

MAPGEN in Surface Operations

- MAPGEN: First Artificial Intelligence (AI) based Decision- Support
a spacectatt on the surface of another
a spac
planet
Spirit:
Spirit: Nominal science operations from Sol 15
All planned activities from 16/17
executed on board
- Return to nominal science operations

Opportunity:
Informal use begins Sol 4/5
Commanded activities executed on
board nominally
$-\begin{gathered}\text { Nominal science operations tomorrow (Feb } \\ \left.6^{+1}\right)\end{gathered}$
Dual rover support use of MAPGEN in full
swing Continues to be for MER Extended Ops Conservative ROI to NASA: 25% extra
science returned per Sol, over a manual science returned per Sol, ov

- Approx $\$ 1.4$ Million/Sol

(1 Sol $=1$ Martian Day $=24 \mathrm{hrs} 37 \mathrm{mins}$ Earth time)
©

Robust Task Execution for Long Traverse Rovers

aSTEP LITA Atacama Field Campaign (Sep-Oct

2004)

- Zöe rover with life detecting instruments
- On-board planning and autonomous navigation over long distances
Rover executive results (preliminary, telemetry still being analyzed)
- Total hours of operations (cumulative over several runs):
 17 hours
- Total distance covered: 16 km
- Longest autonomous traverse: $3.3 \mathrm{Km} \quad 2 \mathrm{~h} 29 \mathrm{~m}$
- "Roughest traverse": 1h 2 m with 19 faults recovered
- Faults addressed:
- Navigator "confused"
- Internal processes failed
- Early and late arrival at waypoint

Autominder: Assistive Technology for Cognition

To assist people with memory impairment:

- Model their daily activities, including temporal
constraints on their performance
-Monitor the execution of those activities
-Decide whether and when to issue reminders
(40) \mathbf{F}^{7}

Soccer!

20. 7

Issues in Temporal Planning and mos Execution

- Representation: What kinds of temporal information can we represent?
- Planning
- Generation: How do we construct a temporal plan?
- Execution
- Dispatch: When should the steps in the plan be executed? How do we maintain the state of the plan, given that time is passing (and events are occurring)?
- Focus Today: Constraint-Based Models

Constraint Satisfaction Problems

- <V,D,E>
$-\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}\right\}$: set of constrained variables
$-D=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$: domains for each variable
$-E=$ relations on a subset of V : constraints,
representing the legal (partial) solutions

High Level Outline

1. Time representations in problem solving and execution
2. Planning with time (plan generation and multiagent collaborative planning)
3. Resource reasoning

Temporal Constraints on an Action

$\mathrm{t}_{1} \geq 4 \quad(A$ starts at or after 4$)$
$\mathrm{t}_{2} \leq 12 \quad(A$ ends at or before 12)
$3 \leq \mathrm{t}_{2}-\mathrm{t}_{1} \leq 6 \quad(A$'s dur. between 3 and 6$)$

Temporal Constraints on Breakfast

Goal: Prepare coffee and toast.
Have them ready within 2 minutes of each other.
Brew coffee for 3-5 minutes;
Toast bread for 2-4 minutes.
AAMAS-2005 Tutorial • T4-3

- Luke Hunsberger

Temporal Constraints on Airline Travel

Goal: Fly from Boston to Seattle:

- Leave Boston after 4 p.m. on Aug. 8;
- Return to Boston before 10 p.m., Aug. 18;
- Away from Boston no more than 7 days;
- In Seattle at least 5 days; and
- Return flight lasts no more than 7 hours.

Simple Temporal Network (STN)*

A Simple Temporal Network (STN) is a pair, $\mathcal{S}=(\mathcal{T}, \mathcal{C})$, where:

- \mathcal{T} is a set of time-point variables:

$$
\left\{\mathrm{t}_{0}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}-1}\right\} \text { and }
$$

- \mathcal{C} is a set of binary constraints, each of the form: $\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \delta$, where δ is a real number.
* (Dechter, Meiri, \& Pearl 1991)
AAMAS-2005 Tutorial • T4-5 • Luke Hunsberger

Solutions, Consistency, Equivalence

- A solution to an STN $\mathcal{S}=(\mathcal{T}, \mathcal{C})$ is a complete set of variable assignments:
$\left\{\mathrm{t}_{0}=\mathrm{w}_{0}, \mathrm{t}_{1}=\mathrm{w}_{1}, \ldots, \mathrm{t}_{\mathrm{n}-1}=\mathrm{w}_{\mathrm{n}-1}\right\}$ that satisfies all the constraints in \mathcal{C}.
- An STN with at least one solution is called consistent.
- STNs with identical solution sets are called equivalent.

The Zero Time-Point Variable

- Frequently, it is useful to fix one of the timepoint variables to 0 . That "variable" will often be called z.
- Binary constraints involving z are equivalent to unary constraints:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{j}}-\mathrm{z} \leq 5 \quad \Longleftrightarrow \quad \mathrm{t}_{\mathrm{j}} \leq 5 \\
& \mathrm{z}-\mathrm{t}_{\mathrm{i}} \leq-3 \Longleftrightarrow \mathrm{t}_{\mathrm{i}} \geq 3
\end{aligned}
$$

AAMAS-2005 Tutorial • T4-7 • Luke Hunsberger

STN for Constrained Action

$\mathcal{T}=\left\{\mathrm{z}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\}$, where: $\begin{aligned} \mathrm{z} & =0 \\ \mathrm{t}_{1} & =\text { Start of } A \\ \mathrm{t}_{2} & =\text { End of } A\end{aligned}$
$\mathcal{C}=\left(\begin{array}{ll}\mathrm{t}_{2}-\mathrm{t}_{1} \leq \quad 6 & \text { (Dur. less than 6) } \\ \mathrm{t}_{1}-\mathrm{t}_{2} \leq-3 & \text { (Dur. greater than 3) } \\ \mathrm{z}-\mathrm{t}_{1} \leq-4 & (\text { A starts after 4) } \\ \mathrm{t}_{2}-\mathrm{z} \leq 12 & (\text { A ends before 12) }\end{array}\right)$
AAMAS-2005 Tutorial • T4-8 • Luke Hunsberger

STN for Breakfast
$\mathcal{T}=\left\{T_{R}, C_{S}, C_{E}, T_{S}, T_{E}\right\}$, where: $T_{R}=0 \quad$ (Reference Time-point) $C_{S} / C_{E}=$ Start/End of Coffee Brewing $\mathrm{T}_{\mathrm{S}} / \mathrm{T}_{\mathrm{E}}=$ Start/End of Bread Toasting
AAMAS-2005 Tutorial - T4-9 - Lune Husber

STN for Constrained Air Travel

$\mathcal{T}=\left\{z, t_{1}, t_{2}, t_{3}, t_{4}\right\}, \quad$ where $z=$ Noon, Aug. 8. $\mathcal{C}=$
$\left(z-t_{1} \leq-4 \quad\right.$ (Lv Bos after 4 p.m., 8/8)
$\mathrm{t}_{4}-\mathrm{z} \leq 250$ (Av Bos by 10 p.m., 8/18)
$\mathrm{t}_{4}-\mathrm{t}_{1} \leq 168 \quad$ (Gone no more than 7 days)
$\mathrm{t}_{2}-\mathrm{t}_{3} \leq-120 \quad$ (In Seattle at least 5 days)
$\mathrm{t}_{4}-\mathrm{t}_{3} \leq 7$ (Return flight less than 7 hrs)

Graphical Representation of an STN*

The Distance Graph for an STN, $\mathcal{S}=(\mathcal{T}, \mathcal{C})$, is a graph, $\mathcal{G}=(\mathcal{T}, \mathcal{E})$, where:

- Time-points in \mathcal{S} correspond to nodes in \mathcal{G}.
- Constraints in \mathcal{C} correspond to edges in \mathcal{E} :

* (Dechter, Meiri, \& Pearl 1991)
AAMAS-2005 Tutorial • T4-11 • Luke Hunsberger

Distance Graph for Action Scenario

$$
\mathcal{T}=\left\{\mathrm{z}, \mathrm{t}_{1}, \mathrm{t}_{2}\right\} \quad \mathcal{C}=\left\{\begin{array}{rr}
\mathrm{t}_{2}-\mathrm{t}_{1} \leq 6 \\
\mathrm{t}_{1}-\mathrm{t}_{2} \leq & -3 \\
\mathrm{z}-\mathrm{t}_{1} \leq & -4 \\
\mathrm{t}_{2}-\mathrm{z} \leq & 12
\end{array}\right\}
$$

[^0]
Distance Graph for Breakfast

$$
\left\{\begin{array}{ll}
C_{E}-C_{S} \leq 5, & C_{S}-C_{E} \leq-3 \\
T_{E}-T_{S} \leq 4, & T_{S}-T_{E} \leq-2 \\
C_{E}-T_{E} \leq 2, & T_{E}-C_{E} \leq 2 \\
T_{R}-C_{S} \leq 0, & T_{R}-T_{S} \leq 0
\end{array}\right\}
$$

AAMAS-2005 Tutorial

Implicit Constraints

Explicit constraints in \mathcal{C} can combine to form implicit constraints:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} & \leq 30 \\
\mathrm{t}_{\mathrm{k}}-\mathrm{t}_{\mathrm{j}} & \leq 40 \\
\mathrm{t}_{\mathrm{k}}-\mathrm{t}_{\mathrm{i}} & \leq 70
\end{aligned}
$$

AAMAS-2005 Tutorial • T4-15 • Luke Hunsberger

Implicit Constraints as Paths

- Chains of implicit constraints in an STN correspond to paths in its Distance Graph.
- Stronger/strongest implicit constraints correspond to shorter/shortest paths.

[^1]
Distance Matrix *

The Distance Matrix for an STN, $\mathcal{S}=(\mathcal{T}, \mathcal{C})$, is a matrix \mathcal{D} defined by:

$$
\begin{aligned}
\mathcal{D}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)= & \text { Length of Shortest Path } \\
& \text { from } \mathrm{t}_{\mathrm{i}} \text { to } \mathrm{t}_{\mathrm{j}} \text { in the Distance } \\
& \text { Graph for } \mathcal{S}
\end{aligned}
$$

(Dechter, Meiri, \& Pearl 1991)

Distance Matrix for Action Scenario

\mathcal{D}	z	t_{1}	t_{2}
z	0	9	12
t_{1}	-4	0	6
t_{2}	-7	-3	0

AAMAS-2005 Tutorial

- T4 - 19
- Luke Hunsberger
- The strongest implicit constraint on t_{i} and t_{j} in \mathcal{S} is: $\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \mathcal{D}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$
- Abuse of notation: $\mathcal{D}(\mathrm{i}, \mathrm{j})$ instead of $\mathcal{D}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$
- \mathcal{D} is the All-Pairs, Shortest-Path Matrix for the Distance Graph (Cormen, Leiserson, \& Rivest 1990).

Distance Matrix for Breakfast

Distance Matrix for Airline Scenario

\mathcal{D}	z	t_{1}	t_{2}	t_{3}	t_{4}
z	0	130	130	250	250
t_{1}	-4	0	48	168	168
t_{2}	-4	0	0	168	168
t_{3}	-124	-120	-120	0	7
t_{4}	-124	-120	-120	0	0
AAMAS-2005 Tutorial • $\mathrm{T} 4-21 \quad \bullet$ Luke Hunsberger					

Checking Consistency of an STN

Given an STN \mathcal{S} with Distance Graph \mathcal{G} and Distance Matrix \mathcal{D}, the following are equivalent (Dechter, Meiri, \& Pearl 1991):

- \mathcal{S} is consistent.
- Each loop in \mathcal{G} has path length ≥ 0.
- The main diagonal of \mathcal{D} contains only 0 s.

Computing \mathcal{D} from Scratch

Polynomial algorithms for computing the AllPairs, Shortest-Path Matrix (Cormen, Leiserson, \& Rivest 1990):

- Floyd-Warshall Algorithm: $\mathcal{O}\left(n^{3}\right)$
- Johnson's Algorithm: $\mathcal{O}\left(n^{2} \log n+n m\right)$

> AAMAS-2005 Tutorial • T4-23 • Luke Hunsberger

Adding Constraint to Consistent STN

- Given: $\mathcal{S}=(\mathcal{T}, \mathcal{C})$, a consistent STN.
- Adding the new constraint, $\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \delta$, to \mathcal{S} will maintain the consistency of \mathcal{S} iff:

$$
-\mathcal{D}(\mathrm{j}, \mathrm{i}) \leq \delta \quad \text { (i.e., } 0 \leq \mathcal{D}(\mathrm{j}, \mathrm{i})+\delta)
$$

Note: This result is stated in different forms by many authors (Dechter, Meiri, \& Pearl 1991; Demetrescu \& Italiano 2002; Tsamardinos \& Pollack 2003; Hunsberger 2003; Rohnert 1985).

Rigidly Connected Time-Points

For consistent STNs, the following are equivalent:

- $\left(\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}}\right)=\delta$, for some δ.
- $\mathcal{D}(\mathrm{i}, \mathrm{j})+\mathcal{D}(\mathrm{j}, \mathrm{i})=0$
- t_{i} and t_{j} belong to a loop of path-length 0 .

AAMAS-2005 Tutoria

- T4-25
- Luke Hunsberger

Rigidly Connected Time-Points (ctd.)

- t_{i} and t_{j} are said to be rigidly connected if $\mathcal{D}(\mathrm{i}, \mathrm{j})=-\mathcal{D}(\mathrm{j}, \mathrm{i})$.
- A set of time-points that are pairwise rigidly connected form a rigid component.

Note: Many authors consider rigidly connected time-points and rigid components (Tsamardinos, Muscettola, \& Morris 1998; Gerevini, Perini, \& Ricci 1996; Wetprasit \& Sattar 1998).

Examples of Rigid Components

Cyclical representation requires the fewest edges.
AAMAS-2005 Tutorial • T4-27 • Luke Hunsberger

Adding Constraints to Consistent STNs

Result of adding the constraint, $\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \delta$:

Rohnert (1985) distinguishes most of these cases.

Finding a Solution to an STN*

While some time-points in are not rigid with z, Pick some t_{i} not rigidly connected to z.

Pick some $\delta \in\left[-\mathcal{D}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{z}\right), \mathcal{D}\left(\mathrm{z}, \mathrm{t}_{\mathrm{i}}\right)\right]$.
Add the constraint, $\mathrm{t}_{\mathrm{i}}=\delta$

$$
\text { (i.e., } \mathrm{t}_{\mathrm{i}}-\mathrm{z} \leq \delta \text { and } \mathrm{z}-\mathrm{t}_{\mathrm{i}} \leq-\delta \text {). }
$$

* This algorithm derives from Dechter et al. (1991).
AAMAS-2005 Tutorial

Collapsing Rigid Components: Example

Dominated Constraints

An explicit constraint, $\mathrm{c}: \mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \delta$, in an STN \mathcal{S} is said to be dominated in \mathcal{S} if removing c from \mathcal{S} would result in no change to the distance matrix \mathcal{D}.

Note: Tsamardinos (1998) defines a different notion of dominance.
(Tsamardinos, Muscettola, \& Morris 1998; Gerevini, Perini, \& Ricci 1996; Wetprasit \& Sattar 1998).

Dominated Constraints (cont'd.)

If \mathcal{S} is consistent and has no rigid components then:

- If $\mathcal{D}(\mathrm{i}, \mathrm{j})<\delta$, then c is dominated in \mathcal{S}.
- If $\mathcal{D}(\mathrm{i}, \mathrm{j})=\delta$, then c is dominated in \mathcal{S} iff there is some time-point $\mathrm{t}_{\mathrm{k}} \in \mathcal{T}$ such that:
$\delta=\mathcal{D}(\mathrm{i}, \mathrm{k})+\mathcal{D}(\mathrm{k}, \mathrm{j})$.

Undominated Constraints

If \mathcal{S} has no rigid components, then the set of undominated constraints in \mathcal{S} is uniquely defined and represents the fewest constraints in any STN equivalent to \mathcal{S}. (Hunsberger 2002b)

Canonical Form of an STN *

- Convert rigid components to cyclical form.
- Remove all dominated edges from the (unique) non-rigid remainder of the STN.

Computing Dist. Matrix Incrementally

- Incremental algorithms compute changes resulting from adding a single constraint.
- A naïve incremental algorithm can compute such changes in $\mathcal{O}\left(n^{2}\right)$ time.
- Better incremental algorithms based on constraint propagation-still $\mathcal{O}\left(n^{2}\right)$.
AAMAS-2005 Tutorial • T4-37 • Luke Hunsberger

Adding a Constraint to Consistent STN

Given: New constraint $\mathrm{c}: ~ \mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \delta$.

- Case 1: $\delta<-\mathcal{D}(\mathrm{j}, \mathrm{i})$. - Inconsistent!
- Case 2: $\delta \geq \mathcal{D}(\mathrm{i}, \mathrm{j})$. - Redundant!
- Case 3: $\delta \in[-\mathcal{D}(\mathrm{j}, \mathrm{i}), \mathcal{D}(\mathrm{i}, \mathrm{j}))$.
- Adding c would require updating \mathcal{D}.
\Rightarrow Incremental algorithms focus on Case 3.

Naïve Incremental Algorithm

For each entry, $\mathcal{D}(r, s)$,
If $\mathcal{D}(\mathrm{r}, \mathrm{i})+\delta+\mathcal{D}(\mathrm{j}, \mathrm{s})<\mathcal{D}(\mathrm{r}, \mathrm{s})$, then set

$$
\mathcal{D}(\mathrm{r}, \mathrm{~s})=\mathcal{D}(\mathrm{r}, \mathrm{i})+\delta+\mathcal{D}(\mathrm{j}, \mathrm{~s}) .
$$

Constraint Propagation Algorithm*

- Propagate updates to \mathcal{D} along edges in graph.
- Only propagate along tight edges.
(Note: $\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{r}} \leq \delta$ is tight iff $\mathcal{D}(\mathrm{r}, \mathrm{s})=\delta$.)
- Phase I: prop. forward; Phase II: prop. bkwd.
- Checks no more than $k * \Delta$ cells of \mathcal{D}, where: $\Delta=$ number of cells needing updating; and $\mathrm{k}=$ max num edges incident on any node.
* This algorithm is based on the work of several authors (Rohnert 1985; Even \& Gazit 1985; Ramalingam \& Reps 1996).

Propagating Backward

For each t_{ℓ} such that $\mathcal{D}(\mathrm{i}, \ell)$ changed during Forward Propagation, propagate backward from t_{i} :

Here, $\mathcal{D}(\mathrm{h}, \ell)$ needs updating, but not $\mathcal{D}(\mathrm{g}, \ell)$.

Improvements to Incremental Alg.

- Maintain canonical form of STN.
- Only update \mathcal{D} for non-rigid portion of STN.
- Propagate only along undominated edges.
- Case 3.1: $\delta>-\mathcal{D}(\mathrm{j}, \mathrm{i})$. (No new rigidities)
- Case 3.2: $\delta=-\mathcal{D}(\mathrm{j}, \mathrm{i})$. (New rigidity(ies))
AAMAS-2005 Tutorial • T4-43 • Luke Hunsberger

The Gory Details - Case 3.1

Inputs to Prop $_{3.1}$:
$\mathcal{S}=\left(\mathcal{T}, \mathcal{C}^{\mathrm{u}}\right)$, an STN with only undominated constraints.
\mathcal{D}, the distance matrix for \mathcal{S} (an array).
For each $\mathrm{t}_{\mathrm{r}} \in \mathcal{T}, \operatorname{Succs}\left(\mathrm{t}_{\mathrm{r}}\right)=\left\{\left(\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{r}} \leq \delta_{\mathrm{rs}}\right) \in \mathcal{C}^{\mathrm{u}}\right\} \quad$ (a hash-table).
For each $\mathrm{t}_{\mathrm{r}} \in \mathcal{T}, \operatorname{Precs}\left(\mathrm{t}_{\mathrm{r}}\right)=\left\{\left(\mathrm{t}_{\mathrm{r}}-\mathrm{t}_{\mathrm{q}} \leq \delta_{\mathrm{qr}}\right) \in \mathcal{C}^{\mathrm{u}}\right\} \quad$ (a hash-table).
AffectedTPs, an empty hash-table.
EncounteredTPs, an empty hash-table.
$\left(\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \delta\right)$, a new constraint where: $-\mathcal{D}(\mathrm{j}, \mathrm{i})<\delta<\mathcal{D}(\mathrm{i}, \mathrm{j})$.

Note: This algorithm most closely resembles that of Ramalingam and Reps (1996).

The Gory Details - Case 3.1 (cont'd.)

Prop $_{3.1}()$
Set: $\mathcal{D}(\mathrm{i}, \mathrm{j})=\delta$.
Insert t_{j} into AffectedTPs.
$\operatorname{PropFwd}\left(\mathrm{t}_{\mathrm{j}}\right)$, which adds time-points to AffectedTPs.
For each $\mathrm{t}_{\mathrm{v}} \in$ AffectedTPs,
Clear EncounteredTPs hash-table.
$\operatorname{PropBkwd}\left(\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{v}}\right)$.

AAMAS-2005 Tutorial

The Gory Details - Case 3.1 (cont'd.)

$\operatorname{PropBkwd}\left(\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{v}}\right)$, where a path from t_{s} to t_{v} has already been processed and $\mathcal{D}(\mathrm{s}, \mathrm{v})$ has been updated to the value $\mathcal{D}(\mathrm{s}, \mathrm{i})+\delta+\mathcal{D}(\mathrm{j}, \mathrm{v})$.

For each $t_{r} \in \operatorname{Precs}\left(t_{s}\right)$,
 If $\mathrm{t}_{\mathrm{r}} \notin$ EncounteredTPs,

Insert t_{r} into EncounteredTPs
If $\delta_{\mathrm{rs}}+\mathcal{D}(\mathrm{s}, \mathrm{i})=\mathcal{D}(\mathrm{r}, \mathrm{i})$,
If $\delta_{\text {rs }}+\mathcal{D}(\mathrm{s}, \mathrm{i})+\mathcal{D}(\mathrm{i}, \mathrm{v}) \leq \mathcal{D}(\mathrm{r}, \mathrm{v})$,
Remove t_{r} from $\operatorname{Precs}\left(t_{v}\right)$ (if in there)
Remove t_{v} from $\operatorname{Succs}\left(\mathrm{t}_{\mathrm{r}}\right)$ (if in there)
If $\delta_{\mathrm{rs}}+\mathcal{D}(\mathrm{s}, \mathrm{i})+\mathcal{D}(\mathrm{i}, \mathrm{v})<\mathcal{D}(\mathrm{r}, \mathrm{v})$,
Set: $\mathcal{D}(\mathrm{r}, \mathrm{v})=\delta_{\mathrm{rs}}+\mathcal{D}(\mathrm{s}, \mathrm{i})+\mathcal{D}(\mathrm{i}, \mathrm{v})$
PropBkwd $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{v}}\right)$
AAMAS-2005 Tutorial • T4-47 • Luke Hunsberger

Case 3.2: Creating New Rigidity

Adding constraint, $\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq-\mathcal{D}(\mathrm{j}, \mathrm{i})$.

- Determine newly rigid time-points.
- Collapse new rigid component down to two points, using t_{i} as rep. for incoming edges and t_{j} as rep. for outgoing edges.
- Update set \mathcal{C}^{u} of undominated constraints.
- Run Prop 3.1 algorithm.
- Collapse t_{i} and t_{j} into a single point.
AAMAS-2005 Tutorial • T4-48 • Luke Hunsberger

Further Reading

- Demetrescu and Italiano (2001; 2002) consider special cases where each edge can assume a bounded number of values; or where all edge weights are non-negative.
- Ramalingham and Reps (1996) introduce incremental complexity analysis.
- Zaroliagis (2002) discusses incremental and decremental algorithms.

AAMAS-2005 Tutorial

- T4-49
- Luke Hunsberger

Executing a Temporal Network

- To execute a time-point means to assign that time-point to the current moment.
- Goal: Maintain consistency of network while executing its time-points.
- Challenges:

Decisions must be made in real time. Updating \mathcal{D} takes time.

AAMAS-2005 Tutorial • T4-51 • Luke Hunsberger

After executing B at time 5, C must be executed at time 4 (which is already past).

* (Muscettola, Morris, \& Tsamardinos 1998)

Greedy Dispatcher*

While some time-points not yet executed: Wait until some time-point is executable. If more than one, pick one to execute.

Propagate updates only to neighboring time-points (i.e., do no fully update \mathcal{D}).

* (Muscettola, Morris, \& Tsamardinos 1998)

AAMAS-2005 Tutorial

Dispatchability*

- An STN that is guaranteed to be satisfied by Greedy Dispatcher is called dispatchable.
- Any consistent STN can be transformed into an equivalent dispatchable STN.
- Step I: The corresponding All-Pairs graph is equivalent and dispatchable.
- Step II: Remove lower/upper-dominated edges (does not affect dispatchability).
* (Muscettola, Morris, \& Tsamardinos 1998) AAMAS-2005 Tutorial • T4-54 • Luke Hunsberger

Lower and Upper Dominance*

- The negative edge $A C$ is lower-dominated if: $\delta=\phi+\mathcal{D}(B, C)$.
- The non-negative edge $U W$ is upperdominated if: $\delta=\mathcal{D}(U, V)+\phi$.
* (Muscettola, Morris, \& Tsamardinos 1998)

AAMAS-2005 Tutorial • T4-55 • Luke Hunsberger

Collaborative Planning with STNs

The ICDP - in Words

- A group of agents, each with pre-existing commitments subject to temporal constraints
- A new opportunity for group action (a set of tasks also subject to temporal constraints)
- Agents must reason locally and globally about whether to commit (alone and together) to the proposed action.

ICDP Mech. using Combin'I. Auction*

* (Hunsberger \& Grosz 2000; Hunsberger 2002b)

AAMAS-2005 Tutorial • T4-59 • Luke Hunsberger

ICDP Mechanism - in Words

- Agents (reasoning locally) bid on subsets of tasks in group activity: a combinatorial auction (Rassenti, Smith, \& Bulfin 1982).
- Agents include temporal constraints in their bids to protect their pre-existing commitments.
- Global goal: find an awardable set of bids (each task covered by some bid; temporal constraints in bids jointly satisfiable).

Problems to Solve re: ICDP

- Bid Generation:

Select tasks and generate protective temporal constraints

- Winner Determination:

Find an awardable set of bids.

- Post-Auction Coordination:

Deal with temporal dependencies among tasks being done by different agents without requiring excessive communication overhead.

AAMAS-2005 Tutorial • T4-61 • Luke Hunsberger

Bid Generation using STNs

Bid Generation using STNs (cont'd.)

$\mathcal{S}_{\mathrm{B}}=\left(\mathcal{T}_{\mathrm{X}} \cup \mathcal{T}_{\mathrm{Y}}, \mathcal{C}_{\mathrm{X}} \cup \mathcal{C}_{\mathrm{Y}} \cup \mathcal{C}_{\mathrm{Z}}\right) \quad$ includes additional constraints, \mathcal{C}_{Z}, to ensure that tasks done by the agent do not overlap.

Bid Generation using STNs (cont'd.)

\mathcal{D}_{B} : The distance matrix for \mathcal{S}_{B}

$\mathcal{C}_{B}^{\times}=\left\{\mathrm{t}_{\mathrm{j}}-\mathrm{t}_{\mathrm{i}} \leq \mathcal{D}_{\mathrm{B}}(\mathrm{i}, \mathrm{j}) \mid \mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \mathcal{T}_{\mathrm{X}}\right\}$ would suffice (in bid) to protect agent's pre-existing commitments.
AAMAS-2005 Tutorial • T4-64 • Luke Hunsberger

Bid Generation using STNs (cont'd.)

... but necessary to include only edges in canonical form of $\left(\mathcal{T}_{\mathrm{X}}, \mathcal{C}_{\mathrm{B}}^{\mathrm{X}}\right)$ that are stronger than the corresponding edges in $\mathcal{S}_{\mathrm{X}}=\left(\mathcal{T}_{\mathrm{X}}, \mathcal{C}_{\mathrm{X}}\right)$ - i.e., edges for which $\mathcal{D}_{\mathrm{B}}(\mathrm{i}, \mathrm{j})<\mathcal{D}_{\mathrm{x}}(\mathrm{i}, \mathrm{j})$. (Hunsberger 2001)

Winner Determination

- Modify existing WD algorithm (Sandholm 2002) to accommodate temporal constraints.
- Depth-first search in space of partial bid-sets
- Maintain STN, $\left(\mathcal{I}_{X}, \mathcal{C}_{X} \cup \mathcal{C}_{\mathcal{B}}\right)$, containing constraints from proposed activity plus those from bids currently being considered.
- Backtrack if this STN becomes inconsistent.
* (Hunsberger \& Grosz 2000)

Post-Auction Coordination

- Auction yields viable allocation of tasks, but typically results in temporal dependencies among tasks being done by different agents.
- Solution 1: Temporally decouple the task-sets being done by different agents (adds constraints, but no need for subsequent coord'n.).
- Solution 2: Relative Temporal Decoupling (weaker constraints, but requires some subsequent coordination).

AAMAS-2005 Tutorial • T4-67 • Luke Hunsberger

Temporal Decoupling (TD)*

- Goal: Enable agents to operate independently -and hence without communication.
- Method: Add new constraints to ensure mergeable solutions property.
- Will focus on two-agent case, but works for arbitrarily many agents.
(Hunsberger 2002a; 2002b)
AAMAS-2005 Tutorial • T4-68 • Luke Hunsberger

Typical Case for TD Problem

Subnetwork

 for agent G_{R}

- Edge from t_{i} to t_{j} not dominated by a path through z.
- Can fix by strengthening edge from t_{i} to z, or edge from z to t_{j}, or both.
AAMAS-2005 Tutorial • T4-69 • Luke Hunsberger

TD Algorithm*

- Add intra-subnetwork constraints to ensure that each tight, proper, inter-subnetwork constraint is dominated by a path through z .
- Requires processing each such edge only once.
- Afterward, no matter how each agent tightens constraints in its own subnetwork, all intersubnetwork constraints will be satisfied.
(Hunsberger 2002b)

Improvements to TD Algorithm

- When selecting inter-subnetwork edges to work on, and when deciding how much to tighten each intra-subnetwork edge, use heuristics to increase flexibility in resultant decoupled subnetworks.
- Use Iterative Weakening algorithm to ensure minimal temporal decoupling (i.e., one in which any further weakening would foil the decoupling).
AAMAS-2005 Tutorial • T4-71 • Luke Hunsberger

Generating a Non-Minimal Decoupling

Alternative Minimal Decouplings

AAMAS-2005 Tutorial

Typical Case for RTD Problem

Inter-subnetwork path from t_{i} to t_{j} is not dominated by path through z .
AAMAS-2005 Tutorial • T4-75 • Luke Hunsberger

RTD Algorithm*

(1) Replace each tight, proper, inter-subnetwork path by an explicit edge.

(2) Run TD algorithm ignoring $\mathrm{N}^{\text {th }}$ subnetwork.
(Hunsberger 2003; 2002b)
AAMAS-2005 Tutorial • T4-76 • Luke Hunsberger

Lambda Bounds for RTD*

- After RTD, agent controlling $\mathrm{N}^{\text {th }}$ subnetwork is dependent on the rest.
- Must not re-introduce any inter-subnetwork paths that would threaten the RTD. (Requirements captured in Lambda Bounds.)
- Unlike other agents, $\mathrm{N}^{\text {th }}$ agent may add edges linking $\mathrm{N}^{\text {th }}$ subnetwork with other subnetworks.
(Hunsberger 2003; 2002b)
AAMAS-2005 Tutorial • T4-77 • Luke Hunsberger

Other Applications of RTD

- Submitting a bid imposes restrictions on the bidder that are precisely captured by the Lambda Bounds (where $N=2$).
- The RTD algorithm may be recursively applied yielding an arbitrarily complex hierarchy of dependence and independence.
- Hadad et al. (2003) present an alternative approach to temporal reasoning in the context of collaboration.

References

- Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990. Introduction to Algorithms. Cambridge, MA: The MIT Press.
- Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint networks. Artificial Intelligence 49:61-95.
- Demetrescu, C., and Italiano, G. F. 2001. Fully dynamic all pairs shortest paths with real edge weights. In $42 n d$ Annual Symposium on Foundations of Computer Science (FOCS 2001). IEEE Computer Society. 260-267.
- Demetrescu, C., and Italiano, G. 2002. A new approach to dynamic all pairs shortest paths. Technical Report ALCOMFT-TR-02-92, ALCOM-FT. To appear in Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC'03), San Diego, California, June 2003.
- Even, S., and Gazit, H. 1985. Updating distances in dynamic graphs. Methods of Operations Research 49:371-387.
- Gerevini, A.; Perini, A.; and Ricci, F. 1996. Incremental algorithms for managing temporal constraints. Technical Report IRST-9605-07, IRST.
- Hadad, M.; Kraus, S.; Gal, Y.; and Lin, R. 2003. Time reasoning for a collaborative planning agent in a dynamic environtment. Annals of Mathematics and Artificial Intelligence 37(4):331-380.
- Hunsberger, L., and Grosz, B. J. 2000. A combinatorial auction for collaborative planning. In Fourth International Conference on MultiAgent Systems (ICMAS-2000), 151-158. IEEE Computer Society.
- Hunsberger, L. 2001. Generating bids for group-related actions in the context of prior commitments. In Meyer, J.-J. C., and Tambe, M., eds., Intelligent Agents VIII (ATAL-01), volume 2333 of Lecture Notes in Artificial Intelligence. Springer-Verlag.
- Hunsberger, L. 2002a. Algorithms for a temporal decoupling
problem in multi-agent planning. In Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2002).
- Hunsberger, L. 2002b. Group Decision Making and Temporal Reasoning. Ph.D. Dissertation, Harvard University. Available as Harvard Technical Report TR-05-02.
- Hunsberger, L. 2003. Distributing the control of a temporal network among multiple agents. In Proceedings of the Second International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS-03).
- Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Reformulating temporal plans for efficient execution. In Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR-98).
- Ramalingam, G., and Reps, T. 1996. On the computational complexity of dynamic graph problems. Theoretical Computer Science 158:233-277.
- Rassenti, S.; Smith, V.; and Bulfin, R. 1982. A combinatorial auction mechanism for airport time slot allocation. Bell Journal of Economics 13:402-417.
- Rohnert, H. 1985. A dynamization of the all pairs least cost path problem. In Mehlhorn, K., ed., 2nd Symposium of Theoretical Aspects of Computer Science (STACS 85), volume 182 of Lecture Notes in Computer Science. Springer. 279-286.
- Sandholm, T. 2002. An algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence 135:1-54.
- Tsamardinos, I., and Pollack, M. E. 2003. Efficient solution techniques for disjunctive temporal reasoning problems. Artificial Intelligence 151:43-89.
- Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast transformation of temporal plans for efficient execution. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98). Cambridge, MA: The MIT Press. 254-261.
- Tsamardinos, I. 1998. Reformulating temporal plans for efficient execution. Master's thesis, University of Pittsburgh.
- Wetprasit, R., and Sattar, A. 1998. Qualitative and quantitative temporal reasoning with points and durations (an extended abstract). In Fifth International Workshop on Temporal Representation and Reasoning (TIME-98), 69-73.
- Zaroliagis, C. D. 2002. Implementations and experimental studies of dynamic graph algorithms. In Fleischer, R.; Moret, B.; and Meineche-Schmidt, E., eds., Experimental Algorithmics The State of the Art. Springer-Verlag. chapter 11, 229-278.

The Breakfast Plan (Version 2)

Prepare coffee and toast. Have them ready within 2 minutes of each other. Brew coffee for 3-5 minutes; toast bread for 2-4 minutes.

Expressiveness and Uncertainty

- Increasing the expressiveness of the temporal constraints:
- Definition Disjunctive Temporal Problem
- Solving DTPs
- Dispatching DTPs
- Planning with temporal constraints

Real Plans often have Dis Constraints - Typical Plan for an Autominder User		
ACTION	TARGET TIME	Activity disjunct: Watch the news at 10 pm or 11 pm
Start laundry	Before 10 a.m.	
Put clothes in dryer	Within 20 minutes of washer ending	
Fold clothes	Within 20 minutes of dryer ending	
Prepare lunch	Between 11:45 and 12:15	
Eat lunch	At end of prepare lunch	
Check pulse	Between 11:00 and 12:00, and between 3:00 and 4:00	Non-overlap: $\mathrm{L}_{\mathrm{E}}-\mathrm{P}_{\mathrm{S}} \leq 0 \vee$
Depending on pulse, take meds	At end of check pulse	

The Breakfast Plan (Version 3) Morning

Prepare coffee and toast. Have them ready within 2 minutes of each other. Brew coffee for 3-5 minutes; toast bread for 2-4 minutes. Also take a shower for 5-8 minutes, and get dressed, which takes 5 minutes. Be ready to go by 8:20.

Disjunctive Constraints

- Represent non-overlaps (as in our example)
- Can also represent other forms of disjunction
- E.g., take a shower for 5 minutes or a bath for 10 minutes

Disjunctive Temporal Problems

- A set of time points (variables) V and a set of constraints C of the form
$l b_{j i} \leq X_{i}-X_{j} \leq u b_{j i} \vee \ldots \vee l b_{m k} \leq X_{k}-X_{m} \leq u b_{m k}$
- Benefit: Additional expressive power
- Cost: Additional computational expensereasoning is NP-Hard
- True even for binary problems, i.e., constraints have the form

$$
l b_{j i} \leq X-Y \leq u b_{j i} \vee \ldots \vee l b_{m k} \leq X-Y \leq u b_{m k}
$$

DTP Solving Example

- One-Level Approach
- Direct assignment of times to DTP variables.
- Limitations: difficult to deal with infinite domains; produces overconstrained solution
- Two-Level Approach
- Construct a meta-level CSP
- Variables: DTP constraints
- Domains: Disjuncts from DTP constraints.
- Constraints: Implicit, assignment must lead to a consistent component STP
$C_{1}:\left\{c_{11}: y-x \leq 5\right\}$
$C_{2}:\left\{c_{21}: w-y \leq 5\right\} \vee\left\{c_{22}: x-y \leq-10\right\} \vee$
$\left.C_{3}:\left\{c_{31}: y-w \leq-10\right\} \quad c_{1} \leqslant c_{11}: z-y \leq 5\right\}$

Component STP:
$\mathrm{C}_{1} \leftarrow \underset{\mathrm{C}_{3}}{\mathrm{c}_{11}} \leftarrow \mathrm{C}_{2} \leftarrow \mathrm{c}_{31} \leftarrow \mathrm{c}_{23}$,
One exact solution:
$\{\mathrm{x}=0, \mathrm{y}=1, \mathrm{z}=2$,
$\mathrm{w}=12\}$

(190) 下可 (18

Strategies for Efficiency

- Forward checking / incremental forward checking
- Conflict-directed backjumping
- Removal of subsumed variables
- Semantic branching
- No-good learning
- Use efficient SAT solvers for meta-level

Removal of Subsumed Variables

If this assignment to C_{i} is implied by the partial assignment above it, prune the other values for C_{i}

Removal of Subsumed Variables

$C_{1}:\left\{c_{11}: y-x \leq 5\right\}$
$C_{2}:\left\{c_{21}: x-z \leq 5\right\} \vee\left\{c_{22}: w-y \leq-10\right\}$
$\mathrm{C}_{3}:\left\{\mathrm{c}_{31}: \mathrm{y}-\mathrm{z} \leq 15\right\} \vee\left\{\mathrm{c}_{32}: \mathrm{z}-\mathrm{v} \leq 10\right\} \vee \ldots$
$\mathrm{C}_{4}, \mathrm{C}_{5}$, etc.

c_{11} and c_{21} imply c_{31}, so no need to try other values for C_{3} along this branch
$\mathrm{C}_{3} \leftarrow \mathrm{C}_{31}$
(104)

So, how fast?

- Current fastest solver, TSAT++, reports:
$-\sim 10$ seconds to solve problems with
- 35 variables
- ~210 disjunctive constraints (critical region)
- Each with 2 disjuncts

DTP Solving and OR Scheduling Formalisms

Example: Job Shop Scheduling
Resource constraints: more cumbersome with DTPs

DTP Solving and OR Scheduling Formalisms

Example: Arbitrary Disjunction
JSS \& DTP can both express non-overlap constraints
$\mathrm{A}<\mathrm{B} \vee \mathrm{B}<\mathrm{A}$ (binary with intervals (tasks), non-
binary with time points)

Some DTP solvers provide justifications of failure (e.g., minimal sets of inconsistent input constraints) Useful in plan generation

DTP Dispatch Method \#1

- With total control of the execution process:
- Given a DTP, find a consistent component STP S
- Dispatch S using STP dispatch algorithm

A Problem

- Might "miss" a solution
- $\mathrm{X}=2 \vee \mathrm{X}=1$
- $\mathrm{Y}>\mathrm{X}$
- Don't see anything at 1
- See Y at 2

All remaining consistent component STPs are eliminated

DTP Dispatch Method \#3

- Produce information about what can be done - Execution Table
- Specifies what actions are live and enabled (what can be done)
- An event e in a DTP is live iff now is in its time window
- An event e in a DTP is enabled iff it is enabled in at least one consistent component STP
- And what must be done
- Deadline Formula
- Specifies what deadline must be satisfied next (what must be done)

Example

$\mathrm{C}_{1}:\left\{\mathrm{c}_{11}: 5 \leq \mathrm{x}-\mathrm{TR} \leq 10\right\} \vee\left\{\mathrm{c}_{12}: 15 \leq \mathrm{x}-\mathrm{TR} \leq 20\right\}$
$\mathrm{C}_{2}:\left\{\mathrm{c}_{21}: 5 \leq \mathrm{y}-\mathrm{TR} \leq 10\right\} \vee\left\{\mathrm{c}_{22}: 15 \leq \mathrm{y}-\mathrm{TR} \leq 20\right\}$
$C_{3}:\left\{c_{31}: 6 \leq x-y \leq \infty\right\} \vee\left\{c_{32}: 6 \leq y-x \leq \infty\right\}$
$\mathrm{C}_{4}:\left\{\mathrm{c}_{41}: 11 \leq \mathrm{z}-\mathrm{TR} \leq 12\right\} \vee\left\{\mathrm{c}_{42}: 21 \leq \mathrm{z}-\mathrm{TR} \leq 22\right\}$

Consistent Component STPs:

1. STP1: $\mathrm{c}_{11}, \mathrm{c}_{22}, \mathrm{c}_{32}, \mathrm{c}_{41} \quad \mathrm{x}$ before y, z early
2. STP2: $\mathrm{c}_{11}, \mathrm{c}_{22}, \mathrm{c}_{32}, \mathrm{c}_{42} \quad \mathrm{x}$ before y, z late
3. STP3: $\mathrm{c}_{12}, \mathrm{c}_{21}, \mathrm{c}_{31}, \mathrm{c}_{41} \quad \mathrm{y}$ before x, z early
4. STP4: $\mathrm{c}_{12}, \mathrm{c}_{21}, \mathrm{c}_{31}, \mathrm{c}_{42}$
y before x, z late

Example

$\mathrm{C}_{1}:\left\{\mathrm{c}_{11}: 5 \leq \mathrm{x}-\mathrm{TR} \leq 10\right\} \vee\left\{\mathrm{c}_{12}: 15 \leq \mathrm{x}-\mathrm{TR} \leq 20\right\}$
$\mathrm{C}_{2}:\left\{\mathrm{c}_{21}: 5 \leq \mathrm{y}-\mathrm{TR} \leq 10\right\} \vee\left\{\mathrm{c}_{22}: 15 \leq \mathrm{y}-\mathrm{TR} \leq 20\right\}$
$C_{3}:\left\{c_{31}: 6 \leq x-y \leq \infty\right\} \vee\left\{c_{32}: 6 \leq y-x \leq \infty\right\}$
$\mathrm{C}_{4}:\left\{\mathrm{c}_{41}: 11 \leq \mathrm{z}-\mathrm{TR} \leq 12\right\} \vee\left\{\mathrm{c}_{42}: 21 \leq \mathrm{z}-\mathrm{TR} \leq 22\right\}$

Execution Table:
<x, $\{[5,10],[15,20]\}>$
<y, $\{[5,10],[15,20]\}>$
Enabled events and their time windows

Deadline Formula:
<x $\vee \mathrm{y}, 10$ >

CNF formula that must be satisfied "next"

Dispatch Method

- Computing the Execution Table:
- Find all enabled events
- Compute their time windows in every consistent component STP
- Computing the Deadline Formula:
- Find the next time at which some event must occur
- Find all events that might have to occur by that time point
- Compute the minimal event sets that would ensure that not all remaining consistent component STPs are eliminated

Generating the Deadline Formula

Generate-DF (Solutions: STP [i])
Let $\mathrm{U}=$ the set of upper bounds on time windows, $\mathrm{U}(\mathrm{x}, \mathrm{i})$ for each still unexecuted action x and each STP i
Let NC , the next critical time point, be the value of the minimum bound in U .
Let $\mathrm{U}_{\text {MIN }}=\{\mathrm{U}(\mathrm{x}, \mathrm{i}) \mid \mathrm{U}(\mathrm{x}, \mathrm{i})=\mathrm{NC}\}$.
For each x such that $U(x, i) \in U_{\text {MIN }}$, let $S_{x}=\left\{i \mid U(x, i) \in U_{\text {MIN }}\right\}$ Initialize F = true;
For each minimal solution MinCover of the set-cover problem (Solutions, $\cup S_{x}$), let $F=F \wedge\left(\vee x \mid S_{x} \in\right.$ MinCover $\left.x\right)$. Output DF $=\langle\mathrm{F}, \mathrm{NC}\rangle$

Generating the Deadline Formula

Generate-DF (Solutions: STP [i])
Let $\mathrm{U}=$ the set of upper bounds on time windows, $\mathrm{U}(\mathrm{x}, \mathrm{i})$ for each still unexecuted action x and each STP i.
Let NC, the next critical time point, be the value of the minimum upper bound in U .
Let $\mathrm{U}_{\text {MIN }}=\{\mathrm{U}(\mathrm{x}, \mathrm{i}) \mid \mathrm{U}(\mathrm{x}, \mathrm{i})=\mathrm{NC}\}$.
For each x such that $U(x, i) \in U_{\text {MIN }}$, let $S_{x}=\left\{i \mid U(x, i) \in U_{\text {MIN }}\right\}$ Initialize F = true;
For each minimal solution MinCover of the set-cover problem (Solutions, $\cup S_{x}$), let $\mathrm{F}=\mathrm{F} \wedge\left(\vee \mathrm{x} \mid \mathrm{S}_{\mathrm{x}} \in\right.$ MinCover x$)$. Output DF $=\langle\mathrm{F}, \mathrm{NC}\rangle$.

Example

C1: $\{\mathrm{c} 11: 5 \leq \mathrm{x}-\mathrm{TR} \leq 10\} \vee\{\mathrm{c} 12: 15 \leq \mathrm{x}-\mathrm{TR} \leq 20\}$
C2: $\{\mathrm{c} 21: 5 \leq \mathrm{y}-\mathrm{TR} \leq 10\} \vee\{\mathrm{c} 22: 15 \leq \mathrm{y}-\mathrm{TR} \leq 20\}$
C3: $\{c 31: 6 \leq x-y \leq \infty\} \vee\{c 32: 6 \leq y-x \leq \infty\}$
C4: $\{\mathrm{c} 41: 11 \leq \mathrm{z}-\mathrm{TR} \leq 12\} \vee\{\mathrm{c} 42: 21 \leq \mathrm{z}-\mathrm{TR} \leq 22\}$

Consistent Component STPs:
STP1: c11, c22, c32, c41
STP2: c11, c22, c32, c42
STP3: c12, c21, c31, c41
STP4: c12, c21, c31, c42
$\mathrm{U}(\mathrm{x}, 1)=\mathrm{U}(\mathrm{x}, 2)=10$ $U(x, 3)=U(x, 4)=20$ $\mathrm{U}(\mathrm{y}, 1)=\mathrm{U}(\mathrm{y}, 2)=20$ $\mathrm{U}(\mathrm{y}, 3)=\mathrm{U}(\mathrm{y}, 4)=10$ $\mathrm{U}(\mathrm{z}, 1)=\mathrm{U}(\mathrm{z}, 3)=12$ $\mathrm{U}(\mathrm{z}, 2)=\mathrm{U}(\mathrm{z}, 4)=22$

Generating the Deadline Formula

Generate-DF (Solutions: STP [i])
Let $\mathrm{U}=$ the set of upper bounds on time windows, $\mathrm{U}(\mathrm{x}, \mathrm{i})$ for each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum upper bound in U .
Let $\mathrm{U}_{\text {MiN }}=\{\mathrm{U}(\mathrm{x}, \mathrm{i}) \mid \mathrm{U}(\mathrm{x}, \mathrm{i})=\mathrm{NC}\}$.
For each x such that $U(x, i) \in U_{\text {MIN }}$, let $S_{x}=\left\{i \mid U(x, i) \in U_{\text {MIN }}\right\}$ Initialize F = true;

For each minimal solution MinCover of the set-cover problem (Solutions, $\cup S_{x}$), let $\mathrm{F}=\mathrm{F} \wedge\left(\vee \mathrm{x} \mid \mathrm{S}_{\mathrm{x}} \in\right.$ MinCover x$)$. Output DF $=\langle\mathrm{F}, \mathrm{NC}\rangle$.

Example

C1: $\{\mathrm{c} 11: 5 \leq \mathrm{x}-\mathrm{TR} \leq 10\} \vee\{\mathrm{c} 12: 15 \leq \mathrm{x}-\mathrm{TR} \leq 20\}$
C2: $\{\mathrm{c} 21: 5 \leq \mathrm{y}-\mathrm{TR} \leq 10\} \vee\{\mathrm{c} 22: 15 \leq \mathrm{y}-\mathrm{TR} \leq 20\}$
C3: $\{\mathrm{c} 31: 6 \leq \mathrm{x}-\mathrm{y} \leq \infty\} \vee\{\mathrm{c} 32: 6 \leq \mathrm{y}-\mathrm{x} \leq \infty\}$
C4: $\{c 41: 11 \leq \mathrm{z}-\mathrm{TR} \leq 12\} \vee\{\mathrm{c} 42: 21 \leq \mathrm{z}-\mathrm{TR} \leq 22\}$

Consistent Component STPs:
STP1: c11, c22, c32, c41
STP2: c11, c22, c32, c42
STP3: c12, c21, c31, c41
STP4: c12, c21, c31, c42
$\mathrm{U}(\mathrm{x}, 1)=\mathrm{U}(\mathrm{x}, 2)=10$
$\mathrm{U}(\mathrm{x}, 3)=\mathrm{U}(\mathrm{x}, 4)=20$
$\mathrm{U}(\mathrm{y}, 1)=\mathrm{U}(\mathrm{y}, 2)=20$
$\mathrm{U}(\mathrm{y}, 3)=\mathrm{U}(\mathrm{y}, 4)=10$
$\mathrm{U}(\mathrm{z}, 1)=\mathrm{U}(\mathrm{z}, 3)=12$
$\mathrm{U}(\mathrm{z}, 2)=\mathrm{U}(\mathrm{z}, 4)=22$
$\mathrm{NC}=10$
$\mathrm{U}_{\mathrm{MIN}}=\{(\mathrm{x}, 1),(\mathrm{x}, 2),(\mathrm{y}, 3),(\mathrm{y}, 4)\}$ $\mathrm{U}(\mathrm{x}, 3)=\mathrm{U}(\mathrm{x}, 4)=20$ $U(\mathrm{y}, 1)=\mathrm{U}(\mathrm{y}, 2)=20$ $U(\mathrm{y}, 3)=\mathrm{U}(\mathrm{y}, 4)=10$ $\mathrm{U}(\mathrm{z}, 1)=\mathrm{U}(\mathrm{z}, 3)=12$ $\mathrm{NC}=10$
$\mathrm{U}_{\mathrm{MIN}}=\{(\mathrm{x}, 1),(\mathrm{x}, 2),(\mathrm{y}, 3),(\mathrm{y}, 4)\}$

Generating the Deadline Formula

Generate-DF (Solutions: STP [i])
Let $\mathrm{U}=$ the set of upper bounds on time windows, $\mathrm{U}(\mathrm{x}, \mathrm{i})$ for each still unexecuted action x and each STP i.
Let NC, the next critical time point, be the value of the minimum upper bound in U.
Let $\mathrm{U}_{\text {MIN }}=\{\mathrm{U}(\mathrm{x}, \mathrm{i}) \mid \mathrm{U}(\mathrm{x}, \mathrm{i})=\mathrm{NC}\}$.
For each x such that $\mathrm{U}(\mathrm{x}, \mathrm{i}) \in \mathrm{U}_{\text {MIN }}$, let $\mathrm{S}_{\mathrm{x}}=\left\{\mathrm{i} \mid \mathrm{U}(\mathrm{x}, \mathrm{i}) \in \mathrm{U}_{\text {MIN }}\right\}$ Initialize F = true;
For each minimal solution MinCover of the set-cover problem (Solutions, $\cup S_{x}$), let $\mathrm{F}=\mathrm{F} \wedge\left(\vee \mathrm{x} \mid \mathrm{S}_{\mathrm{x}} \in\right.$ MinCover x$)$. Output DF $=\langle\mathrm{F}, \mathrm{NC}\rangle$.

Example

C1: $\{\mathrm{c} 11: 5 \leq \mathrm{x}-\mathrm{TR} \leq 10\} \vee\{\mathrm{c} 12: 15 \leq \mathrm{x}-\mathrm{TR} \leq 20\}$
C2: $\{\mathrm{c} 21: 5 \leq \mathrm{y}-\mathrm{TR} \leq 10\} \vee\{\mathrm{c} 22: 15 \leq \mathrm{y}-\mathrm{TR} \leq 20\}$
C3: $\{\mathrm{c} 31: 6 \leq \mathrm{x}-\mathrm{y} \leq \infty\} \vee\{\mathrm{c} 32: 6 \leq \mathrm{y}-\mathrm{x} \leq \infty\}$
C4: $\{c 41: 11 \leq \mathrm{z}-\mathrm{TR} \leq 12\} \vee\{\mathrm{c} 42: 21 \leq \mathrm{z}-\mathrm{TR} \leq 22\}$

Consistent Component STPs:
STP1: c11, c22, c32, c41
STP2: c11, c22, c32, c42
STP3: c12, c21, c31, c41
STP4: c12, c21, c31, c42

$$
\begin{aligned}
& \mathrm{NC}=10 \\
& \mathrm{U}_{\text {MIN }}=\{(\mathrm{x}, 1),(\mathrm{x}, 2),(\mathrm{y}, 3),(\mathrm{y}, 4)\} \\
& \hline \mathrm{S}_{\mathrm{x}}=\{1,2\} \\
& \mathrm{S}_{\mathrm{y}}=\{3,4\}
\end{aligned}
$$

Generating the Deadline Formula

Generate-DF (Solutions: STP [il)
Let $\mathrm{U}=$ the set of upper bounds on time windows, $\mathrm{U}(\mathrm{x}, \mathrm{i})$ for each still unexecuted action x and each STP i.
Let NC, the next critical time point, be the value of the minimum upper bound in U.
Let $\mathrm{U}_{\mathrm{MIN}}=\{\mathrm{U}(\mathrm{x}, \mathrm{i}) \mid \mathrm{U}(\mathrm{x}, \mathrm{i})=\mathrm{NC}\}$.
For each x such that $\mathrm{U}(\mathrm{x}, \mathrm{i}) \in \mathrm{U}_{\text {MIN }}$, let $\mathrm{S}_{\mathrm{x}}=\left\{\mathrm{i} \mid \mathrm{U}(\mathrm{x}, \mathrm{i}) \in \mathrm{U}_{\text {MIN }}\right\}$ Initialize F = true;
For each minimal solution MinCover of the set-cover problem (Solutions , $\left.\cup S_{x}\right)$, let $F=F \wedge\left(\vee x \mid S_{x} \in\right.$ MinCover $\left.x\right)$,
Output DF $=\langle\mathrm{F}, \mathrm{NC}\rangle$.

Example

C1: $\{\mathrm{c} 11: 5 \leq \mathrm{x}-\mathrm{TR} \leq 10\} \vee\{\mathrm{c} 12: 15 \leq \mathrm{x}-\mathrm{TR} \leq 20\}$
C2: $\{\mathrm{c} 21: 5 \leq \mathrm{y}-\mathrm{TR} \leq 10\} \vee\{\mathrm{c} 22: 15 \leq \mathrm{y}-\mathrm{TR} \leq 20\}$
C3: $\{\mathrm{c} 31: 6 \leq \mathrm{x}-\mathrm{y} \leq \infty\} \vee\{\mathrm{c} 32: 6 \leq \mathrm{y}-\mathrm{x} \leq \infty\}$
C4: $\{\mathrm{c} 41: 11 \leq \mathrm{z}-\mathrm{TR} \leq 12\} \vee\{\mathrm{c} 42: 21 \leq \mathrm{z}-\mathrm{TR} \leq 22\}$
Consistent Component STPs:
STP1: c11, c22, c32, c41
STP2: c11, c22, c32, c42
STP3: c12, c21, c31, c41
STP4: c12, c21, c31, c42

(304 0^{2}

Larger Deadline Formula

- Suppose
- 4 consistent component STPs
$-\mathrm{NC}=10$
- $\mathrm{U}(\mathrm{x}, 1)=\mathrm{U}(\mathrm{x}, 2)=\mathrm{U}(\mathrm{y}, 3)=\mathrm{U}(\mathrm{y}, 4)=\mathrm{U}(\mathrm{z}, 4)=\mathrm{U}$ $(\mathrm{w}, 3)=10$
- The minimal set covers are
$-\left\{S_{x}, S_{y}\right\}$ and $\left\{S_{x}, S_{w}, S_{z}\right\}$
- So the deadline formula is
$-(x \vee y) \wedge(x \vee z \vee w)$

The Dispatch Bottleneck

- Requires computation of all component STPs
- May be exponentially many of them
- Open Research Question: Can we identify "representative" sets of component STPs?

Breakfast Again

- You don't really get to control how long the coffee brews (but you can pop the toast at any time).

Handling Temporal Uncertainty

- TP-u (e.g., STP-u)
- Distinguish between two kinds of events:
- Controllable: the executing agent controls the time of occurrence
- Uncontrollable: "nature" controls the time of occurrence

Controllable edge (Y controllable event)
(X)

Uncontrollable edge (Y uncontrollable event)

Three Notions of "Solution"

- Strongly Controllable: There is an assignment of time points to the controllable events such that the constraints will be satisfied regardless of when the uncontrollables occur.
- One (or more) solutions that work no matter what!

Three Notions of "Solution"

- Weakly Controllable: For each outcome of the uncontrollables, there is an assignment of time points to the controllables such that the constraints are satisfied.
- One (or more) solutions that work for each outcome.

Three Notions of "Solution"

- Dynamically Controllable: As time progresses and uncontrollables occur, assignments can be made to the controllables such that the constraints are satisfied.
- Solutions that are guaranteed to work can be created conditionally to observations.

Controllability in STP-u's

[1,5]
Strongly Controllable $\{\mathrm{X}=0, \mathrm{Z}=5\}$

$[1,1]$
Dynamically Controllable $\{\mathrm{X}=0, \mathrm{Z}=\mathrm{Y}+1\}$

Strong => Dynamic => Weak

[1,1]
Weakly Controllable $\{\mathrm{X}=0, \mathrm{Z}=\mathrm{Y}-1\}$

Breakfast Again

- You don't really get to control how long the coffee brews (but you can pop the toast at any time).

Is it controllable?
Yes, strongly controllable:
$\mathrm{C}_{\mathrm{S}}=0$
$\mathrm{T}_{\mathrm{s}}=0$
$\mathrm{T}_{\mathrm{E}}=3$ (but not 2)

Controllability and Dispatchability

- Controllability: defines policies to determine times for controllable events depending on knowledge of uncontrollable events occurrence
- Dispatchability: identifies effective propagation paths such that knowledge on the execution of an event constrains the possible execution times for other events

Controllability and Observability

- Different notions of controllability make different assumptions about what can be observed
- Strong Controllability: uncontrollable events cannot be observed and consistency must be guaranteed
- Dynamic Controllability: uncontrollable events can be observed and consistency must be guaranteed
- Weak Controllability: "I'm feeling lucky"... and luck will always be in a position to help achieve consistency

Execution Policies

- Controllability definition emphasizes existence of solutions
- At execution time we need policies to make decision as a function of our knowledge
- Clock time
- Observation of event occurrence (if possible)
- Like in the case of STPs, provide ways to determine bounds and repropagation methods to create solutions on the fly

Strongly controllable policies

-We need to come up with policies assuming no knowledge about the uncontrollable event
-Solution: disconnect any dispatchable link from the event

Strongly controllable policies

Pseudo-Controllability

- The upper and lower bounds of an uncontrollable event are not necessarily propagated outside of the uncontrollable link (no necessary tightening of uncontrollable links) :)
- Bound propagation can originate from an uncontrollable event because we can have knowledge of its occurrence... ©
- ... but during execution there can be executions that propagate into the uncontrollable event tighter bounds than the uncontrollable link (possible tightening of the uncontrollable links) $: \dot{0}$

Computing Dynamic Controllability of an STPU

- Use triangular reductions
- Case 1: v < 0
- B follows C, so d.c.
- Case 2: $u \geq 0$
- B precedes C : tighten AB to $[\mathrm{y}-\mathrm{v}$, $\mathrm{x}-\mathrm{u}]$ to make d.c.
- Case 3: $u<0$ and $v \geq 0$

- B is unordered w.r.t C: tighten lower bound of AB to (C or $\mathrm{y}-\mathrm{v}$) to make d.c.
- Iterate on the entire network

Tightening of controllable links

Wait Propagation Rules

- "Wait links" are a new type of "partially uncontrollable" link
- If they are present, they cause execution to be contingent on the occurrence of events
- Unlike uncontrollable links, they can be eliminated through tightening

Wait Propagation over Controllable Edges

(2)

Loop

Termination Condition

- Without further analysis, the algorithm is pseudopolynomial
- Pseudo-controllability: $\mathrm{O}\left(\mathrm{NE}+\mathrm{N}^{2} \log \mathrm{~N}\right)$
- Tightening: $\mathrm{O}\left(\mathrm{N}^{3}\right)$
- Number of repetition of cycle: U, number of time units in widest time bound
- Complexity: $\mathrm{O}\left(\mathrm{U} \mathrm{N}^{3}\right)$
- U could be very large

Cutoff bound

- Since the number of edges is finite, indefinite tightening is due to the existence of propagation cycles
- Cycle traversal must repeat after a maximum number of propagation (as in the Bellman-Ford algorithm for shortest paths
- Cutoff bound for dynamic controllability: - $\mathrm{O}(\mathrm{NK})$ with $\mathrm{K}=$ number of non-controllable links
- Cutoff on the number of cycles gives $\mathrm{O}\left(\mathrm{KN}^{4}\right)$ complexity bound.

Handling Causal Uncertainty

- CTP (e.g., CSTP)
- Label each node-events are executed only if their associated label is true (at a specified observation time)

Conditional Plan as CTP

Travel from Home to S , but if the road is blocked from B to S, go to P.
If you go to S , arrive after 1p.m. (to take advantage of the discounts)
If you go to P, arrive at C by 11 a.m. (because traffic gets heavy).

© ve

- Not strongly consistent: Must not be at B before 12 (if A is true); must be at B by 10 (if A is false)and can't observe A until you're at B.

- Weakly consistent: When A is true, leave home after 10 (and all other assignments directly follow). When A is false, leave home by 9 .

Generating Temporal Plans

- Various models have been developed, dating back to the early 1980's (DEVISER)
- Beginning to see a convergence in the Constraint Based Interval approach
- Model the world with
- Attributes (features): e.g., coffee
- Values that hold over intervals: e.g., brewing
- Times points that bound the intervals: e.g., b_{t}, b_{e}
- Axioms that relate the values

Temporally Quantified Assertions

- Each feature takes a single value at a time, i.e. formally there are a set of functions $f_{i}\left(\right.$ feature $_{i}$, time $\left._{j}\right) \rightarrow$ value $_{i}$, where value ${ }_{i, j} \in$ domain(feature $_{i}$)
- Temporally qualified assertions (tqa’s or just "assertions"): holds (coffee, 8:03, 8:05, brewing)
holds (toaster-content, X, Y, empty)
- Uniqueness Constraints:
holds(F,s,e,P) ^ holds(F,s',e',Q) \rightarrow

$$
\left[\mathrm{e}<\mathrm{s}^{\prime} \vee \mathrm{e}^{\prime}<\mathrm{s} \vee \mathrm{P}=\mathrm{Q}\right]
$$

Features and Values

Feature Domain of Values

Coffee
Bread
Toaster-Status
Toaster-Contents
Showering
Bathing
Clean
Dressed
Location none, brewing, ready, stale untoasted, toasting, toast
on, off
empty, full
yes, no
yes, no
yes, no
no, dressing, yes
$\operatorname{at}(\mathrm{X}), \operatorname{going}(\mathrm{X}, \mathrm{Y})$

Planning Axioms

- Used to model actions
- Basic form
Effect \rightarrow
(Action ${ }_{1} \wedge$ Preconditions $_{1} \wedge$ Constraints $_{1}$) \vee
Action $_{2} \wedge$ Preconditions $_{2} \wedge$ Constraints $_{2}$) \vee
(Action ${ }_{n} \wedge$ Preconditions $_{n} \wedge$ Constraints $_{n}$)
- Can also partition the knowledge differently
- And can also use axioms to model other types of constraints (e.g., mutual exclusion)

Example 1	
holds(coffee, $\mathrm{r}_{\mathrm{s}}, \mathrm{r}_{\mathrm{e}}$, ready) \rightarrow holds(coffee, $\mathrm{b}_{\mathrm{s}}, \mathrm{b}_{\mathrm{e}}$, brewing) \wedge $\left(b_{e}=r_{s}\right) \wedge\left(3 \leq b_{e}-b_{s} \leq 5\right)$ holds(coffee, $\mathrm{n}_{\mathrm{s}}, \mathrm{n}_{\mathrm{e}}$, none) \wedge $n_{c}=b_{s}$	Affect
Can also split out into two axioms Effect \rightarrow Action Action \rightarrow Preconditions	
	(3) 7

Example 2

$$
\begin{aligned}
& \text { holds(clean, } \left.\mathrm{c}_{\mathrm{s}}, \mathrm{c}_{\mathrm{e}}, \text { yes }\right) \rightarrow \\
& \quad \begin{array}{l}
\text { holds }\left(\text { showering }, \mathrm{h}_{\mathrm{s}}, \mathrm{~h}_{\mathrm{e}} \text {, yes }\right) \wedge \\
\left.\mathrm{h}_{\mathrm{e}}=\mathrm{c}_{\mathrm{s}} \wedge \mathrm{c}_{\mathrm{e}}-\mathrm{c}_{\mathrm{s}} \leq 120\right] \vee \\
{\left[\text { holds }\left(\text { bathing }, \mathrm{b}_{\mathrm{s}}, \mathrm{~b}_{\mathrm{e}}, \text { yes }\right) \wedge\right.} \\
\left.\mathrm{b}_{\mathrm{e}}=\mathrm{c}_{\mathrm{s}} \wedge \mathrm{c}_{\mathrm{e}}-\mathrm{c}_{\mathrm{s}} \leq 120\right]
\end{array}
\end{aligned}
$$

Example 3

holds(bread, $\mathrm{r}_{\mathrm{s}}, \mathrm{r}_{\mathrm{e}}$, toasting) \rightarrow
holds(toaster-status, $\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{e}}$, on $) \wedge$
$\mathrm{t}_{\mathrm{s}}=\mathrm{r}_{\mathrm{s}} \wedge \mathrm{t}_{\mathrm{e}}=\mathrm{r}_{\mathrm{e}}$
holds(toaster-contents, $\mathrm{c}_{\mathrm{s}}, \mathrm{c}_{\mathrm{e}}$, full) \wedge
$\mathrm{c}_{\mathrm{s}} \leq \mathrm{r}_{\mathrm{s}} \wedge \mathrm{r}_{\mathrm{e}} \leq \mathrm{c}_{\mathrm{e}} \wedge$

Example 4

"Don't blow a fuse!"
[holds(coffee, b_{s}, b_{e}, brewing) \wedge
holds(toaster-status, $\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{e}}$, on)] \rightarrow
$\mathrm{b}_{\mathrm{e}}<\mathrm{t}_{\mathrm{s}} \vee \mathrm{t}_{\mathrm{e}}<\mathrm{b}_{\mathrm{s}}$

$$
\Longleftarrow \begin{aligned}
& \text { Mutual } \\
& \text { exclusion }
\end{aligned}
$$

- Additional mutual exclusion constraints are implicit in uniqueness constraints

The Planning Problem

- Given a set of features and their domain, a (partial) plan is
- a set of assertions on those features and
- a set of constraints on the time points of the assertions
- A solution is
- a complete assignment of values to features
- such that all of the constraints are satisfied

The Initial Partial Morning Plan

	assertions	constraints
Coffee	ready ($\mathrm{r}_{\mathrm{s}}, \mathrm{r}_{\mathrm{e}}$)	$-2 \leq \mathrm{r}_{\mathrm{e}}-\mathrm{t}_{\text {e }} \leq 2$
Bread	toast ($\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{e}}$)	$\mathrm{r}_{\mathrm{e}}-\mathrm{TR} \leq 500$
Toaster-status		$\mathrm{t}_{\mathrm{e}}-\mathrm{TR} \leq 500$
Toaster-contents		$\mathrm{d}_{\mathrm{e}}-\mathrm{TR} \leq 500$
Clean		
Showering		
Bathing		
Dressed	$\mathrm{yes}\left(\mathrm{d}_{5}, \mathrm{~d}_{\mathrm{e}}\right)$	

Expanding a Plan

- Select an assertion
- Find all the axioms that apply to it
- For each of those axioms
- Choose an alternative (one disjunct in the tail of the axiom)
- Ensure that the assertions and constraints in the chosen disjunct are in the plan, either by adding them or unifying them with assertions and constraints already present

Applicable Axioms

- Given
- plan P
- assertion A and
- axiom M: $\mathrm{X}_{1} \wedge \ldots \mathrm{X}_{\mathrm{n}} \rightarrow$ r.h.s.
- M applies to A if

Expanding the Initial Plan I

| Coffee

 none $\left(n_{s}, n_{e}\right)$ $\operatorname{brewing}\left(b_{s}, b_{e}\right)$ $\operatorname{ready}\left(\mathrm{r}_{s}, \mathrm{r}_{\mathrm{e}}\right)$
 Bread $\operatorname{toast}\left(\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{e}}\right)$ |
| :--- | :--- | :--- | :--- |

$-2 \leq r_{\mathrm{e}}-\mathrm{t}_{\mathrm{e}} \leq 2$
$r_{e}-T R \leq 500$
$\mathrm{t}_{\mathrm{e}}-\mathrm{TR} \leq 500$
$\mathrm{d}_{\mathrm{e}}-\mathrm{TR} \leq 500$
$b_{\mathrm{e}}=\mathrm{r}_{\mathrm{s}}$
Toaster-status
Toaster-contents
$3 \leq b_{\mathrm{e}}-\mathrm{b}_{\mathrm{s}} \leq 5$

- For some i , unify $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{M}\right)=\theta$, and
- For all $\mathrm{j}=1 \ldots$ n s.t. $\mathrm{j} \neq \mathrm{i}$, unify $\left(\mathrm{X}_{\mathrm{j}}, \mathrm{B}\right)=\theta^{\prime}$ where
(i) θ^{\prime} is an extension of θ, and
(ii) B is an assertion in P $n_{e}=b_{s}$
Clean
Showering
Bathing
Dressed holds(coffee, $\mathrm{r}_{\mathrm{s}}, \mathrm{r}_{\mathrm{e}}$, ready) \rightarrow holds(coffee, $\mathrm{b}_{\mathrm{s}}, \mathrm{b}_{\mathrm{e}}$, brewing) \wedge $\left(b_{e}=r_{s}\right) \wedge\left(3 \leq b_{e}-b_{s} \leq 5\right)$ holds(coffee, $\mathrm{n}_{\mathrm{s}}, \mathrm{n}_{\mathrm{e}}$, none) \wedge $\operatorname{yes}\left(\mathrm{d}_{\mathrm{s}}, \mathrm{d}_{\mathrm{e}}\right) \quad \mathrm{n}_{\mathrm{e}}=\mathrm{b}_{\mathrm{s}}$

Expanding the Initial Plan II

Causal Links and Uniqueness Conditions

Underlying Constraint Network

- The temporal constraints form a DTP
- Technically, a dynamic DTP, since time points are added incrementally
- Use DTP techniques to check consistency efficiently

Outline

- Resource representations
- Relationship between planning and scheduling representations
- Search spaces: flexible plans and fixed time instantiations
- Resource contention measures
- Probabilistic
- Lower/upper bounds
- Envelopes

Breakfast at Yosemite

- You are backpacking so you cook the toast on a pan..
- ...and you have a stove with just one burner.

From Planning to Scheduling

A View of Planning and Scheduling

- Planning primarily focuses on constructing a consistent evolution of the world (states and transitions)
- Scheduling almost entirely focuses on handling mutual exclusion and deadlines
- ...but since the beginning planning was also addressing scheduling - flaws can be often seen as scheduling conflicts
- Graphplan and mutual exclusions implicitly brought this concept to the forefront

Flexibility in Plans/Schedules

- After a plan is executed, all variables (time, parameters) will be set to specific values
- Potential execution strategy: select the fixed values in advance and simply send them to the controlled device at the appropriate time.
- Worked reasonably well for spacecraft like Voyager.
- Not a lot is happening in the vacuum of space, though..
- Fundamental obstacles in the real world
- Uncontrollability
- Unobservability
- Two possible strategies
- Flexible policies
- "Fix values and repair"

How to Build a Flexible Breakfast Schedule

How to build a flexible schedule

Can we start making the toast after the coffee is brewed? YES

How to build a flexible schedule

Can we start brewing the coffee after the toast is ready?

One interpretation of precedence

- $\mathrm{B} \rightarrow \mathrm{A}$ anti-precedence creates a consumer/produced "coupling"
- B can rely on A to produce the resource it needs. Therefore, B will never cause a resource oversubscription
- With the addition of C $\rightarrow \mathrm{A}, \mathrm{C}$ and B compete to "match" with A

Introducing "coupling" links and managing actual "matches" is what a
flexible scheduling algorithm really does
(24) 7

PCP scheduling

- [Cheung and Smith, 1997] use scratch propagation for unary capacity makespan optimization job-shop scheduling
- Scratch propagation can be done using Dijkstra algorithm from each end time to the start times on the same resource
- Scratch propagation cost: $\mathrm{O}\left(\mathrm{N}^{2} \log \mathrm{~N}\right)$ but can terminate early when all starts on same resource have been reached
- Incremental propagation achieves better speed
- Three cases for each pair of activities:
- Inconsistency: no ordering is possible
- Pruning: only one ordering is possible

Heuristic selection: if both orders are possible, select one according to

- Heuristic selection: if both order
- Heuristic selection pair to resolve next is determined by a heuristic (e.g., minimum average slack)
- Search methods
- Iterative Sampling with randomization

Fixed Time Scheduling and Execution Policies
[Chien et al. 2005] Automated Sciencecraft Experiment
\{PowerUp (Imager)\} before $\{s \in[10: 00,13: 30]$, Image(lat, long, Mt.Etna) $\}$

(30) 0^{3}

Fixed-time scheduling and execution policies

(40) 3

Conflict Repair Methods

- Use a repair method to eliminate a conflict
- ASE uses a planner, not just a scheduler.
- Hence it is possible to generate new activities or select different task decompositions
- Repair methods
- move an activity
- delete an activity
- add a new activity
- detailing an activity

- etc.

From Planning to Execution The ideal situation

Repair plan using same
method to generate it

Planner
Executive

Comparison of Flexible and Fixed Policies (1)

- Fixed policies
- Pros
- Simple and intuitive to implement
- It is easier to think of heuristics based on resource profiles
- More compact data structures
- Less costly propagation
- Cons
- Plan does not give "declarative" measure of robustness
- Execution repair is fundamental to robustness
- A full plan repair process may be too expensive at execution time
- ASE has only 4 MIPS available

Comparison of Flexible and Fixed Policies (2)

- Flexible policies
- Pros
- Plan guarantees measure of robustness - Flexible policies break less often
- Execution time adjustments are intrinsically fast (propagation vs planning)
- Cons
- More complex

But complexity and computational expenses mostly affect off-line planning

- Actual value of flexibility is only as good as the semantics of the representation
- ... and this is why you are taking this tutorial!

From Planning to Execution What actually happens on ASE

Planner

Executive

- Planner's detailed command expansion finds a "witness" to plan consistency
- If failures propagates at the highest activity level, this is a major problem
- Eliminating top-level failure requires careful tuning of "abstraction"
- Differences in internal planner/executive representations pushes toward conservatism to avoid mismatches and inconsistencies (it happened in Remote Agent...)
- Therefore, robustness is achieved at design time through careful modeling
- Flexible representations could help that design process

Building flexible policies from

 fixed time schedules- Simple strategy for single capacity resources: simply keep the ordering constraints and uncommit the times from the fixed values
- Continuous/discrete capacity resources require the introduction of anti-precedence couplings between consumers and producers

- [Policella et al, 2004] Transform fixed schedule into "chaining form" partial order
- Decompose multiple capacity resource into "virtual" single capacity resources and add couplings on chains

Contentious Breakfast

Time bounds and resource conflicts

- Without further coordination, C and T are free to collide for the use of the stove
- The inclusion of anti-precedence links ("couplings" of producers to consumers) reduce and eventually eliminate the possibility of conflict

Temporal Information for Contention Analysis

- Partial temporal information (e.g., time bounds for events) is insufficient to determine informative contention measures.
- More (full) temporal information is expensive to acquire and maintain
- There needs to be a balance between cost and utility of temporal/research inferences. Eventual value is in search improvement

Probabilistic Resource Contention

- Use probabilistic assumptions to generate time assignments given a temporal network
- Combine probabilistic assignments into contention statistics
- Use contention statistics as the basis for search heuristics
- Heuristic factors in probabilistic analysis:
- Selection of problem sub-structure at the basis of statistics
- Probabilistic assumptions on how activities request resource capacity
- Variable/value ordering rules that use statistics

Without further coordination, C and T are free to collide for the use of the stove

- The inclusion of anti-precedence links ("couplings" of producers to consumers) reduce and eventually eliminate the possibility of conflict

Probabilistic contention based on

- [Beck \& Fox 2000] Assumptions:
- Fixed durations, consumption at start, same production at end
- Uniform distribution of start times
- Time bounds only
- Individual action demand inside the time bound:

Probabilistic contention based on time windows

- Aggregate demand $=$ sum demand curves = expected value of instantaneous resource requests
- How to use it
- Find maximum over all curves \rightarrow maximum contention
- Find pair with maximum demand at contention point that are not already ordered

Probabilistic contention using precedence information

- Monte Carlo resource contention [Muscettola 1994]
- Consider all known temporal constraints
- Simulate a sample of executions ignoring resource contention
- Then compare expected resource request to resource limit to identify conflict areas
- Monte Carlo methods are also used in analysis of plan executions
- Potentially an exponential number MCS but we only really care about ordering pairs of activities $\left(\mathrm{O}\left(\mathrm{N}^{2}\right)\right)$ so there are very strong dominance rules

Comparison of statistical contention measures

- Monte Carlo simulation is more informed
- Time-window method is less computationally expensive
- Time windows: $\mathrm{O}(\mathrm{N})$ in time and space
- Monte Carlo: with sample size S
- $\mathrm{O}(\mathrm{S} \mathrm{E})$ in time (if network is dispatchable) - $\mathrm{O}(\mathrm{S} \mathrm{N})$ in space
- Monte Carlo method also biases sample depending on stochastic rule used to simulate the network
- ... but the rule can increase realism if it accurately describes execution conditions

From breakfast to infinity and beyond

Search Guidance

- The ability of detecting early that the flexible plan is resource/time inconsistent can save exponential amount of work
- Same for early detection of a solution

Need for exact resource bounds

- Statistical methods of resource contention give sufficient conditions to determine that a solution has not been achieved
- They cannot guarantee either inconsistency or achievement of a solution
- Exact resource bounds can

- Case 1: bounds always within limits \rightarrow solution
- Case 2: bounds at least once outside the limit \rightarrow inconsistency
- Case 3: otherwise \rightarrow search

Bounds are costly

- In summary, bounds try to summarize the status of an exponential number of schedules
- As in the case of probabilistic measures, we can obtain different bounds depending of how much structural information on producer/consumer coupling we use
- The more information, the tighter the bound
- The more information, the more costly the bound

Least informative bounds

- Same situation as for statistical measures
- Bounds have to become non-overlapping to eliminate contention
- This cannot be done by the addition of precedence constraints alone if the schedule is very flexible
- Produced schedules are "flexible fixed time" schedules (i.e., constraint earliest and latest event times)

Temporal Information in Flexible Plans

Anti-Precedence Graph
$[\mathrm{et}(\mathrm{e}), \mathrm{lt}(\mathrm{e})] \Leftrightarrow \mathrm{et}(\mathrm{e})=-\mathrm{e} \mathrm{T}]$
$\wedge \operatorname{lt}(\mathrm{e})=\left|\mathrm{T}_{\mathrm{s}} \mathrm{e}\right|$
$\left|\mathrm{e}_{1} \mathrm{e}_{2}\right| \leq 0 \Leftrightarrow \mathrm{e}_{1} \rightarrow \ldots \rightarrow \mathrm{e}_{2}$

Balance Constraint Bounds

- Event centered: measure contention from the point of view of an event, not an absolute time reference
- Fundamental idea:
- Make exact measures of consumption/production for predecessors and successors
- Make worst case assumptions for all other eventsons

Cost of balance constraint bound

- Non incremental cost (compute the bound from scratch)
- Find the anti-precedence network: $\mathrm{O}(\mathrm{NE})$ / O(NE +
$\mathrm{N}^{2} \log \mathrm{~N}$)
- Compute bounds from each event: $\mathrm{O}(\mathrm{NE}) / \mathrm{O}\left(\mathrm{N}^{2}\right)$
- Total cost (time propagation + bounds): O(NE) / $\mathrm{O}\left(\mathrm{NE}+\mathrm{N}^{2} \log \mathrm{~N}\right)$
- Incremental propagation can reduce cost per each iteration
- Used succesfully for optimal scheduling in [Laborie 2001]

Looseness of Balance Constraint Bound

- If the two chains in the example operate on a resource with capacity 2 , no constraint need to be added
- The Balance Constraint Bound however needs the addition of quite tight precedence constraints to detect a consistent solution
- The cause is the lack of consideration of the structure of the network not necessarily ordered with the event .

Resource Envelope

- Manager: "I am tired of half measures. How about giving me the tightest possible bounds?'
- Computer Scientist A: "Hmmm...I don't know. It looks difficult. Remember the exponential number of schedules?
- Rocket Scientist B: "Aw, no problem. I'll give you a fast polynomial algorithm for it ..."

Resource Envelope Method Intuitive Description

Maximum flows

Maximum Resource-Level Increment Predecessor Set

Theorem 1: $\mathrm{P}_{\text {max }}=$ set of events that is reachable from σ in the residual network of a $f_{\text {max }}$

Theorem 2: $\mathrm{P}_{\text {max }}$ is unique and has the minimal number of events

Separation Schedule and Separation Time

We know how to
compute a $\mathrm{P}_{\text {max }}$ but ...
\ldots given a $\mathrm{P}_{\max }$ is there a temporally consistent schedule and a time t_{x} such that all events in C_{H} and $P_{\text {max }}$ are schedule at or before t_{x} and all events in $\mathrm{P}_{\text {max }}^{c}$ and O_{H} are scheduled after t_{x} ?

Theorem

3: Yes!

Maximum Resource Level and Resource Envelope

- Complete envelope profile [Muscettola, CP 2002]
$-\mathrm{L}_{\text {max }}(\mathrm{t})=\Delta\left(\mathrm{C}_{\mathrm{t}}\right)+\Delta\left(\mathrm{P}_{\text {max }}\left(\mathrm{R}_{\mathrm{t}}\right)\right)$
$-P_{\max }\left(R_{t}\right)$ and C_{t} change only at et(e) and $\operatorname{lt}(\mathrm{e})$.
- Complexity: $\mathrm{O}(\mathrm{n} \mathrm{O}(\operatorname{maxflow}(\mathrm{n}, \mathrm{m}, \mathrm{U}))+\mathrm{nm})$
- Can we do better?

Staged Resource Envelope

- Do not repeat flow operations on portion of the network that has already been used to compute envelope levels
- Deletion of flow due to elimination of consumers at time out do not cause perturbation to incremental flow
- We can reuse much (all?) of the flow computation at previous stages, increasing performance

Complexity Analysis

- Look at all known Maximum Flow algorithms
- Identify complexity key
- Total pushable flow (Labeling methods)
- Shortest distance to τ (Successive Shortest Paths)
- Distance label (Preflow-push methods)
- Show that complexity keys have same monotonic properties across multiple envelope stages that over a computation of maximum flow over entire network.
- Hence, complexity is O(Maxflow(n, m, U))

Summarized excerpt from

 helpful comments of friendly ICAPS 2004 reviewers"Sure, nice theory. But theory ain't much. Where are the empirical results, eh?"

Empirical speedup of staged algorithm

Envelope scheduling so far

- [Policella et al. 2004]
- Non-backtrack, non-randomized commitment procedure - either it finds a schedule at the first trial or it never will
- Two kinds of contention profiles tested
- Resource envelopes
- Earliest start profiles - profiles obtained by schedule executing all activities as early as possible
- Methods using earliest start profiles perform better on tested benchmark
- Open problem: is there other structural information in the envelopes that can be useful outside of contention identification?

References I

The literature on temporal reasoning and planning is extensive. Here we list only some initial sources for ideas and, where avaiable, survey papers that provide detail and additional references; these survey papers are in boldface and color.

Constraint-Satisfaction Processing:

- R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.

Qualitative Models of Time:

- J. Allen, "A General Model of Action and Time," Artificial Intelligence 23(2), 1984.
- M. Vilain and H. Kautz, "Constraint Propogation Algorithms for Temporal Reasoning," Proc. Of the $5^{\text {th }}$ National Conference on Artificial Intelligence (AAAI), 1986.
- Chapter 12 of Dechter, Constraint Processing, (see above).

Simple and Disjunctive Temporal Problems:

- R. Dechter, I. Meiri, and J. Pearl, "Temporal Constraint Networks," Artificial Intelligence, 49(1-3), 1991.
- E. Schwalb and R. Dechter, "Processing Temporal Constraint Networks," Artificial Intelligence 93(1-2), 1997.
- K. Stergiou and M. Kourbarakis, "Backtracking Algorithms for Disjunctions of Temporal Constraints," Artificial Intelligence 120(1), 2000.
- A. Oddi and A. Cesta, "Incremental Forward Checking for the Disjunctive Temporal Problem," Proc. Of the $14^{\text {th }}$ European Conference on Artificial Intelligence (ECAI), 2000.
- I. Tsamardinos and M. E. Pollack, "Efficient Solution Techniques for Disjunctive Temporal Reasoning Problems," Artificial Intelligence, 2003.
- A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea, "A SAT-Based Decision Procedure for the Boolean Combination of Difference Constraints," Proc. Of the $7^{\text {th }}$ International Conference on Theory and Applications of Satisfiability Testing, 2004.

References II

Dispatch of Disjunctive Temporal Problems:

- I. Tsamardinos, M. E. Pollack, and P. Ganchev, "Flexible Dispatch of Disjunctive Temporal Problems," Proc. Of the 6th European Conference on Planning (ECP), 2001.
Unobservability and Uncontrollability:
- T. Vidal and H. Fargier. "Handling contingency in temporal constraint networks: from consistency to controllabilities" Journal of Experimental and Theoretical Artificial Intelligence, 11(1):23-45, 1999.
- P. Morris, N. Muscettola, and T. Vidal, "Dynamic Control of Plans with Temporal Uncertainty," Proc. Of the 7th International Joint Conference on Artificial Intelligence, 2001.
- I. Tsamardinos and M. E. Pollack, "CTP: A New Constraint-Based Formalism for Conditional, Temporal Planning," Constraints 8, 2003.
Planning with Temporal Constraints:
- M. Ghallab and H. Laruelle, "Representation and Control in IxTeT, a Temporal Planner," Proc. 2nd Intl. Conference on AI Planning Systems (AIPS), 1994.
- N. Muscettola, "HSTS: Integrating Planning and Scheduling," in Intelligent Scheduling, Monte Zweben \& Mark Fox eds., Morgan Kaufmann, 1994.
- Chapter 12 of Dechter, Constraint Processing, (see above).
- Chapters 13 and 14 of M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and Practice, Elsevier, 2004
- D. E. Smith, J. Frank, and A. Jonsson, "Bridging the Gap between Planning and Scheduling," The Knowledge Engineering Review, 15, 2000.
- J. Frank and A. Jonsson, "Constraint-Based Attribute and Interval Planning," Constraints 8, 2003.

References III

Resource Constraint Reasoning: Scheduling:

- Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams. Remote agent: To boldly go where no AI system has gone before. Artificial Intelligence, 103(1/2), August 1998
- Cheng, C. and S.F. Smith, Applying Constraint Satisfaction Techniques to Job-Shop Scheduling (The Long Version), Robotics Institute Technical Report CMU-RI-TR-95-03, January, 1995. [Published in Annals of Operations Research, Vol. 70, Special Issue on Scheduling: Theory and Practice, 1997.]
- S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano, A. Davies, D. Mandel, S. Frye, B. Trout, S. Shulman, D. Boyer. "Using Autonomy Flight Software to Improve Science Return on Earth Observing One", Journal of Aerospace Computing, Information, and Communication. April $2005+$ PDF
- N. Policella, A. Oddi, S.F. Smith and A. Cesta. "Generating Robust Partial Order Schedules" In Proc of CP 2004, Lecture Notes on Computer Science (LNCS) Vol. 3258, pp. 496-511, M. Wallace (Ed.), Springer, 2004.

Probabilistic Measures of Resource Contention:

- Beck, J.C. \& Fox, M.S., Constraint Directed Techniques for Scheduling with Alternative Activities, Artificial Intelligence, 121(1-2), 211-250, 2000.
- Nicola Muscettola: On the Utility of Bottleneck Reasoning for Scheduling. AAAI 1994: 1105-1110

Resource Usage Bounds:

- Philippe Laborie "Algorithms for propagating resource constraints in AI planning and scheduling: Existing approaches and new results", Artificial Intelligence, 143(2), pp. 151-188, 2003
Resource Envelopes:
- R.K.Ahuja, T.L.Magnanti, J.B.Orlin. Network Flows, Prentice Hall, 1993.
- N. Muscettola "Computing the envelope of Stepwise-Constant Resource Allocations", Proc. of CP 2002, Ithaca, NY, 2002.
- N. Muscettola "Incremental Maximum Flows for Fast Envelope Computation", Proceedings of the 14th International Conference on Automated Planning \& Scheduling, ICAPS04, Whistler, British Columbia, Canada, 2004.
- N. Policella, S.F. Smith, A. Cesta and A. Oddi (2004). "Generating Robust Schedules through Temporal Flexibility" In , Proceedings of the 14th International Conference on Automated Planning \& Scheduling, ICAPS04, Whistler, British Columbia, Canada, 2004.

[^0]: AAMAS-2005 Tutorial

[^1]: AAMAS-2005 Tutorial

 - T4-16

 Luke Hunsberger

