Extend the imaging double shell data to include higher CR.

- Laser conditions required for the experiment:
 - Pulse shape- 1 ns square (SG1011)
 - SSD, DPP, and DPR conditions March shots had the SSD driver but no DPP/DPR. Repeat that setup.
 - Power/energy balance shot 15528 was 28 kJ on target but with 8.4% RMS spread. Reduced spread would be highly desirable. We would like 26 kJ/UV on target with 7% RMS for the imaging targets, and 28 kJ/UV on target with 8% RMS for other targets. (This translates approximately into all beams between 600 and 800 J/beam IR with a mean of about 690 J/beam IR for the imaging targets, and slightly hotter but with more spread for the other targets.)
 - Number of beamlines and target pointing summary requirements 60 beams pointing as in July 1999 high convergence shots
 - Backlighting requirements and beam timing delays no BL, no delays
 - Special laser conditions none, best energy possible, best repeatability possible
- Diagnostics required and target chamber port assignments (indicate any non-LLE-provided diagnostics).

Standard Omega neutron suite (NTD on DT shots, all scintillators (all shots), Cu activation on DT shots, Medusa [run on all shots, post-shot analysis may give Tion from first hit, possible rho-R if DD shots perform near clean for the doped ablator]), LANL BT detector, LANL QXI in TIM3 (LEH D) on all shots, CPS#2 on all imaging Double Shell (DD) shots (LEH A), GMXI (LEH B) on all shots, DANTE on all shots, all static PHC on all shots.

- Type and number of targets including number of spares (this section must be completed even if using non-LLE-provided targets). NOTE: if special targets are required, they must be specified more than two months in advance. Additionally, special target geometries may require metrology prior to delivery to LLE and verification after arrival at LLE using LLE's Powel scope.
- A. Two LLE provided pointing spheres.

B. 12 LANL provided tetrahedral hohlraum driven double shell implosion targets (6 DT, 6 DD) in H1-H9-H11-H18 configuration identical to July 1999 ID campaign.

• Number of required laser shots.

Minimum 9, maximum 14, dependent on results and time.

• Special shot schedule considerations associated with experiment.

Tuesday, with hard cutoff at end of day for re-alignment to ACE experiment configuration (P6-P7 cylindrical halfIraum).

Anticipated Shot Sequence

#What	Calcula-	QXI
	ted Yield	timing
1 Pointing shot		T0-0.5 ns
2 Pointing shot (optional)		T0-0.5 ns
3Br doped ablator (CR 32, 24 atm DT)	1.7E9	T0+0.5ns
4 Br doped ablator (CR 32, 24 atm DT)	1.7E9	T0+0.5ns
5Br doped ablator (CR 32, 24 atm DT)	1.7E9	T0+0.5ns
6 Imaging Dshell (CR 27, 31 atm DD)	3.7E7	T0+2.3ns
7 Imaging Dshell (CR 27, 31 atm DD)	3.7E7	T0+2.3ns
8 Imaging Dshell (CR 32, 18 atm DD)	3.4E7	T0+2.3ns
9 Imaging Dshell (CR 32, 18 atm DD)	3.4E7	T0+2.3ns
10 Imaging Dshell (CR 37, 12 atm DD)	3.0E7	T0+2.3ns
11 Imaging Dshell (CR 37, 12 atm DD)	3.0E7	T0+2.3ns
12 Standard Dshell (CR 32, 33 atm DT)	1.0E10	T0+0.5ns
13 Standard Dshell (CR 32, 33 atm DT)	1.0E10	T0+0.5ns
14 Standard Dshell (CR 32, 33 atm DT)	1.0E10	T0+0.5ns

Diagnostic Build Sheets

XOPS	TIM Setu	o Sheet			V 2.0 10/7/00
M #	3	Shots 3-5, 12-14			
	Payloa	ad: QXI	Date:	1	10/26/99
		Previous Shot #	15533		
		Campaign	LANLID00-1 Do	uble Shel	I
	Optics:				
		Unimount Type	n/a		
		Nosecone S/N			
		Magnification	8	Х	
		Pinhole Size	10	μm	
		Blast Shield	0.010" Be		
		Rear Filter Carrier S/N	any		
		Rear Filter	None		
		Film Back S/N			
		Pinhole Substrate			
		Frame	n/a		
	Internal S	ettings:			
		Output 1 (Phosphor):	2.5	kV	Bias Offset:
		Output 2	0	V	Strip 1
		Output 3 (Reverse Bias):	300		Strip 2
		Output 4 (PCD Bias):	0	V	Strip 3
		Reverse Bias Range	500-950	V	Strip 4
		PFN Type	200	ps	
	Interstrip	Timing:			
		Strip #	Setting	Delay	
		1	00	0 nS	3
		2	02	0.2 nS	3
		3	04	0.4 nS	3
		4	06	0.6 nS	3
	Steering				
	•	Points to:	тсс	_	
		φ =	29000		
		θ =	24470		
		T =	58,435		
	Power Su	pply		-	
		Voltage:	15	VDC	
	Timing:				
		Channel:	TBB 18/2		
		Inserted Delay:		nS	
		∆T to fiducial	. 27.92	nS	
		Timed at	T+0.5	nS	
	Monitor O	utput			
		Scope # TDS 684 GPIB 2	Channel #	3	Atten: -26 db
				•	
	Authorized	I by G. Pien	Confirmed by:		

						Ve.
M #	3	Shots 6-11				
	Payle	oad: QXI	Date:	1	10/26/99	
		Previous Shot #	¢ 15566			
		Campaigr	LANLID00-1 Dou	uble Shel	I	
	Optics:					
		Unimount Type	n/a			
		Nosecone S/N				
		Magnification	12	Х		
		Pinhole Size	7	μm		
		Blast Shield	0.020" Be			
		Rear Filter Carrier S/N	any			
		Rear Filter	None			
		Film Back S/N				
		Pinhole Substrate	ļ			
		Frame	n/a			
	Internal	Settings:		1) (5. 0	.
		Output 1 (Phosphor):	2.5	KV	Blas U	TTSET:
		Output 2 (Deverse Bise)	100	V	Strip 1	
		Output 4 (PCD Rise):	100	V	Strip 2	
		Beverse Bias Pange	500-950	V	Strip 4	
			200-950	V DC	Sup 4	
	Interstri		200	p3		
	interstri	Strip #	Setting	Delay		
		1	00	0 nS	3	
		2	02	0.2 nS	3	
		3	04	0.4 nS	S	
		4	06	0.6 nS	S	
	Steering	g Deinte ter	T 00			
		Points to:				
		φ =	- 24470			
			58 / 35			
	Power	Supply	50,455			
	I OWEI V	Voltage:	15	VDC		
		Voltago.		100		
	Timing:					
	•	Channel:	TBB 18/2			
		Inserted Delay:		nS		
		ΔT to fiducial	27.92	nS		
		Timed at	T+2.3	nS		
	Monitor	Output	-			
		Scope # TDS 684 GPIB 2	Channel #	3	Atten: -26 db	
			o (· · ·			
	Authoriz					

OMEGA GMXIS	ietup Summary	17075 / 4 ~ 1 3.25
Fixed parameters		man man at a 23
Port location	HS	17.083 (4, 2 3.2
Optic	It-coated #2	
Grazing angle	0.7 degrées	0. ju
Rimor thickness	0 mm	14 0 46
notulosen teel	5 microna	Nr 7 W.
Optic to target	180.5 mm	Jula . T. Mill Provide
Optic to image	2461.5 mm	Xes - Xem let in the second second
Nage/Reation	x=13.28.y=14.01,sve=13.64	This must be the second
Blast shield	4 mile Be	
Optic debris shield	0.5 mils Be	
acuum window	0.5 mis Be	
Solid angle	37107 #	
Tilm .	DE97*MAX	
Changeable param	eter(s)	
Crystal, side 1	WB4C	emple dans
ingle	5.0 degrades	E MULLEION CIONAL 166(MD)
Crystal, side 2	WB4C	
ingle	5.0 degross	20 m x 20 m single or film [A. of
Filters		TO O
mage a	1 mai Be	
mage b	1 millio	- 20 Hun x 20 has 50 0.
mage c	1 mi Be	18.28/ 14.01
mage d	1 mil Be	
magers		in targel plane
skle 1	DEF/TMAX	in the stress can
aldio 2	DEF/TMAX	K = +x+ mus (500, 500).
Sise		H = comenial (X. 500 Mg. 500)
side 1	-2007	S S S S S S
nde 2	-2307	
Delays		about the standing
Master	4999	Willer.
Lide 1	V08.7 ms	\wedge (
	The second	

Example Shot Request Form

			PID#+4			
			KID#:(7		
			General Info	ormation		
<u>Ser</u> LANL ID00-	<u>ies Name</u> 1 Double shell Im	ps (npaign Other	Planned Shot Date 10/26/99 (Format: 3/18/99, 18-mar-9	9, etc)	Series Shot #: 3
Principle Dos Dhjective(s): Secondary Dhjective(s):	able shell implosio	ons within tetrabedral h	ohiraums			
Type 6: No Yi predicted* to f	ield or Low Yield, be less than 1e10	Neutron Yield	*Prediction is 1-D based on similar ta	yield as predicted by target mod arget performance.	lel, NOT the antici	pated yield
Principal Inv	estigators			Special		
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Barnes//12 PI 3	estigators e/Pager) DH/ -3598 Ins Anti	SG1011 Max energy p cipated Yield 3e8 DTN	ossible. Hold for Pl	Special <u>Instructions</u> pulse shape verification. Do not	hold for film resu	lts. Calculated Yield 1.7e9,
Principal Inv <u>(Name/Phon</u> PI I Watt/52) PI 2 Barnes//12 PI 3	estigators e/Pager) DH7 -3598 Ins Anti	SG1011 Max energy p cipated Yield 3e8 DTN	ossible. Hold for Pl	Special Instructions pulse shape verification. Do not rmation	hold for film resu	lts. Calculated Yield 1.7e9,
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Baroes//13 PI 3 Driver	estigators e/Pager) 0117 0-3598 Anti 0-3598 Anti Status	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape	ossible. Hold for Pf Driver Info Leg	Special <u>Instructions</u> pulse shape verification. Do not rmation <u>Timing Shift</u>	hold for film resu SS <u>w</u>	lts. Calculated Yield 1.7e9, D Modulation / X.Y coords.
Principal Inv <u>(Name/Phon</u> PI I Watt/52) PI 2 Barnes//13 PI 3 Driver Backlighter	estigators e/Pager) 0117 -3398 Ins Anti 5398 Off	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape.	ossible. Hold for Pf Driver Info Leg	Special <u>Instructions</u> pulse shape verification. Do not makon <u>Timing Shift</u>	hold for film resu SS <u>w</u>	lts. Calculated Yield 1.7e9, D Modulation / X,Y coords
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Barnes//12 PI 3 Driver Backlighter isd	estigators <u>e/Pager)</u> D117 1ns -3598 Anti -3598 Off Off	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape.	ossible. Hold for Pl Driver Info Leg	Special Instructions pulse shape verification. Do not rmation <u>Timing Shift</u>	hold for film resu SS <u>W</u>	D Modulation (X,Y coords) Off X;
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Barnes//13 PI 3 <u>Priver</u> Backlighter isd 4ain	estigators e/Pager) 0117 -3598 Ins Anti 53598 Off Off On	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape SG1011	ossible. Hold for Pf Driver Info Leg	Special <u>Instructions</u> pulse shape verification. Do not rmation <u>Timing Shift</u>	hold for film resu SS <u>w</u>	lts. Calculated Yield 1.7e9, D Modulation / X.Y coords Off X: Y:
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Barnes//12 PI 3 Driver Backlighter isd dain 'iducial	estigators e/Pager) D11/ -3598 Ins Anti Status Off Off On On	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape. SG1011 Comb	ossible. Hold for Pf Driver Info Leg	Special <u>Instructions</u> pulse shape verification. Do not rmation <u>Timing Shift</u>	hold for film resu SS <u>w</u>	D Modulation / X.Y coords Off X: Y:
Principal Inv (Name/Phon PI 1 Watt/52 PI 2 Baross//12 PI 3 Driver Backlighter Ssd Main Fiducial	estigators e/Pager) 0117 118 -3598 Anti -3598 Off Off Off On On On	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape SG1011 Comb	ossible. Hold for Pf Driver Info Leg Target Info	Special Instructions pulse shape verification. Do not mation Timing Shift	hold for film resu SS <u>w</u>	dts. Calculated Yield 1.7e9, D Modulation / X.Y coords Off X: Y:
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Baroes//12 PI 3 Driver Backlighter isd Main Ziducial	estigators e/Pager) D117 -3.5998 Ins Anti -3.5998 Off Off On On On	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape SG1011 Comb	ossible. Hold for Pf	special Instructions pulse shape verification. Do not rmation Timing Shift rmation	hold for film resu SS <u>w</u>	D Modulation / X.Y coords Off X: Y:
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Barnes//12 PI 3 Driver Backlighter Sacklighter Sacklighter Joiner Driver	estigators <u>e/Pager)</u> D11/ -3.598 Ins Anti 	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape SG1011 Comb Target One De Dsbell_DT(capsu 24ATM DT	ossible. Hold for Pf Driver Info Leg Target Info escription ule xx) - x	special Instructions pulse shape verification. Do not rmation Timing Shift rmation	hold for film resu SS <u>w</u>	D Modulation / X.Y coords Off X: Y:
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Barnes//12 PI 3 Driver Backlighter isd dain fiducial D(Model-Serial#): Type/Description: Dutside	estigators e/Pager) 0117 -3598 Ins Anti -3598 Off Off On On On	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape SG1011 Comb Target One Da Dshell_DT(capsu 24ATM DT 300a	ossible. Hold for Pf Driver Info Leg Target Info escription ale xx) - x	special Instructions pulse shape verification. Do not rmation Timing Shift rmation	hold for film resu SS <u>w</u>	D Modulation / X.Y coords Off X: Y: 2
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Barres//15 PI 3 Priver Sacklighter sd fain 'iducial D(Model-Serial#): 'ype/Description: Datside Name ter: baras	estigators e/Pager) 0117 0-3598 Ins 	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape. SG1011 Comb Target One De Dsbell_DT(capsu 24ATM DT 3004 Suboried	ossible. Hold for Pf Driver Info Leg Target Info escription ale xx) - x	special Instructions pulse shape verification. Do not rmation Timing Shift mation <u>Target T</u> -	hold for film resu SS <u>w</u>	dts. Calculated Yield 1.7e9, D Modulation (X.Y coords Off X: Y:
Principal Inv (Name/Phon PI 1 Watt/52) PI 2 Baroes//1; PI 3 Driver Backlighter issd Main ?iducial D(Model-Serial#): fype/Description: Datside Diameter: Shape: Hazardous Materials:	estigators e/Pager) 0117 0-3598 Ins 	SG1011 Max energy p cipated Yield 3e8 DTN Pulse Shape. SG1011 Comb Target One De Dshell_DT(capsu 24ATM DT 3004 Spherical Tritium	ossible. Hold for Pf Driver Info Leg Target Info escription ale xx) - x	special Instructions pulse shape verification. Do not mation Timing Shift rmation <u>Target 1</u> -	hold for film resu SS <u>w</u>	dts. Calculated Yield 1.7e9,

Diagnostics: Medusa and Stoeckel Tion detector; Bang time from Omega and LANL BT detectors

Secondary Diagnostics: Dante: static Pinbole cameras; BS monitor B1.25/30

http://omegawww.le.rochester.edu/arfmgmt/

LANL ID00-1: Double Shells and ACE Experiments

10/20/99

Tuesday.	Ontober	19.	1999
		1.00	1.0.0

LLE Data System/Shot Request Form Interface

Page: Z

Beam Information Total number of configured beams: 60								
Beam #	Energy	Units	Pointing	DPR	DPP	Focusing	Timing	Termination
11,13,15,17,10,22,24,28,20-32,37,46,56,61	450	J/Beam (UV)	H1	No	No	hohiraum	nominal	target
12, 16, 19, 21, 23, 25, 27, 29, 34, 35, 38-30, 45, 64	450	J/Beam (UV)	H18	No	No	hohlraum	nominal	target
14, 18, 42, 44, 47, 53, 57-50, 62, 66-69	450	J/Beam (UV)	H11	No	No	hohlraum	nominal	target
26, 33, 36, 41, 43, 48-52, 54, 55, 63, 65, 60	450	J/Beam (UV)	H9	No	No	hohlruam	nominal	target

Back to General Information

Help	ave as New Form	Update Current Form
Query	Display Printable	Clear Entire Form

RID# 6776

Laser Beam Pointing Spreadsheet

	2 Tet	rahe	edral	Poin	tiı	ng Pa	ramet	ers								
	Doι	ıble	She	ll Imp	olo	osions	o Octo	ber	1999							
	(Sta	atic	resu	lts fo	or	H1-H	9-H11	-H18	5)							
	config:	109			_				Sphe	ere intercep	ot	LI	EH center			
	LEH	Port	Theta	Phi	ŗ	unit hole X	e vector kl Y	Z	1400 μr X	n from TCC Y	z	1355.544 µ X	um from TCC Y	z		
	A	1	37.377	18		0.577	0.188	0.795	808	263	1113	783	254	1077		
	B C	9 11	79.188 100.812	234 126		-0.577 -0.577	-0.795 0.795	0.188 -0.188	-808 -808	-1113 1113	263 -263	-783 -783	-1077 1077	254 -254		
	D	18	142.623	342	L	0.577	-0.188	-0.795	808	-263	-1113	783	-254	-1077		
						7/9/1	999 Try4	250								
	Cone		Angle			x	Y	Z								
	1A		23.20			625 KK Off	rsets in μm -45	256							Sanity che	ecks
	1B 2A		23.20 47.83			370 455	-50 20	700 1035							TCC to focus	LEH
	2B 3		47.83 58.79			375 110	-170 -50	1000 1278							offset	plane pointing
	pent cone	1	21.41													offset
	pent cone	2	42.02						R retro	F	RRmax	_		2381.25 3	3/16" BB	
	10/10/00 16	S-09	Boom	Boom		For			1356 Rotro Do	ad Rocon (170.9574 Offect	Ch	1984.375	984.375 2	" BB	
LE	H Cone	Beam	Theta	Phi	у	X	Y	z	XXX	YYY	ZZZ	theta	phi	ZZZZ		
A	1A	31	42.0	342.0		41	562	159	51	-48	1197	38.8	8.1	-671	586	70
A	1A 1A	20	21.4 58.9	54.0 30.1		-160	-158	-49 500	-67	-20	1197	42.4	22.3	-671	586	70
A	1B 1B	17 10	21.4 58.9	342.0 5.9		610 106	366 258	351 743	6 85	-102 56	714 714	34.1 42.6	10.9 16.5	-674 -674	793 793	102 102
A	1B 2A	11 28	42.0 58.9	54.0 318.1		496 430	-230 617	575 845	-91 100	45 24	714 478	36.0 39.9	26.6 -6.0	-674 -834	793 1131	102 103
A	2A 2A	56 32	21.4 81.2	126.0 41.5		969 394	109 -144	573 1050	-29 -70	-98 75	478 478	25.3 51.0	35.9 27.6	-834 -834	1131 1131	103 103
A	2B 2B	46 37	21.4 81.2	270.0 354.5		880 299	313 458	545 933	-159 134	-64 -106	530 530	26.8 55.2	-10.8 11.8	-786 -786	1081 1081	171 171
A	2B 3	13 61	58.9 21.4	77.9 198.0		553 836	-208 219	906 949	24 -50	169 19	530 151	36.9 14.1	48.6 12.1	-786 -898	1081 1284	171 53
A	3_	24 15	81.2 81.2	66.5 329.459		685 692	149	1075 1023	41	34 -53	151 151	51.5 53.4	45.0	-898	1284	53 53
B	1A 1A	41	81.2	257.5		-562	114	119	-51	48	1197	78.3	-119.7	-671	586	70
B	1A 1A	52	58.9	221.9		-41	-394	-432	-16	-68	1197	74.4	-130.1	-671	586	70
B	1B 1B	49	58.9	246.5		-490	-478	-170	-85	-56	714	74.0	-124.9	-674 -674	793	102
В	2A	36	81.2	210.5		-969	-561	158	-100	-45	478	79.6	-110.6	-674	1131	102
B	2A 2A	51 55	121.1 42.0	210.1 198.0		-394 -430	-875 -1031	-174	29 70	98 -75	478 478	92.3 66.2	-133.5 -134.2	-834 -834	1131 1131	103 103
В В	2B 2B	43 26	121.1 42.0	257.938 270.0		-553 -880	-717 -627	591 -36	159 -134	64 106	530 530	92.6 61.7	-113.4 -120.3	-786 -786	1081 1081	171 171
<u>В</u>	2B 3_	40 54	81.2 138.0	185.5 234.0		-299 -685	-1039 -1028	348	-24 50	-169 -19	530 🛛	84.0	-143.9 -124.5	-786 -898	1081	<u>171</u> 53
B B	3_ 3_	65 33	58.9 58.9	174.1 293.9		-692 -836	-1072 -947	143 228	-41 -9	-34 53	151 151	69.8 67.2	-148.3 -105.0	-898 -898	1284 1284	53 53
C C	1A 1A	57 67	121.1 98.8	138.1 102.5		-41 -562	394 -114	432 -119	16 51	68 -48	1197 1197	105.6 101.7	130.1 119.7	-671 -671	586 586	70 70
C C	1A 1B	47 69	81.2 121.1	138.5 113.9		160 -610	331 478	-456 170	-67 85	-20 56	1197 714	95.0 106.0	128.2 124.9	-671 -674	586 793	70 102
C	1B 1B	53 59	98.8 81.2	149.5 113.5		-106 -496	780 411	-101	-91	45 -102	714 714	99.1 97.3	131.1	-674 -674	793 793	102 102
c	2A	62 18	138.0	162.0		-430	1031	174	-70 100	75	478	113.8	134.2	-834	1131	103
č	2A 2B	58 50	58.9 138.0	149.9 90.0		-394 -880	875	-598 36	-29 134	-98 -106	478 530	87.7	133.5 120.3	-834 -786	1131	103 171
c	2B 2B	42	98.8	174.5		-299	1039	-7	24	169	530 530	96.0 87.4	143.9 113.4	-786	1081	171
c	3_	14	121.1	66.1		-836	947	-228	9	-53	151	112.8	105.0	-898	1284	53
C	3_ 3_	44	42.0	126.0		-692	1028	-348	-50 41	34	151	110.2	124.5	-898	1284	53
D	1A 1A	19 21	158.6 121.1	306.0		-160	158 260	49 -500	67 -16	-68	1197	148.4	-22.3	-671 -671	586 586	70
D D	1A 1B	12 29	138.0 138.0	18.0 306.0		41 496	-562 230	-159 -575	-51 91	48 -45	1197 714	141.2 144.0	-8.1 -26.6	-671 -674	586 793	70 102
D D	1B 1B	30 39	158.6 121.1	18.0 354.1		610 106	-366 -258	-351 -743	-6 -85	102 -56	714 714	145.9 137.4	-10.9 -16.5	-674 -674	793 793	102 102
D D	2A 2A	64 16	158.6 98.8	234.0 318.5		969 394	-109 144	-573 -1050	29 70	98 -75	478 478	154.7 129.0	-35.9 -27.6	-834 -834	1131 1131	103 103
D D	2A 2B	23 38	121.1 121.1	41.9 282.1		430 553	-617 208	-845 -906	-100 -24	-24 -169	478 530	140.1 143.1	6.0 -48.6	-834 -786	1131 1081	103 171
D	2B 2B	25 35	158.6 98.8	90.0 5.5		880 299	-313 -458	-545 -933	159 -134	64 106	530 530	153.2 124.8	10.8 -11.8	-786 -786	1081	171 171
D	3_	34 27	98.8 98.8	293.5 30.5		685	-149 -351	-1075	-41	-34	151	128.5	-45.0	-898 -898	1284	53
D	3_	45	158.6	162.0		836	-219	-949	50	-19	151	165.9	-12.1	-898	1284	53

ACE Experiment (Wed.-Thurs., Oct. 27-28, 1999)

Experimental Proposal

ACE October 27 - 28, 1999 Principle Investigator: Steve Caldwell, LANL

The proposed 1-1/2 day experimental campaign consists of about 15 laser shots with two goals:

- 1) Characterization of a new single ended hohlraum (5 shots);
- 2) Development of a time resolved temperature diagnostic using an induced fluorescence technique (10 shots).

The laser beam requirements can be broken into 3 groups with each hohlraum being driven by either group 1 or group 2 and backlighting being provided by group 3. All beams are 1 ns square pulse shape with a nominal energy of 450 joules. The backlighter beams will use DPP/SG8 phase plates. The drive beams will not need phase plates. Beam requirements are contained in the attached tables.

Primary diagnostics are:

- Dante in H16
- SXRFC in P7/TIM6
- SSC1/AWE spectrometer in H7/TIM2

The SSC1/AWE spectrometer must be retracted when group 1 beams are used. Permanently mounted pinhole cameras may be used as failure diagnostics. ALL other system diagnostics must be cleared with Principle Investigator before use, including any optical views of target.

All targets are provided by LANL and all are aligned along the P6-P7 axis. The target inventory will consist of the following:

3 hohlraum characterization targets requiring group 1 beams;

3 hohlraum characterization targets requiring group 2 beams;

8 temperature diagnostic development targets requiring group 2 beams;

6 temperature diagnostic development targets requiring groups 2 & 3 beams.

Although the inventory consists of 20 targets, we expect to use only 15 laser shots. Backup targets are provided in case of breakage or laser/diagnostic failure.

The ideal data set for the temperature diagnostic would require backlighter (group 3) delays of 2, 3, and 4 ns. Depending on data quality, we may request that the group 3 delays be changed, even at the cost of the total number of shots available.

The experiment will be done the week of October 25-29, 1999. It will be done on Wednesday and Thursday of that week, after the Dshell campaign of Watt & Varnum with 35 beams repointed overnight, 5 beams retimed, and diagnostics setup (they can be set up prior to Tuesday and remain retracted in TIM6 and TIM2 until needed).

Beam Requirements

<u>Beam</u>	$\frac{Point to}{(\mathbf{r}, \theta, \phi)}$	<u>Focus</u> <u>Adjustment</u>	<u>Delay</u>
group 1: 45,69,47,40,51 (42° cone), 64,25,50,67,59,58,65,60,63,54 (59° cone)	(0, 0, 0)	0	0
group 2: 17,20,35,16,33 (42° cone), 46,22,11,32,27,39,21,34,36,26 (59° cone)	(0, 0, 0)	0	0
group 3: 53,42,44,62,57 (21° cone)	(3000 μm,116.57°,162°)) 0	3 ns

All beams 1 ns square pulse shape and 450 joules.

Groups 1 & 2 – no phase plates. Group 3 will use DPP/SG8 phase plates

Assumed procedure: Each beam is focused at the "Point to" position and then the focus is moved by the "Focus Adjustment" amount such that the final focus position is nearer the target chamber center.

Group 3 beams may be re-timed overnight depending on when the end-of-day break occurs.

Shot #	Target	<u>P7</u>	<u>H7</u>	<u>H16</u>	<u>Beams</u>
1	HCT/P6	SXFC	spect	Dante	group 1
2	HCT/P7	SXFC	out	Dante	group 2
3	HCT/P6	SXFC	spect	Dante	group1
4	HCT/P7	SXFC	out	Dante	group 2
5	HCT/P6	SXFC	spect	Dante	group 1
6	AWET	SXFC?	AWE		groups 2 and 3
7	BHT	SXFC	spect	Dante	group 2
8	AWET	SXFC?	AWE		groups 2 and 3
9	BHT	SXFC	spect	Dante	group2
10	AWET	SXFC?	AWE		groups 2 and 3
11	BHT	SXFC	spect	Dante	group 2
12	AWET	SXFC?	AWE		groups 2 and 3**
13	BHT	SXFC	spect	Dante	group 2
14	AWET	SXFC?	AWE		groups 2 and 3**
15	BHT	SXFC	spect	Dante	group 2

Shot Schedule

group 1: 45,69,47,40,51 (42° cone) and 64,25,50,67,59,58,65,60,63,54 (59° cone) 1ns sq

group 2: 17,20,35,16,33 (42° cone) and 46,22,11,32,27,39,21,34,36,26 (59° cone) 1ns sq

group 3: 53,42,44,62,57 (21° cone) 1 ns sq delayed 2, 3, or 4 ns

**group 4: 45,69,47,40,51 (42° cone) 1ns sq, delayed – could be used instead of group 3

Diagnostic Changes to SXRFC (XRFC4 in TIM6)

The primary diagnostic change from shot to shot during the ACE campaign is to translate the SXRFC along its Z axis (changing the radius of its object focus) and changing the interstrip timing and the t0 time. This table summarizes these changes for each shot:

SHOT	F	R (mm) inte	erstrip (ns) t	0 (ns)
	1	0	0.5	0
	2	2.8	0.5	0
	3	0	1	0
	4	2.8	1	0
	5	0	?max	+10-max
6,8		3.1	0.2	2.6
	7	0	1	0.9
9,11		2.8	1	0.9
10,12,	14	3.1	0.2	see Pl
13,15		2.8	0.5	0.4

Diagnostic Build Sheets

		-	request #		For official	use only
Date needed	10/27/99		1040001#		- or official	abe only
Requester Campaign	Steve Cal	dwell LAN	L			
Purpose of Diagnostic Streak Camera	AWE desi	gned temp	erature diag	Inostic		
Pointing	Z R=2800m	icrons The	ta=116 57 P	hi=162 00	(P7)	
i olinting	10 200011	1010110,1110	a 110.07,1	111 102.00	(17)	
Photocathode						
substrate		.5 mil Be				
fluffu		V	ovoilabla a	only for Col	and KPr	
fiducial		N	not available t	ble with 50	00 um slit	
slit width				1500 µm		
arid (1.5 mm spacing)	none	50 um	75 um			
Imager SMP	hono	N	fiducial no	t available	with Imager	S
other requirements						
Spectrometer	Y					
Preferred Spectrometer	AWE	LANL	provided			
Preferred Crystal						
Desired Range:	Min.	center	Max.	keV		
				Angstroms	5	
Material						
Thickness						
Filtering						
Material	Be					
Thickness	.001"					
Intensifier Gain	low					
Sweep Speed	5ns	full	sweep			
Timing wrt T0	3.5	ns	at	center	of sweep	
ay Streak Camera Co	nfiguratio	n Reque	st (cont.)		Date	10/14/
			request #		For official	use only
be completed by assemble	er:					
comments	//	·				
Fiducial fiber installed	//	:				
Spectrometer complete		·				
spectrometer name	'' Ar	Xe	Q	AI	LXS-1	LXS-2
crvstal	RbAP	ADP	PET	Quartz	other:	_,
expected range:	Min.	center	Max.			
				keV		
				Angstroms	5	
comments						
Imagaar aameiete	//	i				
imager complete						
comments	eak camer	a with min	imum of 3 e	crews?	Y N	
comments Front end attached to str Fiducial fiber secured wit	eak camer	a with min f TIM boat	imum of 3 s	crews?	Y N Y N	
Imager complete comments Front end attached to str Fiducial fiber secured wit Sweep Speed set to:	eak camer hin limits o 1	a with min f TIM boat 2	imum of 3 s ? 3	crews? 4	YN YN 5	
Imager complete comments Front end attached to str Fiducial fiber secured wit Sweep Speed set to: Switches set? (electron	reak camer hin limits o 1 optics on, t	a with min f TIM boat 2 bias on, int	imum of 3 s ? 3 ensifier on,	crews? 4 gain set)	YN YN 5 YN	

<i>IIVI #</i>	Z Pavloa	SHOTS: All			
	Pavloa				
		ad: SSC 1 AWE	Date	9:	10/28-29/99
		Previous Shot #			
		Campaign		I	
	Ontics:	Campaign.	AUL		
	optioo.	Nosecone S/N	Хе]
		Tune for		Ti	
		Blast Shield	0.009" Be]
		Photocathode Assy. #			
		Photocathode Type	Au		
		Photocathode Slit	200	μm	
		Rear Filter Carrier S/N			
		Rear Filter]
	Internal Se	ettings:			
		Sweep Speed Setting		1	
		Deflection Plates	()N	
		MCP Power	0	<u>)N</u>	
		Electron Optics Power		<u>)N</u>	
		towards backlighter	162		
		$\theta =$	116.57	-	
		T =	2.8mm		
		Power Supply			
		Voltage:		18 VDC]
		Timing:			
		Channel:	TBB 14/2]
		Inserted Delay:		nS]
		ΔT to fiducial	30).3 nS	
		Timed at	T+3.5 at cent	er nS	
		Monitor Output Scope # TDS 684 GPIB 2	Channel #	2]
	Authorized	by G Pien	- Confirmed by		1
			John Hou by	•	

XOPS	TIM Setu	p Sheet				V 2.0	10/7/00
M #	6	shot 1					
T							
	Paylo	ad: XRF #4	Date:		10/27/99		
		Previous Shot #	#				
	• •	Campaigr	n LANL ACE				
	Optics:				1		
		Nosecone S/N	2				
		Ripholo Sizo	25 10 25				
		Blast Shield	23-10-23	μπ			
		Rear Filter Carrier S/N	none				
		Rear Filter	Pv-Be-V				
		Film Back S/N	,		1		
		Pinhole Substrate	LANL provided		1		
		Frame					
	Internal S	Settings:	4	<u>I</u>	1		
		Output 1 (Phosphor):	2.5	kV		Bias Offse	t:
		Output 2	0	V]	Strip 1	9
		Output 3 (Reverse Bias):	200	V		Strip 2	9
		Output 4 (PCD Bias):	0	V		Strip 3	9
		Reverse Bias Range	500-950	V		Strip 4	9
		PFN Type	200	ps			
	Interstrip	Timing:					
		Strip #	Setting	Delay		1.	
		1	00		nS	varies	
		2	00	0.5	ns nS		
		3	00	1 1 5	ns	-	
		4	00	1.5	15	l	
	Steering						
	Steering	Points to:	along P7 axis to	тсс			
		φ =	= 162.00 deg	1			
		θ =	= 116.57 deg	1			
		R	= 0.0mm	varies			
	Power Su	ylqqu	<u>I</u>	1			
		Voltage:	15	VDC			
					•		
	Timing:				_		
		Channel:					
		Inserted Delay:	_	nS			
		ΔT to fiducial		nS			
		Timed at	0	nS	varies		
	Monitor C	Dutput			1		1
					A 44 a		

Typical Shot Request Form

nday, October 18, 1999		L	LE Data System/Shot I	Request Form Interface			Page
		OMEGA Ex	periment	Shot Reques	t Form		
			RID#:0	5751			
			General Info	ormation			
Series Name	<u>c</u>	ampaign	<u>P1</u> ;	anned Shot Date		Series Shot #:	
ACE		CALLET	(Format:	3/18/99, 18-mar-99, etc)		1	
Principle Objective(s): Secondary Objective(s):	Hohlraum (characterization / P6					
Yield: *Prediction	is 1-D yield as	predicted by target model	. NOT the anticipat	ed yield based on similar	target performance.		
	Princij (Nam	pal Investigators e/Phone/Pager)			Special Instructions		
PI 1							
PI 2 PI 3	в	ames//12-3598	Tar	get is classified Film is c	lassified.		
			Driver Info	rmation			
Driver	Status	Pulse Shape	Leg	Timing Shift	55	D Modulation // X.Y coords	
Backlighter	Off						
Ssd	Off					Off X:	
Main	On	SG1011				Y:	
Fiducial	On	Comb					
		Target One Dec	I arget Info	rmation	reat Two Descriptio	-	
ID(Model-Serial#):		-	ocription.	-	rget i wo pescriptio	<u>n</u>	
Type/Description:		HCT/P6					
Outside Diameter:		1800					
Shape:		Cylindrical					
Hazardous Materials:							
Special Instructions:		Target is classified	l to view				
		NOTICE:	Diagnostic In Important target	formation chamber port update	1		_
Primary Diagnostics:		SXRFC (XRFC	3) in TIM6 DANI	E			
Secondary Diagnostics:		pinhole cameras					

http://omegawww.lle.rochester.edu/arfmgmt/

Anday, October 18, 1999 LLE Data System/Shot Request Form Interface Beam Information Total number of configured beams: 15									Page: Z
Beam # Energy Units Pointing DPR DPP Focusing Timing Termination									
25, 45, 47, 40, 51, 54, 58-50, 63-65, 67, 69, 60	25, 45, 47, 40, 51, 54, 58-50, 63-65, 67, 69, 60 450 J/Beam (UV) Icc No No 0 nominal Target								
Back to General Information									
Help Save as New Form Update Current Form Query Display Printable Clear Entire Form									_
RID# 6751									

.

		Campaign Segment								
T	Μ	Dshell standard or								
		brominated (DT)	Dshell imaging (DD)	ACE						
1	(Pent 3)									
2	(Hex 7)			SSC1/AWE						
	. ,			spectrometer						
3	(Hex 18)	QXI 8X	QXI 12X							
4	、 (Pent6)									
5	(Hex 14)									
6	、 (Pent7)			SXRFC						
		DANTE (190 eV)	DANTE (190 eV)	DANTE						
		LANL Bangtime	LANL Bangtime							
		Yield	Yield	 						
		(scintillator)	(scintillator)							
		Yield (Cu activation)	, ,							
		Medusa	Medusa							
		NTD								
			CPS #2 (H1)							
		GMXI (polv-	GMXI (polv-							
		chromatic: H9)	chromatic: H9)							
		pinhole cameras	pinhole cameras	pinhole cameras?						
			1							
		Backscatter	Backscatter	 						
		calorimetry	calorimetry	 						
			2							

Diagnostic List for Week

Contact List of Key Personnel

LLE (716)275-5101

Ray Bahr -9443 Tom Boehly -0254 David Bradley -5769 Paul Jaanamagi-5515 Jim Knauer -2074 Pat McKenty -3865 Sam Morse -9672 Greg Pien -5848 Wolf Seka -3815 John Soures -3866 -5286 Jean Steve Keith Thorp -7603

Marriott Courtyard Brighton (716)292-1000

Cris Barnes (Q) Harry Bush (Q) Steve Caldwell (Q) Bernie Carpenter (Q) Tim Pierce (Q) Joe Sandoval (Q) Bob Watt (Q)

Marriott Residence Inn (716)272-8850 Tom Ortiz Bill Varnum

Marriott Thruway (716)359-1800

Glenn Magellsen (Q)

Hampton Inn (716)272-7800

??

David Hoarty (special)