Appendix B

A Survey of Fish, Mussels, and Other Benthic Invertebrates in Parts of the Nolichucky River in East Tennessee

INTRODUCTION

Surveys of fish, benthic macroinvertebrates, and native freshwater mussels were conducted in the lower Nolichucky River (NRM 8.5-60.5) during May and June, 2000. These surveys were designed and conducted to provide aquatic biological information for use in the Nolichucky Flood Remediation Environmental Impact Statement (EIS). The detailed results of these efforts are reported here and are used in the EIS to evaluate the effects of various alternatives on aquatic life. In this report, details in the results also are compared to similar information from earlier surveys in this east Tennessee river.

PHYSICAL CHARACTERISTICS

The Nolichucky River arises in the Blue Ridge Physiographic Province of the North Carolina highlands at the confluence of the North Toe and Cane rivers. It then flows westward into Tennessee, entering the Central Appalachian Ridge and Valley Province, where the lower 40% of its drainage lies. With a total drainage area of 1,756 square miles, the Nolichucky River is a major tributary of the French Broad River system. It enters the French Broad River (Douglas Reservoir) at French Broad River Mile 69.1 near White Pine, TN, at the junction of Hamblen, Cocke, and Jefferson counties. The upper portion of the drainage is primarily forested, while the dominant land use in the lower portion is agricultural. High concentrations of solids, especially sand, from past mica and feldspar mining in the North Toe watershed have caused severe impacts to aquatic life downstream (TVA 1994), which are still apparent throughout most of the river's length.

Basic water quality information from the lower Nolichucky River is available from relatively recent data collected at the TVA gauging station (Nolichucky River Mile ---NRM 10.7) near Lowland, TN (TVA 1994). Water is moderately hard (average hardness of 79 mg/L) and moderately alkaline (average total alkalinity of 67 mg/L). The median pH is 7.8, and dissolved oxygen levels ranged from 87 to 100 percent of saturation. Average organic nitrogen (0.223 mg/L), nitrate+nitrite-nitrogen (0.56 mg/L), total phosphorus (0.075 mg/L) and dissolved orthophosphate (0.024 mg/L) are slightly above median concentrations found at 12 other stream monitoring sites across the Tennessee Valley. The total phosphorus concentration is slightly higher than what is considered healthy, although not excessively so.

SITE DESCRIPTIONS

All biological samples were taken in the lower portion of the main river channel in the Central Appalachian Ridge and Valley ecoregion. Five sites were selected to characterize benthic macroinvertebrate and fish communities between river miles 8.5 and 60.5 (Table B1). Sites 1-3 roughly correspond to the lower, middle, and upper thirds of the river segment below Nolichucky Dam. Site 4 is in the impounded portion of Nolichucky Reservoir (also called Davy Crockett Lake), and Site 5 is in the free-flowing portion of the Nolichucky River just upstream of the impoundment. Mussel surveys were conducted at ten locations: the five sites where the fish and benthic samples were taken and five other sites along the length of the river downstream of Nolichucky Dam (Table B1).

All sites except Site 4 had good physical habitat diversity (i.e., riffles, runs, and pools) with good riparian canopy, gravel/cobble substrates, large woody debris, and undercut banks. Other than Site 4, sedimentation is most apparent at Site 1, attributable to low gradient, the proximity to Enka Dam downstream, and inputs from several turbid tributaries, notably Lick Creek, Bent Creek, and Little Chucky Creek. In addition to physical habitat features mentioned above, Site 1 had large areas of waterwillow (*Justicia americana*), and slow, silty pools.

Large *Justicia* beds were also present at Site 2, along with some bedrock outcroppings, but the pool areas were less silted than those of Site 1. Gradient was noticeably higher at Site 3, and the riffles and runs had larger substrate (i.e., rubble and boulders), more exposed bedrock, and smaller expanses of *Justicia* than the lower stations.

The substrate at Site 4 was virtually all sand except for patches of woody debris along the shorelines. Riffles and runs at Site 4 were sampled in flowing waters of the main river channel where water depths ranged from less than 1 foot to about 2 feet. Pool areas in the reservoir were perhaps 4 feet or less in depth, and the mostly wooded shorelines provided good overhanging and undercut bank cover for certain fish species.

Above the reservoir at Site 5, gradient was the steepest. Substrate was mostly bedrock ledges and large cobbles. Riffles and runs were swept clean of sediment by high water velocities, while backwaters, pools and other areas of low velocity had accumulations of silt and sand. Pool areas were bordered by bedrock outcroppings and trees on the outside of the river bend, and sandy shorelines on the inside of the bend.

Stream gradient is the most obvious physical habitat feature differing between the sampling sites. The two lowermost sites are in relatively low gradient regions, whereas sites 3 and 5 are high. The reservoir site, Site 4, has virtually no gradient, as the streambed is almost entirely sand from bank to bank.

Benthics

METHODS

Samples were collected according to TVA's Level III, Benthic Index of Biotic Integrity (BIBI) protocols, which include both quantitative and qualitative samples. Quantitative samples were collected with Hess and Surber samplers. Three Hess samples were taken from shallow run habitats and three Surber samples were taken from shallow riffle habitats at each site. A composite qualitative sample was taken from multiple habitats present at each site. The prescribed habitats for qualitative sampling are: riffles, surface of large rocks and large woody debris, leaf packs

and/or accumulated organic debris, submerged root wads, sand and sediment, and aquatic macrophytes.

The TVA Level III benthic sampling protocols yield two types of data. The first is simply a list of the total taxa and number of individuals collected at each site. The second is a multi-metric BIBI score for each site. The BIBI uses data from the quantitative and qualitative samples to calculate scores between 1 and 5 for 12 benthic community characteristics or metrics. These individual metric scores are summed to produce an overall site index score. Scores of 45 to 60 are rated good, 31 to 44 are rated fair, and 30 or below are rated poor. TVA's version of BIBI metrics and metric scoring criteria are modified from Kerans and Karr (1994).

<u>Mussels</u>

Snorkel-equipped divers performed timed qualitative searches for native mussels at each of the 10 sites. Additionally, one collector utilized a clam rake to sample near-shore habitats at each site and one SCUBA-equipped diver searched deep pool habitats at the uppermost site (NRM 60.6).

Mussels were removed from the substrate and held in mesh bags until they were identified and counted by species. Species identification was primarily made using external shell morphology. Some individuals were gently pried open enough to see the color of soft tissues and/or interior of the shell (the nacre). A few specimens were preserved in 95% ethanol for more detailed examination. Identifications were verified by Dr. Paul W. Parmalee, McClung Museum, University of Tennessee, Knoxville.

<u>Fish</u>

Fish communities were sampled at the five Nolichucky River sites in May and June, 2000 using standard IBI protocols (Karr 1981). A backpack electrofishing unit, a 20 ft. seine, and dipnets were used to collect fish in wadeable habitats while a boat-mounted electrofishing unit was used to sample deep runs and pool areas. Under IBI protocols, all discernible habitats at a given site are sampled until no previously uncollected species are found, thus assuring a permissible sample. IBI metrics address 12 community characteristics which are summed to produce an overall site score. Scores of 58-60 are rated excellent, 48-52 are considered good, 40-44 are rated fair, 28-34 are poor, and 12-22 are considered very poor.

Because dams are often barriers to upstream fish migration, concentrations of prespawning fish species often occur below them. Additional boat electrofishing samples were taken to document the presence of migratory spawning fish species in two key river stretches downstream of Nolichucky Dam. A 4-mile section from Nolichucky Dam to Allen Bridge (NRM 42 - 46) was sampled on April 21, 2000. The area immediately below Enka Dam was sampled on March 28 and again on April 20, along with selected shoals in the entire stretch between Enka Dam to the backwaters of Douglas Reservoir. Turbid water was a factor on both sampling trips below Enka Dam.

Benthics

RESULTS AND DISCUSSION

One hundred and sixty four benthic taxa were collected from all sites combined (Table B2). Benthic IBI scores ranged from 18.76 at Site 4 (NRM 50.6) to 41 at Site 1 (NRM 8.5) (Table B3). Site 4 rated poor, while all other sites rated fair. Overall number of benthic taxa collected at each site ranged from 49 at Site 4 to 97 at Site 3 (NRM 42.1). Numbers of predators, stoneflies, and collector/filterers were consistently low across all sites. Low densities of intolerant native mollusks at sites 3 - 5 also contributed to lowered BIBI scores.

Not surprisingly, Site 4, within the impounded reach upstream of Nolichucky Dam, yielded the lowest overall benthic taxa richness and lowest BIBI scores (Table B3). Shifting sand dominates the substrate in riffle and run habitats within this reach. Few benthic organisms are adapted to this unstable environment. Sand and silt deposition was not as severe at Site 5 (NRM 60.5); however, it was more evident there than at sites downstream of Nolichucky Dam. Nutrient enrichment, implied from observations of excessive periphyton growth, is also a likely factor in depressed benthic communities at Site 5.

At sites below Nolichucky Dam, BIBI scores improved slightly with distance downstream. While not as heavy as at Site 5, sediment deposition was more evident at Site 3 (NRM 42.1) than at Site 2 (NRM 27.7); however, sediment deposition increased again at Site 1. Signs of nutrient enrichment (especially aquatic macrophytes) appear to increase with distance downstream from Nolichucky Dam. Continued improvement in the benthic community is probably abated by increasing agricultural land use within the river floodplain and the inflow from tributaries impacted by erosion and nutrient enrichment (e.g., Lick and Bent creeks).

<u>Mussels</u>

No live native mussels were found at sites 9 and 10, upstream of the Nolichucky Dam. The Asian clam (*Corbicula fluminea*) was the only bivalve found at sites 9 and 10 during the mussel survey. Prior to the mussel survey, one fresh dead shell of the giant floater (*Pyganodon grandis*) was found near Site 9 by TVA personnel surveying for terrestrial animals.

Live native mussels were found at the remaining 8 sites surveyed below Nolichucky Dam. A total of 20 native mussel species was identified from 803 live specimens collected (Table B4). Species richness, total individuals collected, and relative abundance [as catch per unit effort (CPUE)] increased with distance downstream from Site 8 (NRM 42.1) to Site 3 (NRM 16). Greatest species richness was 10 species (at Sites 3, 4, and 5) and greatest number of individuals collected and highest CPUE occurred at Site 3 (263 and 52.6, respectively).

Three species (purple wartyback, spike, and pocketbook) comprised 75.8% of all mussels collected. Ten species were represented by single specimens. One federally listed species -- a single specimen of the federally endangered oyster

mussel (*Epioblasma capsaeformis*) -- was collected at Site 2 (NRM 11.4). Additionally, the rare spiny riversnail (*Io fluvialis*) was abundant at Site 4 (NRM 27.9) and is known from there downstream to Steele Island (NRM 20.5) (S. A. Ahlstedt, USGS, personal communication).

<u>Fish</u>

A total of just over seven thousand fish was collected during the five IBI surveys, including 63 species representing 12 families (Table B5). This corresponds well with the 61 species found in boat electrofishing samples collected by Tennessee Wildlife Resources Agency at 30 sites between Nolichucky River Miles 7.6 and 98 in 1998 (TWRA 1999). Cyprinidae (minnows) was the most numerous family sampled, and accounted for 65 percent of all the fish collected. While 17 minnow species were found, the majority were spotfin shiners (Cyprinella spiloptera), rosyface shiners (Notropis rubellus), and mimic shiners (Notropis vollucellus). The twelve species of perches (Percidae) accounted for 15 percent of the total sample, and included two species listed as In Need of Management in Tennessee: sharphead darter (Etheostoma acuticeps) and tangerine darter (Percina aurantiaca). The third most abundant family was the suckers (Catostomidae), whose 11 species comprised 8 percent of the sample by number. Although weights were not measured in the field, biomass of all the fish collected in the IBI samples was easily dominated by suckers. One blue sucker (*Cycleptus elongatus*), a state listed threatened species, was found at Site 3, and seven highfin carpsuckers (Carpiodes *velifer*), listed as In Need of Management in Tennessee, were found at Site 5. Ten species of sunfishes (Centrarchidae) accounted for 6 percent of the sample, and included several familiar gamefish species: smallmouth bass (Micropterus dolomiue), spotted bass (M. punctulatus), rock bass (Ambloplites rupestris), redbreast sunfish (Lepomis auritus) and bluegill (L. macrochirus). The remaining eight families comprised only 5 percent of the total number of fish collected.

As indicated by the IBI analysis (Table B6), the healthiest fish community was found at Site 3. With an IBI score of 54, the fish community at Site 3 was rated as good/excellent. More native fish species (44) were found there than at any other site. A high number of spotfin shiners, a tolerant species, was the primary limiting factor that brought the score down. Fish communities at Sites 1, 2, and 5 all rated good with IBI scores of 48, 50, and 48, respectively. Native fish diversity at these sites was 39, 38, and 40 species , respectively, or slightly below the diversity found at Site 3. The fish community at the reservoir site, Site 4, was considerably less healthy, as shown by an IBI score of 38 and a rating of poor/fair. Only 26 native species were collected at Site 4. Most of those species came from boat electrofishing samples along the shorelines where the habitats were more diverse. As stated earlier, the substrate in the reservoir is virtually all shifting sand, which offers little habitat for aquatic invertebrates or fish.

Fish communities in the Nolichucky River have been surprisingly stable over the last several years, according to IBI results collected since 1990 (Table B7). While two early samples at the lowermost station (NRM 8.5) rated fair, all samples there since

1993 have been rated good whenever they were sampled in the 1990s. Other mainstem river samples generally have rated good. Consistent good ratings of fish communities typically indicate an aquatic ecosystem recovering from serious pollution problems. Consistent good ratings also may indicate that other, less serious, problems remain which prevent the communities from making a more complete recovery.

Overall species diversity is one of the metrics which consistently serves to depress the IBI scores from the Nolichucky River. Historic information indicates that approximately 65 native species would be expected to occur in the Ridge and Valley segment of the Nolichucky River. At all sites except Site 3, less than two-thirds of that number of species were collected. Even the sample taken at Site 3 included only slightly more than two-thirds of the expected species diversity.

Another weakness in these fish communities also tends to drive down the IBI ratings. Species that were noticeably absent or uncommon in this study included blotched chub (*Erimystax insignis*), stargazing minnow (*Phenacobius uranops*), fatlips minnow (*P. crassilbrum*), gilt darter (*Percina evides*), and even logperch (*P. caprodes*) (Table B5). These specialist insectivore species are typically found in runs of moderate streamflow over expanses of small, gravel substrates. The absence or very low occurrence of these small, benthic, run-dwelling fish species suggests that their specific habitat is particularly impacted by pollutants in the Nolichucky River.

The occurrence pattern of most of these run-dwelling species over the last ten years at Thomas Island (NRM 8.5) has shown similar patterns of perturbation (Table B8). The blotched chub may be an exception to this pattern because it was fairly common each year until 2000, when it was absent. Habitat assessments at Thomas Island and Highway 107 Bridge (NRM 60.5) in August, 1997, indicated excessive sediment deposition and embeddedness at both sites. According to those field observations, sediment deposition affected between 30 and 50 percent of the river bed, while gravel, cobble, and boulder particles were 25-50 percent surrounded by fine sediment (TVA, unpublished information). While high current velocities may flush sediments from riffles, currents are not sufficient to prevent deposition in other areas of the streambed, including the gravel run habitats used by these insectivore specialists.

Recent IBI analyses of fish communities in tributaries to the Nolichucky River in Tennessee indicate those streams are less healthy than most of the main river (Table B9, TVA, unpublished information). Most of the tributary streams rated poor, especially in the lower reaches. Poor land use practices in those watersheds appear to add excessive amounts of sediment, nutrients, and various agriculture contaminants to the streams.

With regard to migratory fishes, the river stretch below Nolichucky Dam yielded representatives of twelve sucker species when it was sampled on April 21 (Table

B10). These species included all five redhorse species (*Moxostoma*), all three carpsuckers (*Carpiodes*), two buffaloes (*Ictiobus*), and the northern hogsucker (*Hypentelium nigricans*). A school of black redhorse (*Moxostoma duquesnei*) was caught in the act of spawning a short distance downstream from the dam. In addition, two large, mature blue suckers (*Cycleptus elongatus*) were collected, and it is presumed they also spawn within this 4-mile stretch. Other species found in large numbers below Nolichucky Dam included longnose gar (*Lepisosteus osseus*), gizzard shad (*Dorosoma cepedianum*), and common carp (*Cyprinus carpio*). While some of these species also may spawn elsewhere in the Nolichucky River between Nolichucky and Enka dams, the upper section of this river reach appears to be an important spawning area. No information was collected to confirm or deny a statement that muskellunge (*Esox masquinongy*) spawn in the pool immediately below Nolichucky Dam because many fishermen were there that day and no electrofishing sample was taken.

The area below Enka Dam also yielded large numbers suckers on both sampling dates (Table B10). Again, all five redhorse species were found, along with carpsuckers, buffaloes, hogsuckers, gizzard shad, and common carp. On March 28 a large muskellunge, estimated at 25-30 pounds, was collected just below Enka Dam and, on April 20, suckers were especially concentrated below Enka Dam. Sampling downstream from the dam to the backwaters of Douglas Reservoir yielded fewer suckers; however, white bass (*Morone chrysops*) were concentrated on the shoals nearest the backwaters of Douglas Reservoir. Two large striped bass (*Morone saxatilis*) were found approximately two miles above backwater. Only two sauger were collected in this river reach, suggesting that this area was not an important sauger spawning area in 2000, although turbid water conditions may have hindered our ability to observe them.

As a group, migratory-spawning fish species are more sensitive to sedimentation than other species because they broadcast their eggs on gravel/rubble substrates, do not build nests, and do not provide any parental care for the eggs or young. The eggs of these species are more vulnerable to scouring and/or suffocation under silt and sedimentation. The occurrence of migratory-spawning species in a fish community provides evidence of a reasonably healthy environment. Many of the migratory-spawning species are important gamefish species, while others are commercially harvested for human consumption.

LONG-TERM TRENDS, 1950-2000

The aquatic communities found in the Nolichucky River during the spring and summer of 2000 are dramatically improved over the communities found in this river during past years. Information presented by Mullican et al. (1960) indicates that, forty years ago, benthic fauna was mostly restricted to riffle areas because the stream bed in pool areas was blanketed by a layer of particulate matter. Riffle habitats were less impacted by turbidity and siltation because of shallow water, increased light penetration, less particulate matter, growth of riverweed (*Podostemum*), and higher current velocities. Live mussels were only found at one of seven sampling sites in the main river between NRM 6 and 96, and only two mussel species, black sandshell (*Ligumia recta*) and "*Lampsilis leptodon*" [probably *=Leptodea fragilis*] were found at that site (NRM 11.4) (Mullican et al. 1960).

Fish communities in the Nolichucky River also were depauperate during the 1950s. Rotenone samples collected by Tennessee Game and Fish Commission in 1959 found no more than 19 species at any of six sampling sites (Mullican, et al., 1960). The poorest diversity, nine species, was found at Kinser Bridge, NRM 60.5, which is within the segment impounded by Nolichucky Dam. At that time it was said, "Conditions in the Nolichucky River are not generally suitable for a population of desirable game fishes. Reproduction of sunfishes was unsuccessful at all mainstream stations." (Ward 1960). The sport fishery was so depressed in 1959 that only 20 individuals of black bass (largemouth bass, smallmouth bass, and spotted bass) were collected in the six rotenone surveys, and the total weight was only about five pounds. Siltation was believed to be limiting reproduction of nest building species, such as sunfish (Mullican, et al., 1960).

A site at Jones Bridge (NRM 11.4) had the best biological condition of all sites sampled in 1954, 1956, and 1958, probably indicating a recovery zone from the turbidity, siltation, and sewage discharges further upstream. But the recovery zone was again polluted not far below Jones Bridge. Industrial pollution from the American Enka plant at Lowlands was polluting the lower seven miles of river via discharges into Flat Creek, and the streambed below was plagued with noxious growths of *Sphaerotilus*, a filamentous bacteria commonly known as sewage fungus (Mullican, et al. 1960).

Favorable biological conditions continued in the recovery zone of the lower Nolichucky River above the American Enka plant into the 1970's. In September 1976, benthic invertebrate communities at NRM 9 were indicative of a "clean water situation" (Tennessee Department of Public Health 1977). Beginning in 1976, American Enka began an aggressive effort to reduce pollution of the lower seven miles of the Nolichucky River by the plant's effluents. By mid 1977, growths of *Sphaerotilus* had remarkably declined, and although it was succeeded by moderate growths of blue-green algae, portions of the streambed were emerging from the blanket of pollution that had suffocated normal aquatic biota, the "first vital step toward...biological recovery..." (Tennessee Department of Public Health 1977).

In 1980, TVA personnel surveyed mussel communities at 41 sites on the Nolichucky River downstream from Nolichucky Dam (Ahlstedt 1986). Mussel communities then were more similar to conditions found in 2000 than they apparently had been in 1960. Twenty one species were collected in 1980 while 20 species were collected in the same reach in 2000. Four species collected in 1980 were not found in 2000 and three species were encountered in 2000 that were not found in 1980. At least three of the four species last collected during the 1980 survey are still likely to exist in the Nolichucky River. SCUBA equipment was used at many of the sites surveyed

in 1980 (S.A. Ahlstedt, USGS, personal communication), providing better coverage of the deep run and pool habitats where these species are more often found.

While the collection methods used during these two surveys do not allow direct comparison of mussel densities, careful review of the information reported from 1980 and communication with the lead investigator of that study suggests that mussel densities probably have increased substantially in some parts of the river (S.A. Ahlstedt, USGS, personal communication). Specifically, the reach between Hale Bridge (NRM 27.9) and the mouth of Lick Creek (NRM 16) appears to have experienced some of the most improvement in mussel abundance.

Fish community samples collected at Hale Bridge (NRM 27.9) by TVA during the summer of 1981 yielded 37 species (Barr, et. al. 1986). While this species total compares favorably with the 40 species collected at that site in 2000, there were some notable differences. Five species present in 1981 -- blotched chub (Erimystax insignis), silver shiner (Notropis photogenis), fatlips minnow (Phenacobius crassilabrum), blueside darter (Etheostoma jessiae), and redline darter (E. rufilineatum) -- were absent in the 2000 sample. As mentioned in Results, blotched chub and fatlips minnow have been conspicuously uncommon in recent Nolichucky River samples. The absence of redline darters at this site in 2000 is puzzling because it is a very common, riffle-dwelling species and was the most abundant darter found at Thomas Island (NRM 8.5) in 2000 (Table B6). The absence of redline darters and the other four species at Hale Bridge is contrary to the impression of improving fish communities in recent years. Differences in the occurrences of these species implies instability of the fish community in the Hale Bridge vicinity between 1981 and 2000 and suggests that biological recovery is It also may be further evidence that small, benthic specialist incomplete. insectivores are suffering the most from excess sediment in the streambed.

Conversely, seven species not found during the 1981 survey were collected in the river during the 2000 survey. The most notable additions in 2000 were rock bass (*Ambloplites rupestris*), whitetail shiner (*Cyprinella galactura*), and mountain madtom (*Noturus eleutherus*), all of which are considered evidence of community improvement. The records for the other four species -- gizzard shad (*Dorosoma cepedianum*), common carp (*Cyprinus carpio*), silver redhorse (*Moxostoma anusurum*) and river redhorse (*M. carinatum*) -- may be explained by the use of a boat shocker in 2000, a sampling technique which was not used in 1981.

During the past decade, IBI methods have been used to evaluate fish communities at several sites in both the Nolichucky River and its tributaries (Table B7). Seven of the nine IBI scores for the site at NRM 8.5 (Site 1) fell in the good category (48-52), including all scores calculated since 1993. Both the 1997 and 2000 scores for the site at NRM 60.5 (Site 5) also fell in the good category, while the two scores for NRM 89 showed improvement from good in 1997 to good/excellent in 2000. Scores for several sites on the streams in North Carolina that flow into the Nolichucky River

have shown similar improvements, generally from the fair category in earlier years to the good category in more recent years.

These observations are in stark contrast to the remarks made of aquatic life in upper portion of the Nolichucky drainage in 1969, when 30 miles of the North Toe River from Spruce Pine to Kona, NC, were referred to as a "biological desert" due to pollution from feldspar, mica, and kaolin mining (TVA 1971). Also at that time, the Nolichucky River entered Tennessee "in a biologically degraded condition," and the stream bed from the state line to Nolichucky Reservoir was "blanketed with feldspar, mica, and sand" which "greatly reduced the abundance of fish and fish food organisms in the river" (TVA 1971).

Significantly improved water quality conditions, based on 1987 Tennessee Wildlife Resources Agency (TWRA) fish surveys, were subsequently documented (Schacher 1990). Improvements noted were increased species diversity, increased sport fish abundance, and the presence of several endangered or threatened aquatic species downstream from Nolichucky Dam. A total of 51 fish species were collected from two sites (RM15.5 and RM 77, combined), which was more than double the diversity noted in 1959 surveys (Mullican et al. 1960). Smallmouth bass fisheries were reported both below Nolichucky Dam and in the river upstream from Nolichucky Reservoir (Schacher 1990).

A more recent TWRA investigation reports much improved water quality in the Nolichucky River, supporting one of east Tennessee's better warmwater sport fisheries (TWRA 1999). All three black bass species (*Micropterus*), rock bass (*Ambloplites rupestris*), and muskellunge (*Esox masquinongy*) provide fishermen excellent angling opportunities throughout the flowing portion of the river. Spotted bass (*M. punctulatus*) was the most abundant of the black basses. Smallmouth bass (*M. dolomieu*) was collected at 28 of 31 sampling locations between the state line (NRM 99.1) and just below Enka Dam (NRM 7.6). Two of the three sites without smallmouth bass were within Nolichucky Reservoir. Rock bass was found at 25 sites but was missing from all four sampling sites within Nolichucky Reservoir. Largemouth bass (*M. salmoides*) was more common in the lower, more sluggish portion of the river. TWRA reports increased recognition of the river's sport fishery in recent years.

SUMMARY

The results of this survey and available older information suggest that aquatic life in the Nolichucky River is recovering from past abuses. As the industrial and domestic wastes and the historical sources of the sand and sediment have been brought under control, aquatic communities have rebounded to reasonably good conditions at the present time. These communities, however, apparently have not been able to recover to their full potential because of residual sediment in the river bed and continuing local sedimentation and other non-point source problems, primarily of agricultural origin, entering the main river from certain tributaries.

LITERATURE CITED

- Ahlstedt, S.A. 1986. Cumberlandian Mollusk Conservation Program, Activity 1: Mussel Distribution Surveys. Tennessee Valley Authority, Office of Natural Resources and Economic Development, Knoxville, Tennessee. 125p.
- Barr, W. C., S. A. Ahlstedt, G. D. Hickman, and D. M. Hill. 1986. Cumberlandian Mollusk Conservation Program, Activity 8: Analysis of macrofauna factors. Tennessee Valley Authority, Office of Natural Resources and Economic Development, Knoxville, Tennessee. 96p.
- Carter, B. D., C. E. Williams, and R. D. Bivens. 1999. Warmwater stream fisheries report, Region IV, 1998, Tennessee Wildlife Resources Agency fisheries report 99-5. 101 p.
- Etnier, D.A. and W.C. Starnes. 1993. The fishes of Tennessee. University of Tennessee Press, Knoxville. 681 p.
- Karr, J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6(6):21-27.
- Kerans, B.L. and J.R. Karr. 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecological Applications. 4(4): 768-785.
- Mullican, H. N., R. M. Sinclair, and B. G. Isom. 1960. Part I: Survey of the aquatic biota of the Nolichucky River in the State of Tennessee. Reprinted 1973. Tennessee Stream Pollution Control Board, Tennessee Department of Public Health, Nashville, Tennessee. 28p. plus appendices.
- Schacher, W. H. 1990. An evaluation of nonpoint source pollutants on the Nolichucky River and its tributaries. 44p. <u>in</u> Fisheries habitat protection project, Region IV, annual report, FY 1988-89. Tennessee Wildlife Resources Agency. Talbott, TN.
- Tennessee Department of Public Health. 1977. Biological assessment and inventory, chemical grab sampling, Nolichucky River, Flat Creek, Nylon Branch, Lowland, Hamblen County, Tennessee. Intensive survey, Knoxville Basin Office, Tennessee Department of Public Health. 9p.
- Tennessee Valley Authority 1971. Water quality management plan for the French Broad River watershed -- Nolichucky subbasin - first draft. TVA, Water Quality Branch. Chattanooga, Tennessee. 69p.
- Tennessee Valley Authority 1972. Environmental Statement: Rehabilitation of the Nolichucky Project. TVA-OHES-EIS-72-2.

- Tennessee Valley Authority. 1994. Tennessee valley reservoir and stream quality - 1993, Summary of vital signs and use suitability monitoring. Volumes I and 2. TVA, Resource Group, Water Management. Chattanooga, Tennessee. 200p.
- Ward, C. 1960. The fishes of the Nolichucky River, a contribution to a pollution survey. Special Report, Tennessee Game and Fish Commission, Nashville, Tennessee. 28 p.

Table B1. Listing of fish, benthic macroinvertebrate, and mussel sampling sites on the Nolichucky River sampled in 2000, including sampling dates and locality information.

						Mu	ssel Sites	Fis	h and Benth	ic Sites
Site Name	NRM	County	USGS Quad.	Latitude	Longitude	Site	Date	Site	Date S	ampled
						No.	Sampled	No.	Fish	Benthics
Thomas Island	8.5	Hamblen/ Cocke	Springvale	36.134288	-83.201196	1	14-Jun-00	1	19-Jun-00	19-Jun-00
Beech Bottoms Island	11.4	Hamblen/ Cocke	Springvale	36.143485	-83.177975	2	14-Jun-00	-	-	-
Lick Creek Island	16.0	Hamblen/ Cocke	Springvale	36.170611	-83.168244	3	14-Jun-00	-	-	-
Hale Bridge	27.9	Greene	Parrotsville	36.098432	-83.052498	4	13-Jun-00	2	15-Jun-00	16-May-00
Linebaugh Bend	35.4	Greene	Cedar Creek	36.067922	-82.976526	5	12-Jun-00	-	-	-
Island at Old 411 Crossing	36.9	Greene	Cedar Creek	36.068585	-82.961740	6	12-Jun-00	-	-	-
Upstream of Jones Is.	39.5	Greene	Cedar Creek	36.071471	-82.920764	7	12-Jun-00	-	-	-
Allen Bridge	42.1	Greene	Cedar Creek	36.060167	-82.907918	8	12-Jun-00	3	8-Jun-00	16-May-00
Bird Bridge	50.6	Greene	Davy Crockett Lake	36.088640	-82.821221	9	13-Jun-00	4	9-Jun-00	15-May-00
TN 107 Bridge	60.6	Greene	Chuckey	36.156546	-82.725494	10	13-Jun-00	5	12-May-00	15-May-00

Table B2.	Taxonomic list of benthic macroinvertebrates found in quantitative
	and qualitative samples collected in the Nolichucky River, 2000.

		Sit	e 1	Sit	e 2	Sit	e 3	Site 4		Site	9.5
CLASS		Tho	mas	Ha		AI	en	Bird		TN 2	107
ORDER		Isla	and	Brid	dae	Bri	dae	Bridge	•	Brid	ae
FAMILY		RM	8.5	RM	27.7	RM	42.1	RM 50.	6	RM 6	50.5
GENUS	SPECIES	QUAN	QUAL	QUAN	QUAL	QUAN	QUAL	QUAN Q	UAL	QUAN	QUAL
NEMATODA		5				2				2	
HYDROZOA											
HYDROIDA											
HYDRIDAE											
HYDRA	AMERICANA						1				
TURBELLARIA											
TRICLADIDA											
PI ANARIIDAE											
DUGESIA	TIGRINA	53	1				4				1
		00	•								•
		1			1						
	SOWEDBY	2				5					
		3				5			4		
	HOFFMEISTERI	05			4		~		1		
TUBIFICIDAE		25	•	4-	1	20	2		1	0.5	
LUMBRICIDAE		10	6	45	4	48	4			35	1
NAIDIDAE		1		1			2			23	
NAIS	BEHNINGI			_			2			41	
NAIS	BRETSCHERI			9		11	8			98	
NAIS	COMMUNIS			10		21	23		3	50	
NAIS	SP.	1		17	6					10	
SLAVINA	APPENDICULATA	1		7	2				2		
STYLARIA	LACUSTRIS								8	1	2
LUMBRICULIDA											
LUMBRICULIDAE			3		1						
BRANCHIOBDELLIDA					13		1				
HIRUDINEA							13				
RHYNCHOBDELLIDA											
GLOSSIPHONIIDAE			1								
CRUSTACEA											
ISOPODA											
ASELLIDAE											
LIRCEUS	SP.	1	1		1		7				
AMPHIPODA	_	5									
CRANGONYCTIDAE		Ŭ									
CRANGONYX	SP						4				
DECAPODA											
CAMBARIDAE				1		12	1				2
ORCONECTES	SD	2	1		1	12	1				2
	51.	2			1		1				
ARGOLIDAL	CD		4								
ARGULUS	3F.		1							4	
USTRACODA										1	
PLECOPTERA											
PERLIDAE	0.017.17.				~						
AGNETINA	CAPITATA			4	3						
LEUCTRIDAE											
LEUCTRA	SP.									1	
PERLIDAE											
PERLESTA	PLACIDA						1				
PTERONARCYIDAE											
PTERONARCYS	DORSATA		1		1						

		Sit	te 1	Sit	e 2	Sit	e 3	Sit	e 4	Sit	e <u>5</u>
CLASS		Tho	mas	Ha	ale	Al	en	Bi	ird	TN	107
ORDER		Isl	and	Bri	dge	Bri	dge	Bri	dge	Brid	dge
FAMILY		RM	18.5	RM	27.7	RM	42.1	RM	50.6	RM	60.5
GENUS	SPECIES	QUAN	QUAL								
ODONATA											
AESHNIDAE											
BOYERIA	VINOSA		1		1		2		1		1
CALOPTERYGIDAE											
CALOPTERYX	SP.						2		2		
HETAERINA	SP.	4	1		1						1
COENAGRIONIDAE					3		3				
ARGIA	SP.	1	2		1		3		6		2
ENALLAGMA	SP.								4		2
GOMPHIDAE		1		11	2	1			1		
DROMOGOMPHUS	SP.						2				
GOMPHUS	SP.	3	2			3	3		1		1
HAGENIUS	BREVISTYLUS				1				1		1
PROGOMPHUS	OBSCURUS								2		
CORDULIIDAE											
MACROMIA	SP.		1		1		4		5		2
NEUROCORDULIA	MOLESTA		-		1		-		3		_
FPHEMEROPTERA					•				Ū		
BAFTIDAE											
ACENTRELLA	AMPLA	98	3	61	24	60	34		1	227	30
BAETIDAE	/ ב/ (23	Ũ	0.	- ·	00	01		6	1	00
BAFTIS	FLAV/ISTRIGA	20							0	1	
BAETIS		10		6		1					
BAETIS	SD	12	4	7	2	3	5		7	27	5
	SD	12	-	'	2	5	1		'	21	5
			1		1		1				
	SD.		1		1		2				
	Эг.						3				
	CD	70	1	1			4				
	Эг.	12	I				1				
	CD						2				1
	ог. СП						2				1
	37. CD	57	2	4.4	10					10	2
	Эг.	57	3	44	10					10	
	с р		I				4				
	32.						I				
POLYMITARCTIDAE			4								
	LEUKON		1								
ISONYCHIIDAE	0.0	47	0			10	-				
	5P.	47	2	9	4	13	5		1	1	1
HEPTAGENIIDAE	0.0	26		6				1			
	SP.	1					0				
STENACRON		6	4				2				
STENACRON	SP.						3				
STENONEMA	MEDIOPUNCIATUM	197	8	123	1/	162	20		2	3	11
STENONEMA	MODESTUM	4	3	67	13	12	2		_		
STENONEMA	SP.	81	3	41		1	2		2		1
TRICORYTHIDAE											
TRICORYTHODES	SP.	25	5								
HEMIPTERA											
NEPIDAE											
RANATRA	SP.						1				
VELIIDAE											1
RHAGOVELIA	OBESA				1		1				
TRICHOPTERA											
GLOSSOSOMATIDAE											
AGAPETUS	SP.	1									
BRACHYCENTRIDAE											

	SIT	<u>e 1</u>	Sit	te 2	Sit	te 3	<u>Sit</u>	e 4	Site	e <u>5</u>
CLASS	Tho	mas	H	ale	AI	len	В	ird	TN	107
ORDER	Isl	and	Bri	dge	Bri	dge	Bri	dge	Brid	lge
						42.1		0.00		
BRACHYCENTRUS SP	20AN		QUAN	QUAL 3	QUAN 2		QUAN	QUAL 3	QUAN	QUAL
	21	4		5	2	1		5		
				1		2		1		
HYDROPSYCHIDAE	636		58	1	25	2	4	3	60	
CERATOPSYCHE MOROSA	000		00		6	2	-	U	00	
CERATOPSYCHE SP			105	10	105	5	1		16	4
CHELIMATOPSYCHE SP	1817	7	414	16	380	19		9	390	21
HYDROPSYCHE PHAI FRATA	257	5	-11-	10	000	10		0	000	21
HYDROPSYCHE SP.	299	Ū	7	2	2	6			11	
HYDROPSYCHE VENULARIS			-	_	_	÷				1
HYDROPTILIDAE			2		3	4				
HYDROPTILA SP.	2		16			5				
LEUCOTRICHIA SP.										2
LEPTOCERIDAE										
OECETIS SP.						1				4
TRIAENODES SP.						2				2
PSYCHOMYIIDAE										
LYPE DIVERSA		3								
PSYCHOMYIA SP.					1					
POLYCENTROPODIDAE										
NEURECLIPSIS SP.										1
UENOIDAE										
NEOPHYLAX SP.						1				
MEGALOPTERA										
CORYDALIDAE										
CORYDALUS CORNUTUS	8	1	32	6	8	2			2	2
SIALIDAE	0	4								
	2	I								
PETROPHILA SP		1			3	3			21	2
DIPTERA					Ũ	Ũ				-
CERATOPOGONIDAE										
BEZZIA SP.		1								
BLEPHARICERIDAE										
BLEPHARICERA SP.			2							1
CHIRONOMIDAE	67	2	158	11	269	5		3	360	3
CARDIOCLADIUS OBSCURUS	6	5	651	7	107	5			73	3
BRILLIA FLAVIFRONS							1	1		1
CHIRONOMUS SP.		1				1				2
CLADOTANYTARSUS SP.					8				25	
CONCHAPELOPIA SP.						_		1		
CRICOTOPUS BICINCTUS	2	1	61	11	45	3		4	57	1
CRICOTOPUS TREMULUS GR.	19		149	11	728	16	2	1	628	1
CRICOTOPUS SP.	19	1	314		362	10			444	4.0
		0	293	2	129	6	2	3	309	13
	1	2	40	1						
	0		10		23	1			2	
	2	4	220		270	2			3	
	32	I	23U	1	210				1	
	3		14	I	51					
			12		5					
ORTHOCI ADIUS SP			80	2	19		3		48	
PARAKIEFFERIELLA			5	- 1	2		Ĭ		4	1
PARAMETRIOCNEMUS LUNDBECKI			-	-	1			1	1	-
PHAENOPSECTRA SP.		3	94		13	3	3		19	1

CLASS Thomas Hale Balage Brid			Site	<u>e 1</u>	<u>Sit</u>	<u>e 2</u>	Sit	<u>te 3</u>	Sit	<u>e 4</u>	Site	<u>e 5</u>
ONDERATY PRIME	CLASS		Thor	nas	Ha	ale	Al	len	B	ird		107 Igo
GENUS SPECIES OUAN OUAL QUAN QUAL QUAN QUAL QUAN QUAL QUAN			ISI2 RM	ana 85	BII	age 27 7	BI	age 42 1	BI	age 50.6	Brid RM (ige 30 5
POLYPEDILUM CONVICTUM 609 52 5 7 28 5 POLYPEDILUM HALTERALE 14 1 1 3 1 37 POLYPEDILUM HALTERALE 14 1 1 3 1 37 PSEUDCHRONOMUS SP. 26 20 14 2 1 34 PSEUDCHRONOMUS SP. 29 14 2 1 6 1 RHEOTANTARSUS SP. 2 52 7 4 2 1 6 1 STENOCHRONOMUS SP. 2 52 7 4 2 2 1 TANTARSUS SP. 2 52 7 4 2 2 1 THENEMANINIMIA SP. 57 24 1 2 2	GENUS	SPECIES	QUAN	QUAL	QUAN	QUAL	QUAN	QUAL	QUAN	QUAL	QUAN	QUAL
POLYPEDILUM FALLAX 5 Image: Stress of the stress of th	POLYPEDILUM	CONVICTUM	509		52		5				28	5
POLYPEDILUM HALTERALE 14 1 - 3 1 POLYPEDILUM SP. 20 11 3 34 34 PSEUDOCLAIRONGMUS SP. 29 14 - 2 1 34 RHEOCRICOTOPUS ROBACKI 29 14 - 2 1 3 - 2 1 RHEOCRICATOPUS ROBACKI CLAVIGER - 1 1 6 1 ROBACKIA DEMEUEREI - - 1 <td>POLYPEDILUM</td> <td>FALLAX</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	POLYPEDILUM	FALLAX	5									
POLYPEDILUM ILLINCENSE 26 20 11 3 37 PSECTOCALABUS SP. 25 1 34 37 PRECORCIADUS SP. 451 2 385 11 28 4 6 152 3 ROBACKIA DEMEUBEREI 2 1	POLYPEDILUM	HALTERALE	14			1			3	1		
PSECTROCLAIUS SP. 25 29 14 20 34 RHEOCRICOTOPUS ROBACKI 29 14 2 1 28 1 28 1 28 1 28 1 28 1 28 1	POLYPEDILUM	ILLINOENSE	26		20		11	3			37	
PSEUDOCHIRONOMUS SP. 29 14	PSECTROCLADIUS	SP.			25						34	
RHEOCRICOTOPUS ROBACKI 451 2 1385 11 20 4 26 152 3 ROBACKIA CLAVIGER ROBACKIA CLAVIGER 1 6 152 3 ROBACKIA DEMELJEREI - 1 1 1 1 - 2 1 1 1 - 2 1 1 1 1 - 2 1	PSEUDOCHIRONOMUS	SP.			29		14					
RHEDIANYIARSUS SP. 451 2 1385 11 280 4 6 1 52 3 ROBACKIA DEMULEREI S 1	RHEOCRICOTOPUS	ROBACKI		-						2		1
ROBACKIA DEMELJEREI Image: Construct of the second	RHEUTANYTARSUS	SP.	451	2	1385	11	280	4		6	152	3
NDBACKIA DEPRIZEREI Image: Construction of the co	ROBACKIA								28	1	6	4
STENCCHIRONOMUS SP. 2 52 7 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 2 3 1 <th1< th=""> 1 1</th1<>	SMITTIA								1		0	1
SYNORTHOOLADIUS SEMIVIRENS 2 52 7 4 2 1 2 1 TANYTARSUS SP. 379 187 2 120 9 1 2 243 4 THENEMANNIELA XENA 15 1 21 6 1	STENOCHIRONOMUS	SP	2					1	'		1	
TANYTARSUS SP. 379 167 2 120 9 1 2 243 4 THIENEMANNIKLLA XENA 15 1 21 6 1 1 2 243 4 THIENEMANNIKLLA SP. 5 24 1 1 2 24 1 1 2 24 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1	SYNORTHOCIADIUS	SEMIVIRENS	2		52	7	4	2			2	1
THENEMANNIELLA XENA 15 1 21 6 1	TANYTARSUS	SP.	379		187	2	120	9	1	2	243	4
THENEMANNIMIYIA SP. 5 24 1 1 TRIBELOS SP. 278 9 1 2 XENOCHIRONOMUS XENOLABIS 1 1 1 2 HEMERODROMIA SP. 31 1 1 1 1 PROTOPLASA FITCHII 11 2 2 1 10 SIMULIDAE 186 80 13 44 7 2 46 3 PRATOPLASA FITCHI 11 2 2 100 1 200 8 COLEOPTERA SP. 186 80 13 44 7 2 46 3 PRAPLEA SP. 1 137 6 199 10 1 200 8 COLEOPTERA SP. 1 2 2 2 1 1 MCRONYCHUS GLABRATUS 1 2 22 2 1 1 MCRONY	THIENEMANNIELLA	XENA	15	1	21	6		1	1	-	2.0	1
TRIBELOS SP. 278 24 1 2 TVETENIA SP. 278 9 1 2 EMPIDIDAE 1 1 1 2 EMPIDIDAE 11 1 1 1 1 HEMERODROMIA SP. 31 11 2 2 SIMULIDAE FITCHII 11 2 2 10 SIMULIDAE SP. 186 80 13 44 7 2 46 3 PROTOPLASA FITCHII 11 2 2 10 3 3 44 7 2 46 3 SIMULIDAE SP. 186 80 13 44 7 2 46 3 TIPULDAE FITPULDAE 1 1 2 2 1 2 2 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1	THIENEMANNIMYIA	SP.	5									
TVETENIA SP. 278 9 1 22 XENOCARRONOMUS XENOLABIS 1	TRIBELOS	SP.			24							
XENOCHIRONOMUS XENOLABIS I <thi< th=""> I I</thi<>	TVETENIA	SP.	278		9			1				
EMPIDIDAE 1 1 1 1 HEMERODROMIA SP. 31 1 1 2 2 PROTOPLASA FITCHII 11 2 2 10 SIMULIDAE SP. 186 80 13 44 7 2 46 3 PLEIDAE PARAPLEA SP. 186 80 13 44 7 2 46 3 TIPULIDAE SP. 187 6 199 10 1 200 8 COLEOPTERA SP. 1 1 2 2 1 2 1 1 2 200 8 COLEOPTERA SP. 1 1 2 2 1 1 2 2 1	XENOCHIRONOMUS	XENOLABIS									2	
HEMERODROMIA SP. 31 1 1 1 1 1 TANYDERIDAE PROTOPLASA FITCHII 11 2 2 10 SIMULIDAE 4 1 10 10 10 SIMULIDAE 4 1 10 2 46 3 PARAPLEA SP. 186 80 13 44 7 2 46 3 ANTOCHA SP. 186 137 6 199 10 1 200 8 COLEOPTERA FIPULUA SP. 137 6 199 10 1 200 8 COLEOPTERA FIPULUA SP. 1 2 2 1 1 1 1 10 1 200 8 1	EMPIDIDAE						1					
TANYDERIDAE PROTOPLASA FITCHII 11 2 2 SIMULIDAE 4 1 10 SIMULIDAE 4 1 10 SIMULIDAE 4 1 10 PLEIDAE 9 13 44 7 2 46 3 PARAPLEA SP. 11 2 2 2 2 2 TIPULIDAE ANTOCHA SP. 137 6 199 10 1 200 8 COLEOPTERA PPILODACTYLIDAE 11 2 2 1 1 200 8 ANCYTARSUS BICOLOR 1 1 2 2 1 1 2 1 1 1 200 8 DUBIRAPHIA SP. 1 1 2 22 2 1 <td>HEMERODROMIA</td> <td>SP.</td> <td>31</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	HEMERODROMIA	SP.	31		1						1	
PROTOPLASA FITCHII 11 2 2 10 SIMULIUM SP. 186 80 13 44 7 2 46 3 PARAPLEA SP. 186 80 13 44 7 2 46 3 PARAPLEA SP. 137 6 199 10 1 200 8 TIPULIDAE SP. 137 6 199 10 1 200 8 COLCOPTERA SP. 1 1 2 2 1 1 200 8 PHLODACTYLIDAE ANCHYTARSUS BICOLOR 1 1 2 22 2 1 1 ANCYONYX VARIEGATUS 1 2 22 2 1 1 MICROONYCHUS GLABRATUS 1 2 22 2 1 1 MICROONYCHUS SP. 549 12 299 14 9 1 1 1 BEROSUS SP. 2 1 3 3 3	TANYDERIDAE							-				
SIMULIDAE PICEIDAE	PROTOPLASA	FITCHII			11		2	2			10	
SINULUM SP. 166 60 13 44 7 2 46 3 PARAPLEA SP. I Image: Second Se		<u>ср</u>	100		4	10	1	7		2	10	2
PARAPLEA SP. 1 2 TIPULIDAE SP. 137 6 199 10 1 200 8 ANTOCHA SP. 1 1 2 1 1 200 8 COLEOPTERA SP. 1 1 2 1 1 200 8 PTILODACTYLIDAE ANCHYTARSUS BICOLOR 1 1 2 1		56.	100		80	13	44	/		2	40	3
TIPULIDAE ANTOCHA SP. TIPULA SP. COLEOPTERA PTILODACTYLIDAE ANCHYTARSUS BICOLOR ELMIDAE ANCYRONYX VARIEGATUS DUBIRAPHIA SP. ANCYRONYX VARIEGATUS ANCORONYCHUS GLABRATUS DUBIRAPHIA SP. ANCRONYCHUS GLABRATUS DUBIRAPHIA SP. TI MACRONYCHUS GLABRATUS SP. STENELMIS SP. STENELMIS SP. SP. STENELMIS SP. SP. DINEUTUS SP. DINEUTUS SP. DINEUTUS SP. SP. DINEUTUS SP. DINEUTUS SP. SP. DINEUTUS SP. DINEUTUS SP. SP. DINEUTUS SP. DINEUTUS SP. DINEUTUS SP. SP. DINEUTUS SP. DINEUTUS SP. DINEUTUS SP. DINEUTUS SP. DINEUTUS SP. DINEUTUS SP. DINEUTUS SP. SP. DINEUTUS SP. DINEUTUS SP. DINEUT		SP									2	
ANTOCHA SP. IPULA SP. COLEOPTERA PTILODACTYLIDAE ANCHYTARSUS BICOLOR ELMIDAE ANCYRONYX VARIEGATUS DUBIRAPHIA SP. TI MACRONYCHUS GLABRATUS DUBIRAPHIA SP. TI MACRONYCHUS GLABRATUS DUBIRAPHIA SP. TI PROMORESIA SP. STENELMIS SP. STENELMIS SP. STENELMIS SP. GYRINUS SP. DINEUTUS SP. GYRINUS SP. CAMPACHYTAPUS LILUS SP. DINEUTUS SP. GYRINUS SP. COLEOPTIC LIDAE HELICHUS LITHOPHILUS PSEPHENUS HERRICKI GASTROPODA MESOGASTROPODA MESOGASTROPODA MESOGASTROPODA MESOGASTROPODA DINEUTUS SP. CAMPELOMA DECISUM PLEUROCERIDAE LITHASIA VIVIPARIDAE CAMPELOMA DECISUM PLEUROCERIDAE LEPTOXIS PRAEROSA LITHASIA VERUCOSA 14 MCCONCENT ANDOCHA 137 6 199 10 1 137 6 199 10 1 1 1 1 1 1 1 1 1 1 1 1 1		01.									2	
TIPULA SP. COLEOPTERA PTILODACTYLIDAE ANCHYTARSUS BICOLOR ELMIDAE ANCYRONYX VARIEGATUS DUBIRAPHIA SP. MACRONYCHUS GLABRATUS 1 2 22 2 1 MICROCYLLOEPUS PUSILLUS 2 1 PROMORESIA SP. STENELMIS SP. SP. GYRINUS SP. DINEUTUS SP. GYRINUS SP. DINEUTUS SP. DINEUTUS SP. ARCHYTARSUS BASALIS HELICHUS BASALIS HELICHUS HERRICKI 8 1 2 2 1 1 1 1 HYDROPHILIDAE MERCOCOL DINEUTUS SP. DRYOPIDAE HELICHUS BASALIS HERRICKI 8 1 2 2 1 1 1 1 DINEUTUS SP. DRYOPIDAE HELICHUS BASALIS HERRICKI 8 1 2 2 1 1 1 DINEUTUS SP. DRYOPIDAE HELICHUS BASALIS HERRICKI 8 1 2 2 1 1 1 1 HYDROPHILIDAE PSEPHENUS HERRICKI 8 1 2 2 1 1 1 DINEUTUS BASALIS HERRICKI 8 1 2 1 1 DINEUTUS ILITHOPHILUS PROMORESIA 1 1 1 DINEUTUS ILITHOPHILUS 1 1 1 HELICHUS HERRICKI 1 1 1 DINEUTUS ILITHOPHILUS 1 1 1 HERRICKI 1 1 1 DINEUTUS 1 1 1 1 HERRICKI 1 1 1 DINEUTUS 1 1 1 1 DINEUTUS 1 1 1 1 DINEUTUS 1 1 1 1 HERRICKI 1 1 1 DINEUTUS 1 1 1 1 DINEUTUS 1 1 1 1 DINEUTUS 1 1 1 1 DINEUTUS 1 1 DINEUTUS 1 1 1 1 DINEUTUS 1 1 DINEUTUS 1 1 DINEUTUS 1 1 HERRICKI 1 1 1 DINEUTUS 1 1 HERRICKI 1 1 1 DINEUTUS 1 1 HERRICKI 1 1 1 DINEUTUS 1 1 DINEUTU	ANTOCHA	SP.			137	6	199	10	1		200	8
COLEOPTERA PTILODACTYLIDAE ANCHYTARSUSBICOLORIIIPTILODACTYLIDAE ANCYRONYXBICOLOR111ANCYRONYXVARIEGATUS12222DUBIRAPHIASP.12222MICROCYLLOEPUSPUSILLUS2111PROMORESIASP.549122991491BEROSUSSP.5491229914911GYRINIDAE GYRINIDAE11111DINEUTUSSP.213326GYRINUSSP.21111HELICHUSBASALIS HERICKI1141PSEPHENIDAE PSEPHENIDAE PSEPHENIDAE CAMPELOMABERICKI81221GASTROPODA VIVIPARIDAE CAMPELOMADECISUM13341PLEUROCERIDAE LEPTOXISPRAEROSA17933141	TIPULA	SP.				1		2				Ū
PTILODACTYLIDAE ANCHYTARSUSBICOLOR11ELMIDAE111ANCYRONYXVARIEGATUS11DUBIRAPHIASP.11MACRONYCHUSGLABRATUS12PROMORESIASP.11STENELMISSP.54912PROMORESIASP.11BEROSUSSP.11GYRINIDAE11DINEUTUSSP.21GYRINUSSP.21BEROSUSSP.11BEROSUSSP.21GYRINUSSP.11HELICHUSBASALIS11HELICHUSLITHOPHILUS14PSEPHENUGHERRICKI81GASTROPODAFRAEROSA1793VIVIPARIDAEFRAEROSA1793PLEUROCERIDAELEPTOXISPRAEROSA14LITHASIAVERRUCOSA141	COLEOPTERA	-										
ANCHYTARSUSBICOLORIIIIANCYRONYXVARIEGATUSIIIIDUBIRAPHIASP.1IIIIMACRONYCHUSGLABRATUS12222IMICROCYLLOEPUSPUSILLUS21IIIPROMORESIASP.549122991491IHYDROPHILIDAEIIIIIIIBEROSUSSP.21IIIIGYRINIDAEIIIIIIIDRYOPIDAEIITHOPHILUSIIIIIHELICHUSLITHOPHILUSIIIIIPSEPHENIDAEIITHOPHILUSIIIIIPSEPHENIDAEIITHOPHILUSIIIIIPSEPHENIDAEIITHOPHILUSIIIIIPSEPHENIDAEIITHOPHILUSIIIIIPLEUROCERIDAEIIIIIIPLEUROCERIDAEIIIIIILITHASIAVERRUCOSA14IIII	PTILODACTYLIDAE											
ELMIDAEVARIEGATUSIIIIANCYRONYXVARIEGATUS122221DUBIRAPHIASP.122221MACRONYCHUSGLABRATUS122221MICROCYLLOEPUSPUSILLUS2111PROMORESIASP.5491229914911STENELMISSP.11111BEROSUSSP.11111GYRINIDAE111111DINEUTUSSP.213326GYRINUSSP.211411HELICHUSBASALIS11411HELICHUSLITHOPHILUS11411PSEPHENUDAE113141PSEPHENUSHERRICKI812211MESOGASTROPODA1331411VIVIPARIDAE7331411PLEUROCERIDAE1414111LITHASIAVERRUCOSA143411	ANCHYTARSUS	BICOLOR				1						
ANCYRONYXVARIEGATUS1111111DUBIRAPHIASP.1222211MACRONYCHUSGLABRATUS12122221MICROCYLLOEPUSPUSILLUS21111PROMORESIASP.5491229914911HYDROPHILIDAE111111BEROSUSSP.11111DINEUTUSSP.21-3326GYRINUDAE-1-1-11DINEUTUSSP.21-3326GYRINUSSP.21-1-11DRYOPIDAE1-1-1HELICHUSLITHOPHILUS1-1-PSEPHENUSHERRICKI81221GASTROPODAVIVIPARIDAECAMPELOMADECISUM1331411-LIPTOXISPRAEROSA17933141-1-<	ELMIDAE											
DUBIRAPHIASP.12222MACRONYCHUSGLABRATUS1211MICROCYLLOEPUSPUSILLUS2111PROMORESIASP.2111STENELMISSP.549122991491HYDROPHILIDAE11111BEROSUSSP.1111GYRINUSSP.21-332GYRINUSSP.21-332DRYOPIDAE1-11HELICHUSBASALIS141PSEPHENIDAE141PSEPHENIDAE1-1PSEOGASTROPODA1-VIVIPARIDAE1-PLEUROCERIDAE1-LITHASIAVERRUCOSA14-1-1	ANCYRONYX	VARIEGATUS										1
MACRONYCHUSGLABRATUS122221MICROCYLLOEPUSPUSILLUS2111PROMORESIASP.5491229914911HYDROPHILIDAE111111BEROSUSSP.11111GYRINIDAE111111DINEUTUSSP.213326GYRINUSSP.211111HELICHUSBASALIS11111PSEPHENIDAE11HOPHILUS11411PSEOPHENUSHERRICKI812211GASTROPODA1313111PLEUROCERIDAEPRAEROSA179331411LITHASIAVERRUCOSA14141111	DUBIRAPHIA	SP.		1		-		_				
MICROCYLLOEPUSPUSILLOS211PROMORESIASP.5491229914911STENELMISSP.111111HYDROPHILIDAE111111BEROSUSSP.11111GYRINIDAE111111DINEUTUSSP.213326GYRINUSSP.211311DRYOPIDAE111111HELICHUSLITHOPHILUS1141PSEPHENUDAE112211PSEPHENUSHERRICKI812211GASTROPODA1313111PLEUROCERIDAE131311PLEUROCERIDAE1331411LITHASIAVERRUCOSA141411	MACRONYCHUS	GLABRATUS		1		2	22	2				1
PROMORESIASP.5491229914911STENELMISSP.11111HYDROPHILIDAE11111BEROSUSSP.213326GYRINIDAE113326DINEUTUSSP.213326GYRINUSSP.21111DRYOPIDAE11111HELICHUSLITHOPHILUS1141PSEPHENIDAE1141PSEPHENUSHERRICKI81221GASTROPODA13141VIVIPARIDAE13111PLEUROCERIDAE11311LITHASIAVERRUCOSA14141	MICROCYLLOEPUS	PUSILLUS	2	1								
STENELWISSF.3491229914911HYDROPHILIDAE111111BEROSUSSP.213326GYRINIDAEDINEUTUSSP.213326DRYOPIDAEHELICHUSBASALIS1111HELICHUSLITHOPHILUS1411PSEPHENIDAEPSEPHENIDAE1411GASTROPODAHERRICKI8122141GASTROPODAHERRICKI13411PLEUROCERIDAE1311311PLEUROCERIDAE1131111LITHASIAVERRUCOSA1414111		5P. 6D	E 40	10	200	1.4	0	1				1
IndicateSP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.GYRINUAEDINEUTUSSP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.DRYOPIDAEImage: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.DRYOPIDAEImage: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.PSEPHENIDAEImage: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.Image: SP.GASTROPODAImage: SP.Image: SP. <t< td=""><td></td><td>JF.</td><td>549</td><td>12</td><td>299</td><td>14</td><td>9</td><td>I</td><td></td><td></td><td></td><td>1</td></t<>		JF.	549	12	299	14	9	I				1
GYRINIDAEImage: Construction of the second seco	BEROSUS	SP		1								1
DINEUTUSSP.213326GYRINUSSP.111111DRYOPIDAEHELICHUSBASALIS1141HELICHUSLITHOPHILUS1141PSEPHENIDAEPSEPHENUSHERRICKI81221GASTROPODAMESOGASTROPODA131VIVIPARIDAE-13-1-PLEUROCERIDAE-13-11LEPTOXISPRAEROSA1793314-1	GYRINIDAE											·
GYRINUSSP.DRYOPIDAEHELICHUSBASALISHELICHUSLITHOPHILUSPSEPHENIDAEPSEPHENUSHERRICKIBASATROPODAVIVIPARIDAECAMPELOMADECISUMPLEUROCERIDAELEPTOXISPRAEROSA179331414111<	DINEUTUS	SP.	2	1			3	3		2		6
DRYOPIDAEHELICHUSBASALIS11HELICHUSLITHOPHILUS1141PSEPHENIDAE812211PSEPHENUSHERRICKI812211GASTROPODA8122111VIVIPARIDAE131311PLEUROCERIDAE113111LIPTOXISPRAEROSA17933141	GYRINUS	SP.					_	1				
HELICHUSBASALIS111HELICHUSLITHOPHILUS1141PSEPHENIDAEPSEPHENUSHERRICKI812211GASTROPODAMESOGASTROPODA8122111VIVIPARIDAE733411PLEUROCERIDAE113111LEPTOXISPRAEROSA17933141	DRYOPIDAE											
HELICHUSLITHOPHILUS141PSEPHENIDAEPSEPHENUSHERRICKI81221GASTROPODAMESOGASTROPODA12211VIVIPARIDAE131311CAMPELOMADECISUM1311PLEUROCERIDAE113111LIEPTOXISPRAEROSA17933141	HELICHUS	BASALIS								1		
PSEPHENIDAE PSEPHENUS HERRICKI 8 1 2 2 1 GASTROPODA MESOGASTROPODA VIVIPARIDAE CAMPELOMA DECISUM 1 3 PLEUROCERIDAE LEPTOXIS PRAEROSA 179 3 31 4 1	HELICHUS	LITHOPHILUS				1		4				1
PSEPHENUSHERRICKI81221GASTROPODAMESOGASTROPODAMESOGASTROPODA131VIVIPARIDAEADECISUM1313PLEUROCERIDAEADECISUM131LIPTOXISPRAEROSA17933141	PSEPHENIDAE											
GASTROPODA MESOGASTROPODA VIVIPARIDAE 1 CAMPELOMA DECISUM PLEUROCERIDAE 1 LEPTOXIS PRAEROSA 14 1	PSEPHENUS	HERRICKI	8	1	2	2	1					
MESOGASTROPODA VIVIPARIDAE VIVIPARIDAE 1 CAMPELOMA DECISUM PLEUROCERIDAE 1 LEPTOXIS PRAEROSA 14 1	GASTROPODA											
VIVIPARIDAE CAMPELOMA DECISUM PLEUROCERIDAE LEPTOXIS PRAEROSA LITHASIA VERBUCOSA	MESOGASTROPODA											
PLEUROCERIDAE I 3 LEPTOXIS PRAEROSA 179 LITHASIA VERRUCOSA 14				4		2						
LEPTOXIS PRAEROSA 179 3 31 4 1 LITHASIA VERRUCOSA 14		DECISOIVI		1		3						
LITHASIA VERRUCOSA 14		PRAFROSA	179	3	31	4					1	
	LITHASIA	VERRUCOSA	14	Ŭ		•						

		Sit	<u>e 1</u>	Sit	e 2	Site 3		<u>Sit</u>	e 4	Sit	e <u>5</u>
CLASS		Tho	mas	Ha	ale	All	en	Bi	ird	TN	107
ORDER		Isla	and	Brid	dge	Brid	dge	Brid	dge	Brid	dge
FAMILY		RM	8.5	RM	<u>27.7</u>	RM	42.1	RM	<u>50.6</u>	<u>RM 60.5</u>	
GENUS	SPECIES	QUAN	QUAL	QUAN	QUAL	QUAN	QUAL	QUAN	QUAL	QUAN	QUAL
PLEUROCERA	UNCIALIS	74	3	3	3	2	8				
BASOMMATOPHORA											
ANCYLIDAE											
FERRISSIA	RIVULARIS	53	1	2							
PHYSIDAE											
PHYSELLA	SP.		1			1	5		1		3
BIVALVIA											
UNIONOIDA											
UNIONIDAE											
ELLIPTIO	DILATATA	2									
LAMPSILIS	FASCIOLA				1						
VENEROIDA											
CORBICULIDAE											
CORBICULA	FLUMINEA	206	2	92	1	41	1	145	2	13	1
TOTAL TAXA PER SITE		89		89		97		49		86	
TOTAL TAXA (ALL SITES)	164										

		ç	Scoring Criteria				Scores		
Metric	Gear	1	ັ 3	5	Site 1 RM 8.5	Site 2 RM 27.9	Site 3 RM 42.1	Site 4 RM 50.6	Site 5 RM60.6
Taxa richness	Surber or Hess*	< 9	9-17	=>18	4.67	5.00	5.00	1.33	5.00
Occurrence of intolerant mollusk taxa	Combined**	0	1-2	=> 3	3.00	3.00	1.00	1.00	1.00
Number of mayfly taxa	Surber or Hess	< 3	3-5	=> 6	4.33	3.67	2.33	1.00	1.67
Number of stonefly taxa	Surber or Hess	< 2		=>2	1.00	1.00	1.00	1.00	1.00
Number of caddisfly taxa	Surber or Hess	< 2	2-3	=>4	3.67	4.00	4.00	1.33	3.00
Number of EPT taxa	Combined	<14	14-24	=>25	5.00	3.00	5.00	1.00	3.00
Percent individuals as oligochaetes	Surber or Hess	=> 0.05	0.01-0.049	<0.01	4.00	4.33	3.67	5.00	3.00
Percent individuals of two dominant taxa	Surber or Hess	=> 0.75	0.5-0.749	<0.5	4.67	5.00	5.00	1.67	4.33
Percent individuals as omnivores and scavengers	Surber or Hess	=>0.9	0.6-0.89	<0.6	3.67	3.67	3.00	1.33	2.67
Percent individuals as collectors/filterers	Surber or Hess	=>0.5 =>0.6	0.2-0.49 0.3-5.9	<0.2 <0.3	2.33	2.67	2.33	1.33	1.67
Percent individuals as predators	Surber or Hess	=<0.04	-	>0.04	1.00	1.00	1.00	1.00	1.00
Total abundance in quantitative samples***	Surber	=<40	40-160 or >600	161-600	3.67	4.00	3.67	1.67	3.67
BIBI Score					41.00	40.33	37.00	18.67	31.00
Rating					F	F	F	Р	F

Table B3. Listing of Benthic Index of Biotic Integrity (BIBI) metrics, scoring criteria, scores, and BIBI values for benthic invertebrate community surveys in the Nolichucky River, 2000.

* Metric score is the average of individual Hess and Surber samples ** Includes qualitative sample. *** Low scores are given for both high and low values.

Rating Abbreviations: F - fair, P - poor

[Cite Numera	4	0	0	4	-	<u> </u>	7			10	
	Site Number River Mile Locations	85	114	3 16	4 27.9	5 35 4	6 36.9	39.5	8 42 1	9 50 6	60.6	Totals
		0.0										. etaie
Common Name	Scientific Name											Í
spike	Elliptio dilatata	55	26	94	85							260
purple wartyback	Cyclonaias tuberculata	28	15	127	46	12	4	5	1			238
pocketbook	Lampsilis ovata	6	1	21	26	36	5	11	5			111
wavyrayed lampmussel	Lampsilis fasciola	5	6	8	12	10	8	8	11			68
kidneyshell	Ptychobranchus fasciolaris	6	1	6	20	2	1					36
creeper	Strophitus undulatus	1		3	11	13	2					30
pimpleback	Quadrula pustulosa	3	1	1	6	5	1	2	1			20
pink heelsplitter	Potamilus alatus				4	2	1	6				13
elktoe	Alasmidonta marginata				1	3	1	2	5			12
Tennessee pigtoe	Fusconaia barnesiana	3		1		1						5
black sandshell	Ligumia recta			1			1					Í
elephant ear	Elliptio crassidens				1			1				Í
fragile papershell	Leptodea fragilis		1			1						Í
giant floater	Pyganodon grandis							1			1	Í
longsolid	Fusconaia subrotunda							1			1	Í
mountain creekshell	Villosa vanuxemensis						1			1		Í
mucket	Actinonaias ligamentina			1			1					Í
oyster mussel	Epioblasma capsaeformis		1			1						
spectaclecase	Cumberlandia monodonta		1			1						Í
threeridge	Amblema plicata					1			1			
Number of species		8	9	10	10	10	9	8	5	0	0	20
Total mussels		107	53	263	212	85	24	36	23	0	0	803
Effort (person-hours)		6	6	5	9	6	8.25	7.8	10.1	2	10	70.1
Catch per unit effort		17.8	8.8	52.6	23. 6	14.2	2.9	4.6	2.3	0	0	11.5

Table B4. Numbers of each native mussel species collected at 10 survey sites in the Nolichucky River, June 12-14, 2000.

Table B5. Number of each fish species collected in fish community samples in the Nolichucky River, 2000.

Common Name	Scientific Name	Site 1 RM 8.5	Site 2 RM 27.9	Site 3 RM 42.1	Site 4 RM 50.6	Site 5 RM 60.6
Lampreys Ohio lamprey American brook lamprey	Petromyzontidae Ichthyomyzon bdellium Lampetra appendix	3 -	5	1 1	- 4	2 3
Gars Longnose gar	Lepisosteidae Lepisosteus osseus	-	3	6	-	-
Herrings Gizzard shad	Clupeidae Dorosoma cepedianum	1	9	15	5	5
Minnows Largescale stoneroller Whitetail shiner Spotfin shiner Common carp Bigeye chub Striped shiner Warpaint shiner River chub Tennessee shiner Rosyface shiner Sand shiner Mirror shiner Telescope shiner Mimic shiner Stargazing minnow Bluntnose minnow Bullhead minnow Creek chub	Cyprinidae Campostoma oligolepis Cyprinella galactura C. spiloptera Cyprinus carpio Hybopsis amblops Luxilus chrysocephalus L. coccogenis Nocomis micropogon N. leuciodus N. rubellus N. stramineus N. spectrunculus N. spectrunculus N. telescopus N. volucellus Phenacobius uranops Pimephales notatus P. vigilax Semotilus atromaculatus	16 - 257 - 1 2 - 6 - 423 - 6 3 255 - 6 1 -	12 20 54 4 1 30 - 14 3 219 - 21 144 1 - - 21 144 1 -	8 5 346 1 - 576 - 1 195 1 1 5 4	1 27 487 1 - - 49 - 49 - 486 - 87 9 -	33 21 113 - - 7 - 1 61 28 2 47 321 - 82 2 -
Suckers River carpsucker Quillback Highfin carpsucker Blue sucker Northern hog sucker Smallmouth buffalo Silver redhorse River redhorse Black redhorse Golden redhorse	Catostomidae Carpiodes carpio C. cyprinus C. velifer Cycleptus elongatus Hypentelium nigricans Ictiobus bubalus Moxostoma anisurum M. carinatum M. duquesnei M. erythrurum	5 - - 10 4 3 17 19 16	- - 11 13 33 6 40	1 6 - 13 23 5 93 31 25	- 13 - 2 - 2 27 6 13	- 2 7 - 8 - 18 25 26

Common Name	Scientific Name	Site 1 RM	Site 2 RM	Site 3 RM	Site 4 RM	Site 5 RM
Common Mame		8.5	27.9	42.1	50.6	60.6
Catfishes Yellow bullhead Channel catfish Mountain madtom Flathead catfish	Ictaluridae Ameiurus natalis Ictalurus punctatus Noturus eleutherus Pylodictis olivaris	- - 205 2	2 3 2 3	1 4 - 2	- 1 -	1 10 - -
Livebearers Western mosquitofish	Poeciliidae Gambusia affinis	-	3	-	17	-
Sculpins Banded sculpin	Cottidae Cottus carolinae	2	4	-	-	26
Sunfishes Rock bass Redbreast sunfish Green sunfish Warmouth Bluegill Redear sunfish hybrid sunfish Smallmouth bass Spotted bass Largemouth bass Black crappie	Centrarchiae Ambloplites rupestris Lepomis auritus L. cyanellus L. gulosus L. macrochirus L. microlophus hybrid Lepomis spp. Micropterus dolomieu M. punctulatus M. salmoides Pomoxis nigromaculatus	6 19 - 5 1 8 2 1 -	45 54 - 10 - 13 6 -	21 23 - 8 1 - 16 10 - -	1 41 - 9 8 2 - 3 7 5 4	19 31 1 1 18 - 13 12 - 2
Perches Sharphead darter Greenside darter Bluebreast darter Blueside darter Redline darter Snubnose darter Wounded darter Banded darter Tangerine darter Logperch Gilt darter Sauger	Percidae Etheostoma acuticeps E. blennioides E. camurum E. jessiae E. rufilineatum E. simoterum E. vulneratum E. zonale Percina aurantiaca P. caprodes P. evides Stizostedion canadense	81 30 23 1 377 5 - 52 - 1 13 -	26 34 17 - 23 1 7 - 1 -	6 27 20 1 - 14 1 3 2 1		92 6 174 - 7 - 1 - 1 14 -
Drums Freshwater drum	Sciaenidae Aplodinotus grunniens	-	-	2	-	-
Number collected	E.	1969	908	1559	1319	1251
Species encountered	Overall 62	40	40	46	29	40

Metric	c Scoring Criteria		Site	e 1 8 5	Site 2 RM27.9		Site 3 BM 42.1		Site 4 RM 50.6		Site 5 RM 60.6		
Wethe	1	3	5	Obs.	Score	Obs.	Score	Obs.	Score	Obs.	Score	Obs.	Score
Number of native fish species	<21	21-42	>42	39	3	38	3	44	5	26	3	40	3
Number of darter species	<4	4-8	>8	9	5	7	3	10	5	0	1	7	3
Number of sunfish species (less <i>Micropterus</i>)	<2	2	>2	4	5	2	3	3	5	5	5	5	5
Number of sucker species	<4	4-8	>8	8	3	8	3	10	5	7	3	8	3
Number of intolerant	<3	3-5	>5	7	5	6	5	6	5	2	1	4	3
Percent tolerant individuals	>20%	10-20%	<10%	13.3%	3	11.6%	3	23.9%	1	38.7%	1	9.5%	5
Percent omnivores and stonerollers	>20%	10-20%	<10%	2.0%	5	9.9%	5	4.2%	5	8.2%	5	11.0%	3
Percent specialized insectivores	<25%	25-50%	>50%	77.8%	5	55.1%	5	54.7%	5	41.3%	3	60.3%	5
Percent piscivores	<2%	2-4%	>4%	1.5%	1	7.4%	5	3.6%	3	1.5%	1	3.6%	3
Catch rate (per 300 sq. ft.)	<7	7-15	>15	36	5	21	5	34	5	35	5	33	5
Percent hybrids	>1	Tr1%	0%	0.1%	3	0%	5	0%	5	0%	5	0%	5
Percent of individuals with anomalies	>5%	2-5%	<2%	0.1%	5	0.6%	5	0.4%	5	0.2%	5	1.7%	5
IBI Score					48		50		54		38		48
Rating					G		G		G/E		P/F		G

Table B6. Listing of Index of Biotic Integrity (IBI) metrics, scoring criteria, observations, scores and IBI values
for fish community surveys on the Nolichucky River, 2000.

Abbreviations: E - excellent, F - fair, G - good, P - poor

Stream and Site	1000	4004	1000	1000	100.4	4000	1007	4000	1000	
Location (RM)	1990	1991	1992	1993	1994	1996	1997	1998	1999	2000
Nolichucky River 8.5 (Site 1) 27.9 (Site 2) 42.1 (Site 3)	42 (F)	48 (G)	40 (F)	48 (G)	52 (G)	52 (G)	48 (G)	50 (G)		48* (G) 50* (G) 54* (G)
50.6 (Site 4) 60.5 (Site 5) 89.0							48 (G) 44 (F)			38* (F/P) 48* (G) 56 (G/E)
97.5 106.8	48 (G)						50 (G)			
North Toe River 7 15.5 23 27.6 42.4			46 (F/G)				48 (G) 40 (F) 40 (F)		56 (G/E) 50 (G) 50 (G)	
South Toe River 6.9			44 (F)				48 (G)		48 (G)	
Cane River 5 10.5 21			44 (F)				46 (F/G) 40 (F) 44 (F)			48 (G) 50 (G)

Table B7. Index of Biotic Integrity (IBI) scores and ratings for fish community samples collected in the Nolichucky River and its source streams in North Carolina, 1990-2000 (This study and TVA unpublished data).

* - conducted as a part of this study

Abbreviations: E - excellent, F - fair, G - good, P - poor

3 (G) 0 (G) Table B8. Numbers of selected benthic fish species encountered at Nolichucky River Mile 8.5 during various sampling visits, 1990-2000. (This study and TVA unpublished data)

Common name	1990	1991	1992	1993	1994	1996	1997	2000
Blotched chub	9	15	5	5	12	32	29	-
Fatlips minnow	-	-	-	-	-	16	Q*	-
Stargazing minnow	-	-	1	4	3	-	Q*	-
Logperch	1	-	-	-	-	1	-	1
Gilt darter	-	1	-	-	1	8	7	13

*Observed only during qualitative sampling.

Table B9. Condition of various Nolichucky River tributaries based on IBIanalysis of fish communities. (TVA unpublished data)

General Location and Tributary Name	Mouth at Nolichucky River Mile	IBI Date	IBI Score	IBI Rating
Below Nolichucky Dam	4.0	5/14/97	30	P
Bent Creek	14.7	4/28/97	32	P
Lick Creek	16.0	6/10/97	38	P/F
Little Chucky Creek	23.5	5/6/97	36	P/F
Meadow Creek	41.9	4/3/97	40	F
Cove Creek	43.4	4/2/97	34	Р
In Nolichucky Reservoir Richland Creek Camp Creek	47.3 55.9	5/8/00 5/7/97	28 32	P P
Above Nolichucky				
Reservoir				
Horse Creek	62.4	5/15/97	28	Р
Sinking Creek	64.6	4/7/00	34	Р
Big Limestone Creek	68.6	5/19/97	40	F
Little Limestone Creek	72.6	5/30/00	44	F
North Indian Creek	94.2	6/20/97	44	F
South Indian Creek	95.6	3/30/99	48	G

Abbreviations: F - fair, G - good, P - poor.

Table B10.	Presence and estimated abundance of fish species	encountered during
	boat electrofishing in two stretches of the Nolichuck	y River.

			Enka Dam to	Nolichucky
		Below	Douglas	Dam to Allen
Common Name	Scientific Name	Enka Dam	Reservoir	Bridge
		3/28/2000	4/20/2000	4/21/2000
Lampreys	Petromyzontidae			
Ohio lamprey	Ichthyomyzon bdellium	С		
Gars	Lepisosteidae			
Longnose gar	Lepisosteus osseus	С	С	А
Spotted gar	Lepisosteus oculatus	R	R	
Herrings	Clupeidae			
Gizzard shad	Dorosoma cepedianum	А	А	А
Minnows	Cyprinidae			
Common carp	Cyprinus carpio	А	А	А
Striped shiner	Luxilus chrysocephalus	R		
River chub	Nocomis micropogon	R		
Suckers	Catostomidae			
River carpsucker	Carpiodes carpio	А	С	А
Quillback	Carpiodes cyprinus	А	С	С
Highfin carpsucker	Carpiodes velifer		R	С
Blue sucker	Cycleptus elongatus			R
Northern hog sucker	Hypentelium nigricans	А	С	С
Smallmouth buffalo	Ictiobus bubalus	A	С	А
Black buffalo	Ictiobus niger	С	С	С
Silver redhorse	Moxostoma anisurum	А	С	С
River redhorse	Moxostoma carinatum	A	С	А
Black redhorse	Moxostoma duquesnei	A	С	А
Golden redhorse	Moxostoma erythrurum	A	С	С
Shorthead redhorse	Moxostoma macrolepidotum	A	С	A
Catfishes	Ictaluridae			
Channel catfish	Ictalurus punctatus	A	С	С
Pikes	Esocidae			
Muskellunge	Esox masquinongy	R		*
Temperate basses	Moronidae			
White bass	Morone chrysops	С	A	
Striped bass	Morone saxatilis		R	
Sunfishes	Centrarchiae			
Rock bass	Ambloplites rupestris	С		
Bluegill	Lepomis macrochirus	С	С	С
Smallmouth bass	Micropterus dolomieu	С	С	С
Spotted bass	Micropterus punctulatus	С	С	С
Largemouth bass	Micropterus salmoides	С	С	R
White crappie	Pomoxis annularis	R	R	R
Black crappie	Pomoxis nigromaculatus	R	R	
Perches	Percidae		_	
Sauger	Stizostedion canadense		R	
Drums	Sciaenidae		c	_
Freshwater drum	Aplodinotus grunniens	C	C	R
	Total species observed	28	26	22

Abundance abbreviations: A - abundant, C - common, R - rare.

* Most likely muskellunge habitat could not be sampled without disturbing fishermen.