
Temporal Reasoning for 
Planning, Scheduling 

and Execution in 
Autonomous Agents

AAMAS-2005 Tutorial (T4)
Nicola Muscettola, 

Ioannis Tsamardinos*, 
and Luke Hunsberger

*Martha E. Pollack contributing to the slides

InroInro..11

���������	

����


�����
�	

��������

InroInro..22�����
��������
����
��������

�����

•Activity schedule very tight
•Did not adapt to uncertainties in 
execution
•Did not adapt to human needs for 
more flexibility
•45 days into the mission they rebelled

They went on strike!

InroInro..33������
�
�������
 �������!

• MAPGEN: First Artificial Intelligence (AI) 
based Decision-Support System to control 
a spacecraft on the surface of another 
planet

• Spirit:
– Nominal science operations from Sol 15 to 

18
• All planned activities from 16/17 

executed on board
– Return to nominal science operations 

within 2-3 days
• Opportunity:

– Informal use begins Sol 4/5
• Commanded activities executed on 

board nominally
– Nominal science operations tomorrow (Feb 

6th)
• Dual rover support use of MAPGEN in full 

swing
– Continues to be for MER Extended Ops

• Conservative ROI to NASA: 25% extra 
science returned per Sol, over a manual 
approach for plan synthesis

– Approx $1.4 Million/Sol

Surface Operations

(1 Sol = 1 Martian Day = 24hrs 37mins Earth time)

Oct’03-April’04Oct’02-Sept’03Oct ’01-Sept’02Oct ’00-Sept ‘01



InroInro..44

� �"
��!����#

Re-tasking

Earth 
Observer 
One

Triggers so far: Wildfires, Floods, Volcanoes (thermal, ash), Ice/Snow,  in-situ sensors,
modified by cloud cover

Courtesy of JPL

InroInro..55��#�!�
$�!%
��������
���
&��

$�����!�
�����!

• ASTEP LITA Atacama Field Campaign (Sep-Oct 
2004)

– Zöe rover with life detecting instruments
– On-board planning and autonomous navigation over 

long distances

• Rover executive results (preliminary, telemetry still 
being analyzed)

– Total hours of operations (cumulative over several runs): 
17 hours

– Total distance covered: 16 km
– Longest autonomous traverse: 3.3Km 2h 29m
– “Roughest traverse”: 1h 2m with 19 faults recovered
– Faults addressed:

• Navigator “confused”
• Internal processes failed
• Early and late arrival at waypoint

InroInro..66����'�	��(

�!!�!����

$��)�����
���
�������

To assist people with memory impairment:
•Model their daily activities, including temporal 
constraints on their performance
•Monitor the execution of those activities
•Decide whether and when to issue reminders

InroInro..77

������*



InroInro..88+!!��!
�
$�'�����
�����
�	

��������

• Representation:  What kinds of temporal 
information can we represent?

• Planning
– Generation:  How do we construct a temporal plan?

• Execution 
– Dispatch:  When should the steps in the plan be 

executed?    How do we maintain the state of the plan, 
given that time is passing (and events are occurring)?

• Focus Today:  Constraint-Based Models

InroInro..99��!�����
����!������

���#��'!

• <V,D,E>

– V = {v1, v2, . . . vn}:  set of constrained variables

– D = {D1, D2, . . . , Dn}: domains for each variable

– E = relations on a subset of V:  constraints, 
representing the legal (partial) solutions

InroInro..1010

"������
������
��
���!
V:   {A,B,C}
DA:  {R, B}     DB: {R, B}    DC : {R, Y}
E:  EAB = {<R,B>, <B,R>}

EAC = {<R, Y>, <B,R>,<B,Y>}
EBC = {<R, Y>, <B,R>,<B,Y>}

•Solve with a combination of search 
and propagation (forward checking, 
arc consistency, etc.)

•Relations here are binary—may 
have higher arity as well

A

B C

InroInro..1111

,��)
&����
 �����

1. Time representations in problem solving and 
execution

2. Planning with time (plan generation and multi-
agent collaborative planning) 

3. Resource reasoning



Simple Temporal Networks

AAMAS-2005 Tutorial • T4 – 1 • Luke Hunsberger

Temporal Constraints on an Action

A

t1 t2

Time-Point
Ending

Time-Point
Starting

t1 ≥ 4 (A starts at or after 4)

t2 ≤ 12 (A ends at or before 12)

3 ≤ t2 − t1 ≤ 6 (A’s dur. between 3 and 6)

AAMAS-2005 Tutorial • T4 – 2 • Luke Hunsberger

Temporal Constraints on Breakfast

TETSCECS

Toast Bread

TR

Brew Coffee

Goal: Prepare coffee and toast.
Have them ready within 2 minutes of each other.

Brew coffee for 3–5 minutes;
Toast bread for 2–4 minutes.

AAMAS-2005 Tutorial • T4 – 3 • Luke Hunsberger

Temporal Constraints on Airline Travel

Goal: Fly from Boston to Seattle:

• Leave Boston after 4 p.m. on Aug. 8;

• Return to Boston before 10 p.m., Aug. 18;

• Away from Boston no more than 7 days;

• In Seattle at least 5 days; and

• Return flight lasts no more than 7 hours.

AAMAS-2005 Tutorial • T4 – 4 • Luke Hunsberger

1



Simple Temporal Network (STN)∗

A Simple Temporal Network (STN) is a pair,
S = (T , C), where:

• T is a set of time-point variables:
{t0, t1, . . . , tn−1} and

• C is a set of binary constraints, each of the
form: tj − ti ≤ δ, where δ is a real num-
ber.

∗ (Dechter, Meiri, & Pearl 1991)

AAMAS-2005 Tutorial • T4 – 5 • Luke Hunsberger

Solutions, Consistency, Equivalence

• A solution to an STN S = (T , C) is a com-
plete set of variable assignments:

{t0 = w0, t1 = w1, . . . , tn−1 = wn−1}

that satisfies all the constraints in C.

• An STN with at least one solution is called
consistent.

• STNs with identical solution sets are called
equivalent.

AAMAS-2005 Tutorial • T4 – 6 • Luke Hunsberger

The Zero Time-Point Variable

• Frequently, it is useful to fix one of the time-
point variables to 0. That “variable” will
often be called z.

• Binary constraints involving z are equivalent
to unary constraints:

tj − z ≤ 5 ⇐⇒ tj ≤ 5

z− ti ≤ −3 ⇐⇒ ti ≥ 3

AAMAS-2005 Tutorial • T4 – 7 • Luke Hunsberger

STN for Constrained Action

T = {z, t1, t2}, where:
z = 0
t1 = Start of A
t2 = End of A

C =





































t2 − t1 ≤ 6 (Dur. less than 6)

t1 − t2 ≤ −3 (Dur. greater than 3)

z− t1 ≤ −4 (A starts after 4)

t2 − z ≤ 12 (A ends before 12)





































AAMAS-2005 Tutorial • T4 – 8 • Luke Hunsberger

2



STN for Breakfast

T = {TR,CS,CE,TS,TE}, where:

TR = 0 (Reference Time-point)
CS/CE = Start/End of Coffee Brewing
TS/TE = Start/End of Bread Toasting

C =

























CE − CS ≤ 5, CS − CE ≤ −3
TE − TS ≤ 4, TS − TE ≤ −2
CE − TE ≤ 2, TE − CE ≤ 2
TR − CS ≤ 0, TR − TS ≤ 0

























AAMAS-2005 Tutorial • T4 – 9 • Luke Hunsberger

STN for Constrained Air Travel

T = {z, t1, t2, t3, t4}, where z = Noon, Aug. 8.

C =






















































































z− t1 ≤ −4 (Lv Bos after 4 p.m., 8/8)

t4 − z ≤ 250 (Av Bos by 10 p.m., 8/18)

t4 − t1 ≤ 168 (Gone no more than 7 days)

t2 − t3 ≤ −120 (In Seattle at least 5 days)

t4 − t3 ≤ 7 (Return flight less than 7 hrs)























































































AAMAS-2005 Tutorial • T4 – 10 • Luke Hunsberger

Graphical Representation of an STN∗

The Distance Graph for an STN, S = (T , C),
is a graph, G = (T , E), where:

• Time-points in S correspond to nodes in G.

• Constraints in C correspond to edges in E :

tjti
δ

tj − ti ≤ δ

∗ (Dechter, Meiri, & Pearl 1991)

AAMAS-2005 Tutorial • T4 – 11 • Luke Hunsberger

Distance Graph for Action Scenario

T = {z, t1, t2} C =















































t2 − t1 ≤ 6
t1 − t2 ≤ −3
z− t1 ≤ −4
t2 − z ≤ 12















































6

-3

-4 12

t1 t2

z

AAMAS-2005 Tutorial • T4 – 12 • Luke Hunsberger

3



Distance Graph for Breakfast














































CE − CS ≤ 5, CS − CE ≤ −3
TE − TS ≤ 4, TS − TE ≤ −2
CE − TE ≤ 2, TE − CE ≤ 2
TR − CS ≤ 0, TR − TS ≤ 0















































TR 22

0

0 −3

5 CECS

−2

4

TETS

AAMAS-2005 Tutorial • T4 – 13 • Luke Hunsberger

Distance Graph for Airline Scenario














































z− t1 ≤ −4, t4 − z ≤ 250
t4 − t1 ≤ 168, t2 − t3 ≤ −120
t4 − t3 ≤ 7, t1 − t2 ≤ 0
t3 − t4 ≤ 0,















































0 -120

168

0

7

250-4 z

t3
t4t2

t1

AAMAS-2005 Tutorial • T4 – 14 • Luke Hunsberger

Implicit Constraints

Explicit constraints in C can combine to form
implicit constraints:

tj − ti ≤ 30

tk − tj ≤ 40

tk − ti ≤ 70

30 40

70
ti tk

tj

AAMAS-2005 Tutorial • T4 – 15 • Luke Hunsberger

Implicit Constraints as Paths

• Chains of implicit constraints in an STN cor-
respond to paths in its Distance Graph.

• Stronger/strongest implicit constraints cor-
respond to shorter/shortest paths.

95

3 4
6

4

3
2

ti

tj

AAMAS-2005 Tutorial • T4 – 16 • Luke Hunsberger

4



Distance Matrix ∗

The Distance Matrix for an STN, S = (T , C),
is a matrix D defined by:

D(ti, tj) =
Length of Shortest Path
from ti to tj in the Distance
Graph for S

tj
ti

D(ti, tj)

(Dechter, Meiri, & Pearl 1991)

AAMAS-2005 Tutorial • T4 – 17 • Luke Hunsberger

Distance Matrix (cont’d.)

• The strongest implicit constraint on ti and
tj in S is: tj − ti ≤ D(ti, tj)

• Abuse of notation: D(i, j) instead ofD(ti, tj)

• D is the All-Pairs, Shortest-Path Matrix for
the Distance Graph (Cormen, Leiserson,
& Rivest 1990).

AAMAS-2005 Tutorial • T4 – 18 • Luke Hunsberger

Distance Matrix for Action Scenario
6

-3

-4 12

t1 t2

z

D z t1 t2

z 0 9 12

t1 -4 0 6

t2 -7 -3 0

AAMAS-2005 Tutorial • T4 – 19 • Luke Hunsberger

Distance Matrix for Breakfast

TR 22

0

0 −3

5 CECS

−2

4

TETS

D TR CS CE TS TE

TR 0 ∞ ∞ ∞ ∞

CS 0 0 5 5 7

CE -3 -3 0 0 2

TS 0 3 6 0 4

TE -2 -1 2 -2 0

AAMAS-2005 Tutorial • T4 – 20 • Luke Hunsberger

5



Distance Matrix for Airline Scenario

0 -120

168

0

7

250-4 z

t3
t4t2

t1

D z t1 t2 t3 t4

z 0 130 130 250 250

t1 -4 0 48 168 168

t2 -4 0 0 168 168

t3 -124 -120 -120 0 7

t4 -124 -120 -120 0 0

AAMAS-2005 Tutorial • T4 – 21 • Luke Hunsberger

Checking Consistency of an STN

Given an STN S with Distance Graph G and
Distance Matrix D, the following are equiva-
lent (Dechter, Meiri, & Pearl 1991):

• S is consistent.

• Each loop in G has path length ≥ 0.

• The main diagonal of D contains only 0s.

AAMAS-2005 Tutorial • T4 – 22 • Luke Hunsberger

Computing D from Scratch

Polynomial algorithms for computing the All-
Pairs, Shortest-Path Matrix (Cormen, Leiser-
son, & Rivest 1990):

• Floyd-Warshall Algorithm: O(n3)

• Johnson’s Algorithm: O(n2 log n + nm)

AAMAS-2005 Tutorial • T4 – 23 • Luke Hunsberger

Adding Constraint to Consistent STN

• Given: S = (T , C), a consistent STN.

• Adding the new constraint, tj − ti ≤ δ, to
S will maintain the consistency of S iff:

−D(j, i) ≤ δ (i.e., 0 ≤ D(j, i) + δ).

tj
ti

D(j, i)

δ

Note: This result is stated in different forms by many authors
(Dechter, Meiri, & Pearl 1991; Demetrescu & Italiano 2002;
Tsamardinos & Pollack 2003; Hunsberger 2003; Rohnert 1985).

AAMAS-2005 Tutorial • T4 – 24 • Luke Hunsberger

6



Rigidly Connected Time-Points

For consistent STNs, the following are equivalent:

• (tj − ti) = δ, for some δ.

• D(i, j) +D(j, i) = 0

• ti and tj belong to a loop of path-length 0.

D(j, i) = −δ
tj

D(i, j) = δti

AAMAS-2005 Tutorial • T4 – 25 • Luke Hunsberger

Rigidly Connected Time-Points (ctd.)
• ti and tj are said to be rigidly connected if

D(i, j) = −D(j, i).

• A set of time-points that are pairwise rigidly
connected form a rigid component.

7

-4
3 4

-3

-7ti tk

tj

Note: Many authors consider rigidly connected time-points
and rigid components (Tsamardinos, Muscettola, & Morris
1998; Gerevini, Perini, & Ricci 1996; Wetprasit & Sattar 1998).

AAMAS-2005 Tutorial • T4 – 26 • Luke Hunsberger

Examples of Rigid Components

8-3

-5

t2

t3t1

-3
3

-5

5

t2

t1 t3

Cyclical representation requires the fewest edges.

AAMAS-2005 Tutorial • T4 – 27 • Luke Hunsberger

Adding Constraints to Consistent STNs

Result of adding the constraint, tj − ti ≤ δ:

Non-rigid
Inconsistent

Consistent, Rigid
Consistent,
Redundant

Consistent,

Consistent

δ
−D(j, i) D(i, j)

Rohnert (1985) distinguishes most of these cases.

AAMAS-2005 Tutorial • T4 – 28 • Luke Hunsberger

7



Finding a Solution to an STN∗

While some time-points in are not rigid with z,

Pick some ti not rigidly connected to z.

Pick some δ ∈ [−D(ti, z), D(z, ti)].

Add the constraint, ti = δ

(i.e., ti − z ≤ δ and z− ti ≤ −δ).

∗ This algorithm derives from Dechter et al. (1991).

AAMAS-2005 Tutorial • T4 – 29 • Luke Hunsberger

Collapsing Rigid Components

• Select one time-point from each rigid com-
ponent to serve as its representative

• Re-orient edges involving non-representative
members of rigid components

• Associate additional information with each
representative sufficient to enable recon-
struction of its rigid component

(Tsamardinos, Muscettola, & Morris 1998; Gerevini, Perini, &
Ricci 1996; Wetprasit & Sattar 1998).

AAMAS-2005 Tutorial • T4 – 30 • Luke Hunsberger

Collapsing Rigid Components: Example

6 t7z

8-3

-5

-7 7
-12

12

t2

t1 t3

t5

t6
t4

11 44
6

19

6 t7z

t3
23 37

11

19
{(t2,−8), (t1,−5)}

t4

{(t5,−7), (t6,−12)}

AAMAS-2005 Tutorial • T4 – 31 • Luke Hunsberger

Dominated Constraints

An explicit constraint, c: tj − ti ≤ δ, in an STN
S is said to be dominated in S if removing c
from S would result in no change to the distance
matrix D.

tj

tkti

30 40

75

Note: Tsamardinos (1998) defines a different notion of dominance.

AAMAS-2005 Tutorial • T4 – 32 • Luke Hunsberger

8



Dominated Constraints (cont’d.)

If S is consistent and has no rigid components then:

• If D(i, j) < δ, then c is dominated in S.

• If D(i, j) = δ, then c is dominated in S iff there
is some time-point tk ∈ T such that:
δ = D(i, k) +D(k, j).

δ tjti

tk

D(ti, tk) D(tk, tj)

AAMAS-2005 Tutorial • T4 – 33 • Luke Hunsberger

Undominated Constraints

If S has no rigid components, then the set of
undominated constraints in S is uniquely de-
fined and represents the fewest constraints in
any STN equivalent to S. (Hunsberger 2002b)

AAMAS-2005 Tutorial • T4 – 34 • Luke Hunsberger

Canonical Form of an STN ∗

• Convert rigid components to cyclical form.

• Remove all dominated edges from the (unique)
non-rigid remainder of the STN.

UNIQUE REMAINDER
(No Rigidities)

t3

8

-5t1

-3

t2

11

19

6 t7

23

t4

37

t6

5

t5

-12

7

z

COMPONENTS
RIGID

∗ (Hunsberger 2002b)

AAMAS-2005 Tutorial • T4 – 35 • Luke Hunsberger

Incremental Algs for Distance Matrix

AAMAS-2005 Tutorial • T4 – 36 • Luke Hunsberger

9



Computing Dist. Matrix Incrementally

• Incremental algorithms compute changes re-
sulting from adding a single constraint.

• A näıve incremental algorithm can compute
such changes in O(n2) time.

• Better incremental algorithms based on con-
straint propagation—still O(n2).

AAMAS-2005 Tutorial • T4 – 37 • Luke Hunsberger

Adding a Constraint to Consistent STN

Given: New constraint c: tj − ti ≤ δ.

• Case 1: δ < −D(j, i). — Inconsistent!

• Case 2: δ ≥ D(i, j). — Redundant!

• Case 3: δ ∈ [−D(j, i), D(i, j) ).

— Adding c would require updating D.

⇒ Incremental algorithms focus on Case 3.

AAMAS-2005 Tutorial • T4 – 38 • Luke Hunsberger

Näıve Incremental Algorithm

For each entry, D(r, s),

If D(r, i) + δ +D(j, s) < D(r, s), then set

D(r, s) = D(r, i) + δ +D(j, s).

δ

ti tj

D(j, s)

D(r, s) tstr

D(r, i)

.
AAMAS-2005 Tutorial • T4 – 39 • Luke Hunsberger

Constraint Propagation Algorithm∗

• Propagate updates to D along edges in graph.

• Only propagate along tight edges.
(Note: ts − tr ≤ δ is tight iff D(r, s) = δ.)

• Phase I: prop. forward; Phase II: prop. bkwd.

• Checks no more than k∗∆ cells of D, where:
∆ = number of cells needing updating; and
k = max num edges incident on any node.

∗ This algorithm is based on the work of several authors (Rohnert
1985; Even & Gazit 1985; Ramalingam & Reps 1996).

AAMAS-2005 Tutorial • T4 – 40 • Luke Hunsberger

10



Propagating Forward

8

4

6

418

22
tq

tp

tktj

ti 9 → 6

17 → 14

5 → 2

t`

Adding the edge, tj − ti ≤ 2, requires updating

D(i, j), D(i, k) and D(i, `), but not D(i, p).

AAMAS-2005 Tutorial • T4 – 41 • Luke Hunsberger

Propagating Backward

For each t` such that D(i, `) changed during
Forward Propagation, propagate backward from ti:

20

141
th

6

tg

ti

18 → 15

t`

122 tj

Here, D(h, `) needs updating, but not D(g, `).

AAMAS-2005 Tutorial • T4 – 42 • Luke Hunsberger

Improvements to Incremental Alg.

• Maintain canonical form of STN.

• Only updateD for non-rigid portion of STN.

• Propagate only along undominated edges.

• Case 3.1: δ > −D(j, i). (No new rigidities)

• Case 3.2: δ = −D(j, i). (New rigidity(ies))

AAMAS-2005 Tutorial • T4 – 43 • Luke Hunsberger

The Gory Details – Case 3.1
Inputs to Prop3.1:

S = (T , Cu), an STN with only undominated constraints.

D, the distance matrix for S (an array).

For each tr ∈ T , Succs(tr) = {(ts − tr ≤ δrs) ∈ C
u} (a hash-table).

For each tr ∈ T , Precs(tr) = {(tr − tq ≤ δqr) ∈ C
u} (a hash-table).

AffectedTPs, an empty hash-table.

EncounteredTPs, an empty hash-table.

(tj − ti ≤ δ), a new constraint where: −D(j, i) < δ < D(i, j).

Note: This algorithm most closely resembles that of Ramalingam and Reps (1996).

AAMAS-2005 Tutorial • T4 – 44 • Luke Hunsberger

11



The Gory Details – Case 3.1 (cont’d.)

Prop3.1()

Set: D(i, j) = δ.

Insert tj into AffectedTPs.

PropFwd(tj), which adds time-points to AffectedTPs.

For each tv ∈ AffectedTPs,

Clear EncounteredTPs hash-table.

PropBkwd(ti, tv).

AAMAS-2005 Tutorial • T4 – 45 • Luke Hunsberger

The Gory Details — Case 3.1 (cont’d.)
PropFwd(ty), where a path from ti to ty has already been processed
and D(i, y) has been updated to the value δ +D(j, y).

For each tz ∈ Succs(ty),

If tz 6∈ EncounteredTPs,

Insert tz into EncounteredTPs

If D(j, y) + δyz = D(j, z),

If δ +D(j, y) + δyz ≤ D(i, z),

Remove tz from Succs(ti) (if in there)

Remove ti from Precs(tz) (if in there)

If δ +D(j, y) + δyz < D(i, z),

Set: D(i, z) = δ +D(j, y) + δyz

Insert tz into AffectedTPs

PropFwd(tz).

AAMAS-2005 Tutorial • T4 – 46 • Luke Hunsberger

The Gory Details — Case 3.1 (cont’d.)

PropBkwd(ts, tv), where a path from ts to tv has already been processed
and D(s, v) has been updated to the value D(s, i) + δ +D(j, v).

For each tr ∈ Precs(ts),

If tr 6∈ EncounteredTPs,

Insert tr into EncounteredTPs

If δrs +D(s, i) = D(r, i),

If δrs +D(s, i) +D(i, v) ≤ D(r, v),

Remove tr from Precs(tv) (if in there)

Remove tv from Succs(tr) (if in there)

If δrs +D(s, i) +D(i, v) < D(r, v),

Set: D(r, v) = δrs +D(s, i) +D(i, v)

PropBkwd(tr, tv)

AAMAS-2005 Tutorial • T4 – 47 • Luke Hunsberger

Case 3.2: Creating New Rigidity

Adding constraint, tj − ti ≤ −D(j, i).

• Determine newly rigid time-points.

• Collapse new rigid component down to two
points, using ti as rep. for incoming edges
and tj as rep. for outgoing edges.

• Update set Cu of undominated constraints.

• Run Prop3.1 algorithm.

• Collapse ti and tj into a single point.

AAMAS-2005 Tutorial • T4 – 48 • Luke Hunsberger

12



Further Reading

• Demetrescu and Italiano (2001; 2002) con-
sider special cases where each edge can
assume a bounded number of values; or
where all edge weights are non-negative.

• Ramalingham and Reps (1996) introduce
incremental complexity analysis.

• Zaroliagis (2002) discusses incremental and
decremental algorithms.

AAMAS-2005 Tutorial • T4 – 49 • Luke Hunsberger

Real-time Issues

AAMAS-2005 Tutorial • T4 – 50 • Luke Hunsberger

Executing a Temporal Network

• To execute a time-point means to assign
that time-point to the current moment.

• Goal: Maintain consistency of network while
executing its time-points.

• Challenges:
Decisions must be made in real time.
Updating D takes time.

AAMAS-2005 Tutorial • T4 – 51 • Luke Hunsberger

A Sample Execution∗

-1

1

2
-29

0

0
5

-5

-1

1

2

-2

0

9

z

B

D D

C

z

B

C

9

After executing B at time 5, C must be exe-
cuted at time 4 (which is already past).
∗ (Muscettola, Morris, & Tsamardinos 1998)

AAMAS-2005 Tutorial • T4 – 52 • Luke Hunsberger

13



Greedy Dispatcher∗

While some time-points not yet executed:

Wait until some time-point is executable.

If more than one, pick one to execute.

Propagate updates only to neighboring
time-points (i.e., do no fully update D).

∗ (Muscettola, Morris, & Tsamardinos 1998)

AAMAS-2005 Tutorial • T4 – 53 • Luke Hunsberger

Dispatchability∗
• An STN that is guaranteed to be satisfied by

Greedy Dispatcher is called dispatchable.

• Any consistent STN can be transformed into
an equivalent dispatchable STN.

• Step I: The corresponding All-Pairs graph is
equivalent and dispatchable.

• Step II: Remove lower/upper-dominated
edges (does not affect dispatchability).

∗ (Muscettola, Morris, & Tsamardinos 1998)

AAMAS-2005 Tutorial • T4 – 54 • Luke Hunsberger

Lower and Upper Dominance∗

D(U, V ) φ ≥ 0

δ ≥ 0
W

V

U

φ < 0 D(B,C)

B

CA
δ < 0

• The negative edge AC is lower-dominated
if: δ = φ +D(B,C).

• The non-negative edge UW is upper-
dominated if: δ = D(U, V ) + φ.

∗ (Muscettola, Morris, & Tsamardinos 1998)

AAMAS-2005 Tutorial • T4 – 55 • Luke Hunsberger

Collaborative Planning with STNs

AAMAS-2005 Tutorial • T4 – 56 • Luke Hunsberger

14



Initial-Commitment Decision Prob.∗

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

afternoon – earn $1000.
for Factory X by Tuesday
Lay half-mile pipeline

Job Posting

∗ ICDP (Hunsberger & Grosz 2000; Hunsberger 2002b)

AAMAS-2005 Tutorial • T4 – 57 • Luke Hunsberger

The ICDP – in Words

• A group of agents, each with pre-existing com-
mitments subject to temporal constraints

• A new opportunity for group action (a set of tasks
also subject to temporal constraints)

• Agents must reason locally and globally about
whether to commit (alone and together) to the
proposed action.

AAMAS-2005 Tutorial • T4 – 58 • Luke Hunsberger

ICDP Mech. using Combin’l. Auction∗

� � �

� � �

� � �

	 	 	

	 	 	

	 	 	


 
 



 
 



 
 


� � �

� � �

� � �

� � �

� � �

� � �

  

  

   � � �

� � �

� � �

� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

� � �

� � �

� � �

? DIG DITCH

LAY PIPE

WELD PIPE

PLANT GRASS

FILL DITCH

I can plant
the grass
in under 40
minutes

2 hours
if it takes less than
I could lay the pipe

I can lay the pipe
and weld the pipe
on Sunday morning

on Monday after 3
I can dig the ditch

Tasks to be done

∗ (Hunsberger & Grosz 2000; Hunsberger 2002b)

AAMAS-2005 Tutorial • T4 – 59 • Luke Hunsberger

ICDP Mechanism – in Words
• Agents (reasoning locally) bid on subsets of

tasks in group activity: a combinatorial
auction (Rassenti, Smith, & Bulfin 1982).

• Agents include temporal constraints in their
bids to protect their pre-existing commit-
ments.

• Global goal: find an awardable set of bids
(each task covered by some bid; temporal
constraints in bids jointly satisfiable).

AAMAS-2005 Tutorial • T4 – 60 • Luke Hunsberger

15



Problems to Solve re: ICDP
• Bid Generation:

Select tasks and generate protective temporal
constraints

• Winner Determination:
Find an awardable set of bids.

• Post-Auction Coordination:
Deal with temporal dependencies among tasks
being done by different agents without requir-
ing excessive communication overhead.

AAMAS-2005 Tutorial • T4 – 61 • Luke Hunsberger

Bid Generation using STNs

z

SX = (TX, CX)

SY = (TY, CY)
Agent’s Pre-existing Commitments

Proposed Group Activity

SZ = (TZ, CZ) = (TX ∪ TY, CX ∪ CY) is consistent

if SX and SY are (since they only share z).

AAMAS-2005 Tutorial • T4 – 62 • Luke Hunsberger

Bid Generation using STNs (cont’d.)

SB = (TX ∪ TY, CX ∪ CY ∪ CZ) includes additional
constraints, CZ, to ensure that tasks done by the
agent do not overlap.

z

SY
CZ

SX

AAMAS-2005 Tutorial • T4 – 63 • Luke Hunsberger

Bid Generation using STNs (cont’d.)
DB: The distance matrix for SB

Constraints in CZ

z TX TY

TY

TX CxB

CxB = {tj − ti ≤ DB(i, j) | ti, tj ∈ TX} would suffice
(in bid) to protect agent’s pre-existing commitments.

AAMAS-2005 Tutorial • T4 – 64 • Luke Hunsberger

16



Bid Generation using STNs (cont’d.)

. . . but necessary to include only edges in canonical
form of (TX, C

x
B) that are stronger than the corre-

sponding edges in SX = (TX, CX) — i.e., edges for
which DB(i, j) < DX(i, j). (Hunsberger 2001)

z TX

TX

AAMAS-2005 Tutorial • T4 – 65 • Luke Hunsberger

Winner Determination ∗

• Modify existing WD algorithm (Sandholm 2002)
to accommodate temporal constraints.

• Depth-first search in space of partial bid-sets

• Maintain STN, (TX, CX ∪ CB), containing con-
straints from proposed activity plus those from
bids currently being considered.

• Backtrack if this STN becomes inconsistent.

∗ (Hunsberger & Grosz 2000)

AAMAS-2005 Tutorial • T4 – 66 • Luke Hunsberger

Post-Auction Coordination
• Auction yields viable allocation of tasks, but typ-

ically results in temporal dependencies among
tasks being done by different agents.

• Solution 1: Temporally decouple the task-sets be-
ing done by different agents (adds con-
straints, but no need for subsequent coord’n.).

• Solution 2: Relative Temporal Decoupling
(weaker constraints, but requires some subse-
quent coordination).

AAMAS-2005 Tutorial • T4 – 67 • Luke Hunsberger

Temporal Decoupling (TD)∗

• Goal: Enable agents to operate independently
—and hence without communication.

• Method: Add new constraints to ensure
mergeable solutions property.

• Will focus on two-agent case, but works for arbi-
trarily many agents.

(Hunsberger 2002a; 2002b)

AAMAS-2005 Tutorial • T4 – 68 • Luke Hunsberger

17



Typical Case for TD Problem

Subnetwork

for agent GR

ti tj6

54

z

TS
TR

Subnetwork

for agent GS

• Edge from ti to tj not dominated by a path
through z.

• Can fix by strengthening edge from ti to z, or edge
from z to tj, or both.

AAMAS-2005 Tutorial • T4 – 69 • Luke Hunsberger

TD Algorithm∗

• Add intra-subnetwork constraints to ensure that
each tight, proper, inter-subnetwork constraint
is dominated by a path through z.

• Requires processing each such edge only once.

• Afterward, no matter how each agent tightens
constraints in its own subnetwork, all inter-
subnetwork constraints will be satisfied.

(Hunsberger 2002b)

AAMAS-2005 Tutorial • T4 – 70 • Luke Hunsberger

Improvements to TD Algorithm

• When selecting inter-subnetwork edges to
work on, and when deciding how much to
tighten each intra-subnetwork edge, use
heuristics to increase flexibility in resul-
tant decoupled subnetworks.

• Use Iterative Weakening algorithm to ensure
minimal temporal decoupling (i.e., one in
which any further weakening would foil
the decoupling).

AAMAS-2005 Tutorial • T4 – 71 • Luke Hunsberger

Generating a Non-Minimal Decoupling

4

s

4

4

1

4

4

r2

r1 s

3

1
3

z

z

r1

r2

z

3

s

r2

3

r1
43

3

1

AAMAS-2005 Tutorial • T4 – 72 • Luke Hunsberger

18



Alternative Minimal Decouplings

r1

z

r2

s
r1

z

r2

s
4

4

2

2

23

3
4

4

1

AAMAS-2005 Tutorial • T4 – 73 • Luke Hunsberger

Relative Temporal Decoupling (RTD)∗

• Goal: Use weaker constraints, but allow some
inter-subnetwork dependence to remain.

• Method: Given N subnetworks, (N-1) are fully
decoupled; but Nth dependent on the rest.

T1
T2

T3

TN

z

(Hunsberger 2003; 2002b)

AAMAS-2005 Tutorial • T4 – 74 • Luke Hunsberger

Typical Case for RTD Problem

Ts

TN

Tr

z

ti

tj

8

7

3

1

2

3

2

1

Inter-subnetwork path from ti to tj is not dominated
by path through z.

AAMAS-2005 Tutorial • T4 – 75 • Luke Hunsberger

RTD Algorithm∗

(1) Replace each tight, proper, inter-subnetwork
path by an explicit edge.

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � �

TN

Tr

Tsz

ti

tj

8

7

12

3

1

2

3

2

1

(2) Run TD algorithm ignoring Nth subnetwork.

(Hunsberger 2003; 2002b)

AAMAS-2005 Tutorial • T4 – 76 • Luke Hunsberger

19



Lambda Bounds for RTD∗

• After RTD, agent controlling Nth subnetwork is
dependent on the rest.

• Must not re-introduce any inter-subnetwork paths
that would threaten the RTD. (Requirements
captured in Lambda Bounds.)

• Unlike other agents, Nth agent may add edges
linking Nth subnetwork with other subnetworks.

(Hunsberger 2003; 2002b)

AAMAS-2005 Tutorial • T4 – 77 • Luke Hunsberger

Other Applications of RTD

• Submitting a bid imposes restrictions on the bid-
der that are precisely captured by the Lambda
Bounds (where N = 2).

• The RTD algorithm may be recursively applied
yielding an arbitrarily complex hierarchy of de-
pendence and independence.

• Hadad et al. (2003) present an alternative ap-
proach to temporal reasoning in the context of
collaboration.
AAMAS-2005 Tutorial • T4 – 78 • Luke Hunsberger

References

• Cormen, T. H.; Leiserson, C. E.; and Rivest, R. L. 1990. Intro-
duction to Algorithms. Cambridge, MA: The MIT Press.

• Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49:61–95.

• Demetrescu, C., and Italiano, G. F. 2001. Fully dynamic all
pairs shortest paths with real edge weights. In 42nd Annual
Symposium on Foundations of Computer Science (FOCS 2001).
IEEE Computer Society. 260–267.

• Demetrescu, C., and Italiano, G. 2002. A new approach to
dynamic all pairs shortest paths. Technical Report ALCOMFT-
TR-02-92, ALCOM-FT. To appear in Proceedings of the 35th
Annual ACM Symposium on Theory of Computing (STOC’03),
San Diego, California, June 2003.

• Even, S., and Gazit, H. 1985. Updating distances in dynamic
graphs. Methods of Operations Research 49:371–387.

• Gerevini, A.; Perini, A.; and Ricci, F. 1996. Incremental al-
gorithms for managing temporal constraints. Technical Report
IRST-9605-07, IRST.

• Hadad, M.; Kraus, S.; Gal, Y.; and Lin, R. 2003. Time reasoning
for a collaborative planning agent in a dynamic environtment.
Annals of Mathematics and Artificial Intelligence 37(4):331–380.

• Hunsberger, L., and Grosz, B. J. 2000. A combinatorial auction
for collaborative planning. In Fourth International Conference on
MultiAgent Systems (ICMAS-2000), 151–158. IEEE Computer
Society.

• Hunsberger, L. 2001. Generating bids for group-related ac-
tions in the context of prior commitments. In Meyer, J.-J. C.,
and Tambe, M., eds., Intelligent Agents VIII (ATAL-01), volume
2333 of Lecture Notes in Artificial Intelligence. Springer-Verlag.

• Hunsberger, L. 2002a. Algorithms for a temporal decoupling

20



problem in multi-agent planning. In Proceedings of the Eighteenth
National Conference on Artificial Intelligence (AAAI-2002).

• Hunsberger, L. 2002b. Group Decision Making and Temporal
Reasoning. Ph.D. Dissertation, Harvard University. Available as
Harvard Technical Report TR-05-02.

• Hunsberger, L. 2003. Distributing the control of a temporal
network among multiple agents. In Proceedings of the Second
International Joint Conference on Autonomous Agents and Mul-
tiAgent Systems (AAMAS-03).

• Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Refor-
mulating temporal plans for efficient execution. In Proceedings
of the Sixth International Conference on Principles of Knowledge
Representation and Reasoning (KR-98).

• Ramalingam, G., and Reps, T. 1996. On the computational
complexity of dynamic graph problems. Theoretical Computer
Science 158:233–277.

• Rassenti, S.; Smith, V.; and Bulfin, R. 1982. A combinatorial
auction mechanism for airport time slot allocation. Bell Journal
of Economics 13:402–417.

• Rohnert, H. 1985. A dynamization of the all pairs least cost path
problem. In Mehlhorn, K., ed., 2nd Symposium of Theoretical
Aspects of Computer Science (STACS 85), volume 182 of Lecture
Notes in Computer Science. Springer. 279–286.

• Sandholm, T. 2002. An algorithm for optimal winner determi-
nation in combinatorial auctions. Artificial Intelligence 135:1–54.

• Tsamardinos, I., and Pollack, M. E. 2003. Efficient solution
techniques for disjunctive temporal reasoning problems. Artificial
Intelligence 151:43–89.

• Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In Pro-
ceedings of the Fifteenth National Conference on Artificial Intel-
ligence (AAAI-98). Cambridge, MA: The MIT Press. 254–261.

• Tsamardinos, I. 1998. Reformulating temporal plans for efficient
execution. Master’s thesis, University of Pittsburgh.

• Wetprasit, R., and Sattar, A. 1998. Qualitative and quantita-
tive temporal reasoning with points and durations (an extended
abstract). In Fifth International Workshop on Temporal Repre-
sentation and Reasoning (TIME-98), 69–73.

• Zaroliagis, C. D. 2002. Implementations and experimental stud-
ies of dynamic graph algorithms. In Fleischer, R.; Moret, B.;
and Meineche-Schmidt, E., eds., Experimental Algorithmics—
The State of the Art. Springer-Verlag. chapter 11, 229–278.

21



11

Beyond Simple 
Temporal Problems:

Increasing expressiveness and 
including uncertainty

22

���������	�
����������
������

Prepare coffee and toast.  Have them ready within 2 
minutes of each other.  Brew coffee for 3-5 
minutes; toast bread for 2-4 minutes.

33

�����

�����

����������������

• Increasing the expressiveness of the temporal 
constraints:
– Definition Disjunctive Temporal Problem

– Solving DTPs

– Dispatching DTPs

– Planning with temporal constraints

• Explicitly representing uncertainty
– Uncontrollability and unobservability

44

��
���������
�� �����
���!� 




55"������
��	�����������
���������
#��
������


• Typical Plan for an Autominder User

At end of check pulseDepending on pulse, 
take meds

Between 11:00 and 12:00, and 
between 3:00 and 4:00

Check pulse

At end of prepare lunchEat lunch

Between 11:45 and 12:15Prepare lunch

Within 20 minutes of dryer 
ending

Fold clothes

Within 20 minutes of washer 
ending

Put clothes in dryer

Before 10 a.m.Start laundry

TARGET TIMEACTION

Non-overlap:
LE – PS  � 0 ∨
ME – LS ����

Activity disjunct:
Watch the news 
at 10pm or 11pm

66

���������	�
����������
����$�

Prepare coffee and toast.  Have them ready within 2 
minutes of each other.  Brew coffee for 3-5 
minutes; toast bread for 2-4 minutes.  Also take a 
shower for 5-8 minutes, and get dressed, which 
takes 5 minutes.  Be ready to go by 8:20.

%�����&

77

����%�����&����

SS SE

DS DE

[5,8]

[5,5]

[0,∞]

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

[0,∞]

TR

[0,20]

[0,20]

[0,20]

Prepare coffee and toast. Shower and dress.

[(TE � SS)  ∧ (CE  ���S)] ∨ [(DE ���S) ∧ (DE ���S)]

Dress first.Eat first.

88

����%�����&����

SS SE

DS DE

[5,8]

[5,5]

[0,∞]BS

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2] BE

[0,∞]

[0,∞]

TR

[0,∞]

[0,20]

[0,20]

[0,20]

[0,∞]

BE – SS � 0 ∨ DE – BS ��� disjunctive, not binary



99

��
���������#��
������


• Represent non-overlaps (as in our example)

• Can also represent other forms of disjunction
– E.g., take a shower for 5 minutes or a bath for 10 

minutes

1010��
����������� �����
���!� 


• A set of time points (variables) V and a set of 
constraints C of the form: 

lbji ≤ Xi – Xj ≤ ubji ∨ … ∨ lbmk ≤ Xk – Xm ≤ ubmk

• Benefit:  Additional expressive power
• Cost:  Additional computational expense—

reasoning is NP-Hard
– True even for binary problems, i.e., constraints have the 

form

lbji ≤ X – Y ≤ ubji ∨ … ∨ lbmk ≤ X – Y ≤ ubmk

1111

���
 �
�#'�

• One-Level Approach

– Direct assignment of times to DTP variables.

– Limitations:  difficult to deal with infinite domains; 
produces overconstrained solution

• Two-Level Approach
– Construct a meta-level CSP

– Variables:   DTP constraints

– Domains:  Disjuncts from DTP constraints.

– Constraints:  Implicit, assignment must lead to a 
consistent component STP

1212

����'����&���� ��

C1 : {c11 : y – x ≤ 5}

C2 : {c21 : w – y ≤ 5} ∨ {c22 : x – y ≤ -10} ∨
{c23 : z – y ≤ 5}

C3 : {c31 : y – w ≤ -10}

Component STP:  
C1 ← c11, C2 ← c23 , 

C3 ← c31 

One exact solution:  
{x = 0, y = 1, z = 2,   

w = 12}

�� � ���

�� � ���

�� � ���

�� � ��� �� � ���

�� � ���



1313

'�����&��
�	����		�������

• Forward checking / incremental forward checking

• Conflict-directed backjumping

• Removal of subsumed variables

• Semantic branching 

• No-good learning

• Use efficient SAT solvers for meta-level

1414

"� �����	�'�!
� ��������!�


�� � ��� �� � ��� �� � ���

If this assignment to 
Ci is implied by the 
partial assignment 
above it,  prune the 
other values for Ci

1515

"� �����	�'�!
� ��������!�


C1 : {c11 : y – x ≤ 5}

C2 : {c21 : x – z ≤ 5} ∨ {c22 : w – y ≤ -10} 

C3 : {c31 : y – z ≤ 15} ∨ {c32 : z – v ≤ 10} ∨ . . . 

C4, C5, etc.
�� � ���

�� � ���

�� � ���

c11 and c21 imply c31, so no need
to try other values for C3 along 
this branch

1616

'� ��������������&

��≤ � ��≤ �

�����	
������ ���

������¬ ��≤ ��

��≤ �



1717

'� ��������������&
C1 : {c11 : x – y ≤ 5}

C2 : {c21 : x – z ≤ 3} ∨ {c22 : w – z ≤ -6} 

C3 : {c31 : y – w ≤ 2} ∨ {c32 : w – y ≤ 0} ∨ . . . 

C4, C5, . . .

�� � ���

�� � ���

fail

�� � ���
Add ¬c21:  x-z > 3

�� � ���
Fail immediately:
c11, c22, c31, ¬c21 inconsistent

1818

'�(���)�	�
�*

• Current fastest solver, TSAT++, reports:
– ~10 seconds to solve problems with

• 35 variables

• ~210 disjunctive constraints (critical region)

• Each with 2 disjuncts

1919����'����&�����+"�'�������&�
,�� ��
 


DTPs OR
Formalisms

DTPs designed for the needs of 
planning with temporal constraints

2020����'����&�����+"�'�������&�
,�� ��
 


DTPs OR
Formalisms

Example: Job Shop Scheduling
Temporal precedence constraints:  easy to model with DTPs
Resource constraints:  more cumbersome with DTPs



2121����'����&�����+"�'�������&�
,�� ��
 


DTPs OR
Formalisms

Example: Preemption

2222����'����&�����+"�'�������&�
,�� ��
 


DTPs OR
Formalisms

Example: Arbitrary Disjunction
JSS & DTP can both express non-overlap constraints

A < B ∨ B < A (binary with intervals (tasks), non-
binary with time points)

2323����'����&�����+"�'�������&�
,�� ��
 


DTPs OR
Formalisms

But only DTPs can express general constraints
“If treatment A doesn’t last long enough, perform 

treatment B for a given duration.”
~((AE – AS) > d) � (BE – BS) > e
≡ (AS – AE) < -d ∨ (BS – BE) < -e

2424����'����&�����+"�'�������&�
,�� ��
 


DTPs OR
Formalisms

Some DTP solvers provide justifications of failure (e.g., 
minimal sets of inconsistent input constraints)
Useful in plan generation



2525����'����&�����+"�'�������&�
,�� ��
 


DTPs OR
Formalisms

Decision problems:
Often hard to satisfy

Optimization problems:
Often easy to satisfy, but 
hard to optimize

2626

��
�����
)�������


2727

������
������%������-.

• With total control of the execution process:

• Given a DTP, find a consistent component STP S

• Dispatch S using STP dispatch algorithm

2828

������
������%������-�

• With partial control of the execution process (e.g., 
in execution monitoring)

• Given a DTP, find a consistent component STP S
• While no events inconsistent with S occur

– Dispatch S using STP dispatch algorithm

• Otherwise, if event e occurs at time t that is 
inconsistent with S
– Add an execution constraint, t ≤ e – TR ≤ t
– Find a new consistent component STP S



2929

����%�����&����

SS SE

DS DE

[5,8]

[5,5]

[0,∞]BS

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2] BE

[0,∞]

[0,∞]

TR

[0,∞]

[0,20]

[0,20]

[0,20]

[0,∞]

BE – SS � 0 ∨ DE – BS ���

[0,�]

Detect Ss at 8:03

Add: 3 �����– TR ���

3030

/����!� 

• Might “miss” a solution

• X = 2 ∨ X = 1

• Y = 3 ∨ Y = 2

• Y > X

• Don’t see anything at 1

• See Y at 2
All remaining consistent 
component STPs are eliminated

3131

������
������%������-$

• Produce information about what can be done
– Execution Table 

• Specifies what actions are live and enabled (what can 
be done)

• An event e in a DTP is live iff now is in its time 
window

• An event e in a DTP is enabled iff it is enabled in at 
least one consistent component STP

• And what must be done
– Deadline Formula

• Specifies what deadline must be satisfied next (what 
must be done)

3232

��� ��

C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

1. STP1: c11, c22, c32, c41 x before y, z early

2. STP2: c11, c22, c32, c42 x before y, z late

3. STP3: c12, c21, c31, c41 y before x, z early

4. STP4: c12, c21, c31, c42 y before x, z late



3333

��� ��

C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Execution Table: Deadline Formula:

<x, {[5,10], [15,20]}> <x ∨ y, 10>

<y, {[5,10], [15,20]}>

Enabled events and their CNF formula that must be 
time windows satisfied “next”

3434

��
������%�����

• Computing the Execution Table:
– Find all enabled events

– Compute their time windows in every consistent 
component STP

• Computing the Deadline Formula:
– Find the next time at which some event must occur

– Find all events that might have to occur by that time 
point

– Compute the minimal event sets that would ensure that 
not all remaining consistent component STPs are 
eliminated

3535

0��������&�������������,�� ��

Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.

3636

0��������&�������������,�� ��

Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.



3737

��� ��
C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

U(x,1) = U(x,2) = 10
U(x,3) = U(x,4) = 20
U(y,1) = U(y,2) = 20
U(y,3) = U(y,4) = 10
U(z,1) = U(z,3) = 12
U(z,2) = U(z,4) = 22

3838

0��������&�������������,�� ��

Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.

3939

��� ��
C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

U(x,1) = U(x,2) = 10
U(x,3) = U(x,4) = 20
U(y,1) = U(y, 2) = 20
U(y,3) = U(y, 4) = 10
U(z,1) = U(z,3) = 12
U(z,2) = U(z,4) = 22
NC = 10
UMIN = {(x,1), (x,2),(y,3),(y,4)}

4040

0��������&�������������,�� ��

Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.



4141

��� ��
C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

NC = 10
UMIN = {(x,1), (x,2),(y,3),(y,4)}
Sx = {1,2}
Sy = {3,4}

4242

0��������&�������������,�� ��
Generate-DF (Solutions: STP [i])

Let U = the set of upper bounds on time windows, U(x,i) for 
each still unexecuted action x and each STP i.

Let NC, the next critical time point, be the value of the minimum 
upper bound in U.

Let UMIN = {U(x, i)| U(x,i) = NC}.

For each x such that U(x,i) ∈UMIN, let Sx = {i | U(x,i) ∈ UMIN}

Initialize F = true;

For each minimal solution MinCover of the set-cover problem 
(Solutions , ∪Sx), let F = F ∧ (∨ x |  Sx ∈ MinCover x).

Output DF = <F, NC>.

4343

��� ��
C1:  {c11:  5 ≤ x – TR ≤ 10} ∨ {c12:  15 ≤ x – TR ≤ 20}

C2:  {c21:  5 ≤ y – TR ≤ 10} ∨ {c22:  15 ≤ y – TR ≤ 20}

C3:  {c31:  6 ≤ x – y ≤ ∞} ∨ {c32:  6 ≤ y – x ≤ ∞}

C4:  {c41: 11 ≤ z – TR ≤ 12} ∨ {c42:  21 ≤ z – TR ≤ 22}

Consistent Component STPs:

STP1: c11, c22, c32, c41

STP2: c11, c22, c32, c42

STP3: c12, c21, c31, c41

STP4: c12, c21, c31, c42

Sx = {1,2}
Sy = {3,4}

MSC({1,2,3,4},{Sx, Sy}) =
{Sx, Sy}

F = x ∨ y

4444

1��&�����������,�� ��

• Suppose  
– 4 consistent component STPs

– NC = 10 

– U (x, 1) = U (x, 2) = U (y, 3) = U (y, 4) = U (z, 4) = U 
(w, 3) = 10 

• The minimal set covers are 
– {Sx, Sy}  and {Sx, Sw, Sz} 

• So the deadline formula is 
– (x ∨ y) ∧ (x ∨ z ∨ w)



4545

������
���������������

• Requires computation of all component STPs

• May be exponentially many of them

• Open Research Question:  Can we identify 
“representative” sets of component STPs?

4646

���������!����
���

���!
����!����

4747

�����	�
��/&���

• You don’t really get to control how long the coffee 
brews (but you can pop the toast at any time).

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

48482�����&��� �����
�����������

• TP-u (e.g., STP-u)

• Distinguish between two kinds of events:
– Controllable:  the executing agent controls the time of 

occurrence

– Uncontrollable:  “nature” controls the time of occurrence

X

X

Controllable edge (Y controllable event)

Uncontrollable edge (Y uncontrollable event)

Y

Y



4949

������3�����
��	�4'������5

• Strongly Controllable:  There is an assignment of 
time points to the controllable events such that the 
constraints will be satisfied regardless of when the 
uncontrollables occur.

• One (or more) solutions that work no matter what!

5050

������3�����
��	�4'������5

• Weakly Controllable:  For each outcome of the 
uncontrollables, there is an assignment of time 
points to the controllables such that the constraints 
are satisfied.

• One (or more) solutions that work for each outcome.

5151

������3�����
��	�4'������5

• Dynamically Controllable:  As time progresses and 
uncontrollables occur, assignments can be made to 
the controllables such that the constraints are 
satisfied.

• Solutions that are guaranteed to work can be created 
conditionally to observations.

5252

#������!��������'��6�7


X

Y Z

[0,10]

[1,5]

[2,4]

Strongly Controllable
{X=0, Z = 5}

X

Y Z

[0,10]

[1,1]

[2,4]

X

Y Z

[0,10]

[1,1]

[2,4]

Dynamically Controllable
{X=0, Z = Y + 1}

Weakly Controllable
{X=0, Z = Y – 1}

Strong => Dynamic => Weak



5353

�����	�
��/&���

• You don’t really get to control how long the coffee 
brews (but you can pop the toast at any time).

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

Is it controllable?

Yes, strongly controllable:
CS = 0
Ts = 0
TE = 3   (but not 2)

5454

#������!���������+!
����!����

• Different notions of controllability make different 
assumptions about what can be observed

• Strong Controllability: uncontrollable events 
cannot be observed and consistency must be 
guaranteed

• Dynamic Controllability: uncontrollable events can 
be observed and consistency must be guaranteed

• Weak Controllability: “I’m feeling lucky”… and 
luck will always be in a position to help achieve 
consistency

5555

#������!�����������
������!����

• Controllability: defines policies to determine times 
for controllable events depending on knowledge of 
uncontrollable events occurrence

• Dispatchability: identifies effective propagation 
paths such that knowledge on the execution of an 
event constrains the possible execution times for 
other events

5656

����������������


• Controllability definition emphasizes existence of 
solutions

• At execution time we need policies to make 
decision as a function of our knowledge
– Clock time

– Observation of event occurrence (if possible)

• Like in the case of STPs, provide ways to 
determine bounds and repropagation methods to 
create solutions on the fly



5757

'����&���������!��������


X

Y Z

[0,10]

[1,5]

[2,4]

Strongly Controllable

X

Y Z5

-2 4
10

0

-1

YZ ≤ YX + XZ

Step 1: tighten
XZ = YZ – YX 

Step 2: delete YZ

7
-5

X

Y Z

[5,7]
[2,4]

•We need to come up with policies assuming no knowledge 
about the uncontrollable event
•Solution: disconnect any dispatchable link from the event

5858

'����&���������!��������


X

Y Z

[0,4]

[1,5]

[2,4]

X

Y Z5

-2 4
4

0

-1

7

-5

X

Y Z

[5,4]
[2,4]

Inconsistent

5959

�
����6#������!����

• The upper and lower bounds of an uncontrollable 
event are not necessarily propagated outside of the 
uncontrollable link (no necessary tightening of 
uncontrollable links) �

• Bound propagation can originate from an 
uncontrollable event because we can have 
knowledge of its occurrence… �

• … but during execution there can be executions 
that propagate into the uncontrollable event tighter 
bounds than the uncontrollable link (possible 
tightening of the uncontrollable links) �

6060

�
����6�������!��������


X

Y Z

[0,10]

[1,1]

[2,4]

Dynamically Controllable

X

Y Z1

-2 4
10

0

-1

Propagates LB
Y�Z

Propagates UB
Y�Z

OK!



6161

�
����6�������!��������


X

Y Z

[2,4]

[-1,1]

[2,4]

X

Y Z1

-2 4
4

-2

1

Propagates UB
Z�Y

Propagates UB
Y�Z

6262

<Y∨-3>

��&������&��	��������!�����


X

Y Z

[2,4]

[-1,1]

[2,4]

X

Y Z1

-2 4

4

-2

1
Step 1: tighten
ZX = ZY – XY

(no knowledge of Y occurrence) 

-3

Step 2: Add conditional stop
If Y has occurred, then Z can

6363#� �����&����� ���
#������!������	����'���

• Use triangular reductions

• Case 1:  v < 0
– B follows C, so d.c.

• Case 2:  u � 0
– B precedes C:  tighten AB to [y-v, 

x-u] to make d.c.

• Case 3: u < 0 and v � 0
– B is unordered w.r.t C:  tighten 

lower bound of AB to (C or y-v) to 
make d.c.

• Iterate on the entire network

A

C B

[p,q]

[u,v]

[x,y]

6464

8���������&������"��

• “Wait links” are a new type of “partially uncontrollable” link
• If they are present, they cause execution to be contingent on  the 

occurrence of events
• Unlike uncontrollable links, they can be eliminated through 

tightening



65658���������&�����������
#������!����&�


X

Y Z

[<Y∨-3> ,4]

[-∞,1]

[2,4]

W

[0,1]

X

Z

<Y∨-3>

W
-1

1

{1}

{2}

Y?=F

[1, +∞]

6666

<Y∨-2>

8���������&�����������
#������!����&�


X

Y Z

[<Y∨-3> ,4]

[-∞,1]

[2,4]

W
[1, +∞]

[0,1]

X

Z

<Y∨-3>

W
-1

1

6767

<Y∨-2>

8���������&�����������
���������!����&�


X

Y Z

[<Y∨-3> ,4]
[2,4]

W
[1, +∞]

[1,2]

X

Z

W
-1

-1<Y∨-3>

6868,������ ���#������!�����
/&����� 

Loop
{

Compute pseudo-controllability of network;
if (network is inconsistent or not-pseudo controllable)

return “NON DYNAMICALLY CONTROLLABLE”
if (network is pseudo-controllable)

For all ABC triangles in the temporal network
perform all applicable tightenings (triangular 
reductions and wait regressions)

if no tightening were performed
return “DYNAMICALLY CONTROLLABLE”

}



6969

��� ��������#��������

• Without further analysis, the algorithm is pseudo-
polynomial
– Pseudo-controllability: O(NE + N2log N)

– Tightening: O(N3)

– Number of repetition of cycle: U, number of time units 
in widest time bound

• Complexity: O(U N3)

• U could be very large

7070

#���		�!����

• Since the number of edges is finite, indefinite 
tightening is due to the existence of propagation 
cycles

• Cycle traversal must repeat after a maximum 
number of propagation (as in the Bellman-Ford 
algorithm for shortest paths

• Cutoff bound for dynamic controllability:
– O(NK) with K = number of non-controllable links

• Cutoff on the number of cycles gives O(KN4) 
complexity bound.

7171

2�����&�#��
�������������

• CTP (e.g., CSTP)

• Label each node—events are executed only if their 
associated label is true (at a specified observation 
time)

Obs (A)

X

Y

A

~A

Conditional Plan

Obs(A)

X

Y

A

~A

[5,10]

[8,12]

CTP

7272

#���������������
�#��
Travel from Home to S, but if the road is

blocked from B to S, go to P.
If you go to S, arrive after 1p.m. (to take

advantage of the discounts).
If you go to P, arrive at C by 11 a.m. 

(because traffic gets heavy).



7373

'����&�#��
�
�����

• Not strongly consistent:  Must not be at B before 12 
(if A is true); must be at B by 10 (if A is false)—
and can’t observe A until you’re at B.

7474

8����#��
�
�����

• Weakly consistent:  When A is true, leave home 
after 10 (and all other assignments directly follow).  
When A is false, leave home by 9. 

7575

���� ���#��
�
�����

• Not dynamically consistent: Can’t tell when you 
need to leave home until it’s too late.

• Variant that is is dynamically consistent:  Add a 
parking lot at B where you can wait.

7676

0��������&
�� �����
���




7777

0��������&��� ��������


• Various models have been developed, dating back 
to the early 1980’s (DEVISER)

• Beginning to see a convergence in the Constraint-
Based Interval approach

• Model the world with 
– Attributes (features):  e.g., coffee

– Values that hold over intervals:  e.g., brewing

– Times points that bound the intervals:  e.g., bt, be

– Axioms that relate the values

7878

,������
���������


Feature Domain of Values
Coffee none, brewing, ready, stale
Bread untoasted, toasting, toast
Toaster-Status on, off
Toaster-Contents empty, full
Showering yes, no
Bathing yes, no
Clean yes, no
Dressed no, dressing, yes
Location at(X), going(X,Y)

7979

�� ������9�����	����/

������


• Each feature takes a single value at a time, i.e. formally 
there are a set of functions fi(featurei, timej) � valuei,j

where valuei,j ∈ domain(featurei)

• Temporally qualified assertions (tqa’s or just “assertions”):
holds (coffee, 8:03, 8:05, brewing)
holds (toaster-content, X, Y, empty)

• Uniqueness Constraints:  
holds(F,s,e,P) ∧ holds(F,s’,e’,Q) �

[e < s’ ∨ e’ < s  ∨ P = Q]

8080

������&�/��� 


• Used to model actions
• Basic form

Effect �
(Action 1 ∧ Preconditions1 ∧ Constraints1) ∨
(Action 2 ∧ Preconditions2 ∧ Constraints2) ∨
. . .
(Action n ∧ Preconditionsn ∧ Constraintsn)

• Can also partition the knowledge differently
• And can also use axioms to model other types of 

constraints (e.g., mutual exclusion)



8181

��� ���.

holds(coffee, rs, re, ready) �

holds(coffee, bs, be, brewing) ∧
(be = rs) ∧ (3 � be – bs� 5)

holds(coffee, ns, ne, none) ∧
ne = bs

Can also split out into two axioms

Effect � Action

Action � Preconditions

Effect

Action

Preconditions

Add’l. Constraints

Add’l. Constraints

8282

��� ����

holds(clean, cs, ce, yes) �

[holds(showering, hs, he, yes) ∧
he = cs ∧ ce – cs � 120] ∨
[holds(bathing, bs, be, yes) ∧
be = cs ∧ ce – cs � 120]

Effect

Alternative
Actions

8383

��� ���$

holds(bread, rs, re, toasting) �

holds(toaster-status, ts, te, on) ∧
ts = r s ∧ te = re

holds(toaster-contents, cs, ce, full) ∧
cs � rs ∧ re � ce ∧

More 
“interesting” 
temporal 
constraints

8484

��� ���:

“Don’t blow a fuse!”

[holds(coffee, bs, be, brewing) ∧
holds(toaster-status, ts, te, on)]  �

be < ts ∨ te < bs

• Additional mutual exclusion constraints are 
implicit in uniqueness constraints

Mutual 
exclusion



8585

������&�/��� 


General Form:

Assertion ∧ Assertion ∧ . . . Assertion �

(Assertions ∧ Constraints) ∨
(Assertions ∧ Constraints) ∨
. . . 

(Assertions ∧ Constraints)

Head

Alternatives

8686

����������&����!� 

• Given a set of features and their domain, a (partial) 
plan is 
– a set of assertions on those features and

– a set of constraints on the time points of the assertions

• A solution is
– a complete assignment of values to features

– such that all of the constraints are satisfied

8787

����;�������������%�����&����

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 � re-te���

re – TR ��	��
te – TR ��	��
de – TR ��	��

assertions constraints

8888

��������&������

• Select an assertion

• Find all the axioms that apply to it

• For each of those axioms

– Choose an alternative (one disjunct in the tail of 
the axiom)

– Ensure that the assertions and constraints in the 
chosen disjunct are in the plan, either by adding 
them or unifying them with assertions and 
constraints already present



8989

/�����!��/��� 


• Given 
– plan P
– assertion A and 
– axiom M:  X1 ∧ . . . Xn� r.h.s.

• M applies to A if
– For some i, unify (Xi ,M) = , and
– For all j = 1. . . n s.t. j ≠i, unify(Xj,B) = ’ where 

(i)  ’ is an extension of , and

(ii) B is an assertion in P

9090

��������&�����;����������;

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 � re-te���

re – TR ��	��
te – TR ��	��
de-TR ��	��

be = rs

3 � be – bs� 5
ne = bs

holds(coffee, rs, re, ready) �
holds(coffee, bs, be, brewing) ∧

(be = rs)  ∧ (3 � be – bs � 5)
holds(coffee, ns, ne, none) ∧

ne = bs

brewing(bs,be)none(ns,ne)

9191

��������&�����;����������;;

Coffee

Bread

Toaster-status

Toaster-contents

Clean

Showering

Bathing

Dressed

ready(rs,re)

toast(ts,te)

yes(ds,de)

-2 � re-te���

re – TR ��	��
te – TR ��	��
de-TR ��	��

be = rs

3 � be – bs � 5
ne = bs

oe = t s

ge = ds

gs � ce

he = cs

ce – cs� 120

brew(bs,be)none(ns,ne)

toasting(os,oe)

yes(cs,ce)

yes(hs,he)

dressing(gs,ge)

9292#��
��1���
��������<����

�
#��������


Showering

Clean

Exercise

Dressed

yes(hs,he)

dressing(gs,ge)

yes(xs,xe)

yes(cs,ce)

no(ns,ne)

Uniqueness Constraint:  ce � ns ∨ ne ���cs



9393

'����"��
�

Coffee

Bread

Location

ready(rs,re)

toast(ts,te)

brewing(bs,be)

at(kitchen,ls,le)

toasting(os,oe)

none(ns,ne) ls � bs

bs ��
e
ls ��os

os ��
e

9494

��������&�#��
�������3��)���

• The temporal constraints form a DTP

• Technically, a dynamic DTP, since time points are 
added incrementally 

• Use DTP techniques to check consistency 
efficiently

9595

#�;�������&�/&����� 
Unchecked, Assertions � initial assertions
Expand (Unchecked, Assertions, Constraints, Axioms)

If Constraints are inconsistent, fail.
If Unchecked = ∅, return <Assertions, Constraints>.
Select u ∈ Unchecked

For every axiom X ∈Axioms that applies to u
Choose an alternative d from X  {d is the result of the 

unification that causes X to be applicable}
For each assertion s ∈ d
Choose:

Reuse:  Unify s with an assertion in Assertions
New:   Add s to Assertions and Unchecked

Add constraints c ∈ d to Constraints
Expand(Unchecked, Assertions, Constraints, Axioms)

9696

"�
������#��
������
"��
����&=
'�������&



9797

+�����

• Resource representations

• Relationship between planning and scheduling 
representations

• Search spaces: flexible plans and fixed time 
instantiations

• Resource contention measures
– Probabilistic

– Lower/upper bounds

– Envelopes

9898

�����	�
�����>�
� ���

• You are backpacking so you cook the toast on a 
pan…

• …and you have a stove with just one burner.

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

on(cpot,stove)

on(pan,stove)

9999+�������&�����
����
����������&����
�������

pre
add

del

on (?x, stove)

clear (stove)

clear(stove) putOn (?x, stove)

pre
add

del

clear (stove)

on (?x, stove)

on (?x, stove) takeOff (?x, stove)

?x ∈{cpot, pan}

100100

,�� �������&����'�������&

pre
add

del

on (?x, stove)

clear (stove)

clear(stove) putOn (?x, stove)

pre
add

del

clear (stove)

on (?x, stove)

on (?x, stove) takeOff (?x, stove)

stove = 1

stove = 0

stove = 1

stove =0

stove = 1

stove = 0



101101

,�� �������&����'�������&

pre
add

del

putOn (?x, stove)

pre
add

del

takeOff (?x, stove)

stove = 1

stove = 0

stove = 1

stove =0

stove = 1

stove = 0

0 ≤ stove ≤ 1

stove −= 1

stove += 1

102102

,�� �������&����'�������&

putOn (?x, stove)

takeOff (?x, stove)

0 ≤ stove ≤ 1

stove −= 1

stove += 1

S

E

?y: cooking (?x, stove)

<?y, ?x> ∈{<coffe, cpot>, <toast, pan>}

103103

�����	�
���
�'�������&

stove

stove −= 1

stove += 1

S

E

?y: cooking (?x, stove)

<?y, ?x> ∈{<coffe, cpot>, <toast, pan>}

0

1

Initial state: holds 
irrespective of plan

Plan resource profile: it 
depends on subgoaling

status

104104/����)��	�������&�����
'�������&

• Planning primarily focuses on constructing a 
consistent evolution of the world (states and 
transitions)

• Scheduling almost entirely focuses on handling 
mutual exclusion and deadlines

• …but since the beginning planning was also 
addressing scheduling – flaws can be often seen as 
scheduling conflicts

• Graphplan and mutual exclusions implicitly 
brought this concept to the forefront



105105

"� ����/&����������&
Max_ThrustIdle Idle

Poke

Timer

Attitude

Accum

SEP Action

SEP_Segment

Th_Seg

Start_Up Start_Up
Shut_Down Shut_Down

Thr_Boundary

Thrust ThrustThrustThrustStandby Standby Standby

Th_Sega Th_Seg Th_SegIdle_Seg Idle_Seg

Accum_NO_Thr Accum_ThrAccum_Thr Accum_ThrThr_Boundary

CP(Ips_Tvc) CP(Ips_Tvc) CP(Ips_Tvc)

Th_Seg

ti ∈min(ti) max(ti)

106106

"�
������%���


gasFlow

gasFlow −= 20.0

gasFlow += 20.0

S

E

?y: cooking (?x, gasFlow)

0

100.0

•Discrete/continuous capacity
•Example: solar panels power

107107

"�
������%���


gasFlow

gasFlow += 100.0

gasFlow −= 100.0

S

E

?friend: AtCamp (hasStove)

0

100.0

•Resource producers

holds (Me, Plans ,Plane, AtCamp(hasStove)

108108

"�
������%���


gasAmount

gasAmount −= 20.0S

E

?y: cooking (?x, gasAmount)

0

100.0

•Permanent consumption/production



109109;�
�		���������	�'���)�
�6
#��
�����"�
������%���

gasAmount

gasAmount += gasFlow*dS

E

?y: cooking (?x, gasFlow)

0

100.0

[d,d]

110110;�
�		���������	�'���)�
�6
#��
�����"�
������%���

gasAmount

gasAmount −= gasFlow*dS

E

?y: cooking (?x, gasFlow)

0

100.0

[d,d]

111111;�
�		���������	�'���)�
�6
#��
�����"�
������%���

gasAmount

gasAmount −= 200.0S

E

?y: cooking (?x, 20.0)

0

100.0

[10,10]

Cannot cook Texan barbeque in a California backcountry camp 
with limits on amount of storable fuel!

112112;�
�		���������	�'���)�
�6
#��
�����"�
������%���

gasAmount
0

100.0

S

E

?y: cooking (?x, 20.0) d ∈[10,10],
0 < t ≤ d, gasAmount (t) −= 20.0*t

What counts is how the 
consumption rate accumulates over 

time

Start cooking Friend arrives End cooking



113113

,���!�����������
?'������

• After a plan is executed, all variables (time, parameters) 

will be set to specific values
• Potential execution strategy: select the fixed values in 

advance and simply send them to the controlled device at 
the appropriate time.

• Worked reasonably well for spacecraft like Voyager.
• Not a lot is happening in the vacuum of space, though…
• Fundamental obstacles in the real world

– Uncontrollability
– Unobservability

• Two possible strategies
– Flexible policies
– “Fix values and repair”

1141142�)�����������,���!�������	�
��
'������

TR

TETS

CECS
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

on(cpot,stove)

on(pan,stove)

115115

2�)����!������	���!��
������

TR

TETS

CECS

5

2

-3

2

4

-2

0

0

0

0

Can we start making the toast after the coffee is brewed? YES

116116

2�)����!������	���!��
������

TR

TETS

CECS

5

2

-3

2

4

-2

0

0

Can we start brewing the coffee after the toast is ready?

0
-1



117117+�������������������	������������
���


A B

r += 1 r �= 1

0

[0, +∞]
precedence

anti-precedence

C

r �= 1

0

• B�A anti-precedence creates a consumer/produced “coupling”
• B can rely on A to produce the resource it needs. Therefore, B will 

never cause a resource oversubscription
• With the addition of C�A, C and B compete to “match” with A
• Introducing “coupling” links and managing actual “matches” is what a 

flexible scheduling algorithm really does

118118

�#��
�������&
• [Cheung and Smith, 1997] use scratch propagation for unary capacity 

makespan optimization job-shop scheduling
• Scratch propagation can be done using Dijkstra algorithm from each 

end time to the start times on the same resource
• Scratch propagation cost: O(N2logN) but can terminate early when all 

starts on same resource have been reached
• Incremental propagation achieves better speed
• Three cases for each pair of activities:

– Inconsistency: no ordering is possible
– Pruning: only one ordering is possible
– Heuristic selection: if both orders are possible, select one according to a 

heuristic (e.g., maximum slack)
• Heuristic selection pair to resolve next is determined by a heuristic 

(e.g., minimum average slack)
• Search methods

– Iterative Sampling with randomization

119119,������� ��'�������&�����
����������������


[Chien et al. 2005] Automated Sciencecraft Experiment

{PowerUp (Imager)} before
{s ∈ [10:00, 13:30], Image(lat, long, Mt.Etna)} 

dataBuffer −= 100

120120,����6�� ��
�������&�����
����������������




121121

#��	����"������%�����


• Use a repair method to eliminate a conflict
• ASE uses a planner, not just a scheduler.
• Hence it is possible to generate new activities or 

select different task decompositions
• Repair methods

– move an activity
– delete an activity
– add a new activity
– detailing an activity
– abstracting an activity
– etc.

Add producer of 
resource. Not 

handled in classical 
scheduling

Chose different activity 
decomposition

122122,�� �������&�������������
���������
��������

Planner Executive

OKFAIL

Repair plan using same 
method to generate it

123123#� ����
����	�,���!������,�����
������
��.�

• Fixed policies
– Pros

• Simple and intuitive to implement
– It is easier to think of heuristics based on resource profiles

• More compact data structures
• Less costly propagation

– Cons
• Plan does not give “declarative” measure of 

robustness
– Execution repair is fundamental to robustness

• A full plan repair process may be too expensive at 
execution time

– ASE has only 4 MIPS available

124124#� ����
����	�,���!������,�����
������
����

• Flexible policies
– Pros

• Plan guarantees measure of robustness
– Flexible policies break less often

• Execution time adjustments are intrinsically fast (propagation 
vs planning)

– Cons

• More complex 
– But complexity and computational expenses mostly affect off-line 

planning

• Actual value of flexibility is only as good as the semantics of 
the representation

– … and this is why you are taking this tutorial!



125125,�� �������&�������������
8�����������������
����/'�

Planner Executive

• Planner’s detailed command expansion finds a “witness” to plan consistency
• If failures propagates at the highest activity level, this is a major problem
• Eliminating top-level failure requires careful tuning of “abstraction”
• Differences in internal planner/executive representations pushes toward 

conservatism to avoid mismatches and inconsistencies (it happened in Remote 
Agent…)

• Therefore, robustness is achieved at design time through careful modeling
• Flexible representations could help that design process

126126������&�	���!��������
�	�� �
	������� ��
������


• Simple strategy for single capacity resources: simply keep 
the ordering constraints and uncommit the times from the 
fixed values

• Continuous/discrete capacity resources require the 
introduction of anti-precedence couplings between 
consumers and producers

• [Policella et al, 2004] Transform fixed schedule into 
“chaining form” partial order

• Decompose multiple capacity resource into “virtual” single 
capacity resources and add couplings on chains

4

127127

���!�!��
���� ��
���

�	���
����������������

128128

#���������
������	�
�

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

on(cpot,stove)

on(pan,stove)

-11

-11



129129�� ��!����
�������
������
���	���


• Without further coordination, C and T are free to 
collide for the use of the stove

• The inclusion of anti-precedence links 
(“couplings” of producers to consumers) reduce 
and eventually eliminate the possibility of conflict

C

T

130130�� ��!����
�������
������
���	���


• Without further coordination, C and T are free to 
collide for the use of the stove

• The inclusion of anti-precedence links 
(“couplings” of producers to consumers) reduce 
and eventually eliminate the possibility of conflict

C

T

131131�� �����;�	�� ������	���
#����������/���
�


• Partial temporal information (e.g., time bounds for events) 
is insufficient to determine informative contention 
measures.

• More (full) temporal information is expensive to acquire 
and maintain

• There needs to be a balance between cost and utility of 
temporal/research inferences. Eventual value is in  search 
improvement

C

T

C

Tor ?

132132

���!�!��
����"�
������#���������
• Use probabilistic assumptions to generate time 

assignments given a temporal network
• Combine probabilistic assignments into contention 

statistics
• Use contention statistics as the basis for search 

heuristics
• Heuristic factors in probabilistic analysis:

– Selection of problem sub-structure at the basis of 
statistics

– Probabilistic assumptions on how activities request 
resource capacity

– Variable/value ordering rules that use statistics



133133���!�!��
���������������!�
������
�� ��)����)


• [Beck & Fox 2000] Assumptions:
– Fixed durations, consumption at start, same production 

at end

– Uniform distribution of start times

– Time bounds only

• Individual action demand inside the time bound:
– di(t) = max(est, t-dur)≤ ≤min(lft, t+dur) ri/(lft – est)

�ri +ri

134134

• Aggregate demand = sum demand curves = 
expected value of instantaneous resource requests

• How to use it
– Find maximum over all curves � maximum contention

– Find pair with maximum demand at contention point 
that are not already ordered

���!�!��
���������������!�
���
����� ��)����)


135135/�������)����������������@��
���	���


• Minimum Conflict Sets (MCS) [Laborie & Ghallab 1995]
• Minimum size sets of potentially conflicting activities with 

capacity request exceeding availability
• Order any activity pair in an MCS and eliminate one or more 

MCS
• No conflicts when there are no more MCSs
• Potentially an exponential number MCS but we only really 

care about ordering pairs of activities (O(N2)) so there are very 
strong dominance rules

2

3
4

1
1

5.0

MCS

MCS

�MCS

136136���!�!��
����������������
��&�
�������������	�� �����

• Monte Carlo resource contention [Muscettola 1994]
• Consider all known temporal constraints
• Simulate a sample of executions ignoring resource contention
• Then compare expected resource request to resource limit to identify 

conflict areas
• Monte Carlo methods are also used in analysis of plan executions



137137#� ����
����	�
����
�����
����������� ��
���


• Monte Carlo simulation is more informed
• Time-window method is less computationally 

expensive
– Time windows: O(N) in time and space
– Monte Carlo: with sample size S

• O(S E) in time (if network is dispatchable)
• O(S N) in space

• Monte Carlo method also biases sample depending 
on stochastic rule used to simulate the network
– … but the rule can increase realism if it accurately 

describes execution conditions

138138

"�
�������
�&��
�����


139139,�� �!����	�
�������	����������
!�����

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

-11

-11

<t2e, 2>

A1

A2

A3

A4

<t1s, 2> <t1e, -2>

<t2s, -1>

<t4s, 4>

<t4e, -4>

<t3s,-6> <t3e, 3>

Ts Te[30, 30]

[0, 6]

time

Resource
Usage

C

140140

'������0�������

• The ability of detecting early that the flexible plan 
is resource/time inconsistent can save exponential 
amount of work

• Same for early detection of a solution



141141

3����	�����������
������!����


• Statistical methods of resource contention give 
sufficient conditions to determine that a solution 
has not been achieved

• They cannot guarantee either inconsistency or 
achievement of a solution

• Exact resource bounds can

142142

"�
�����������


time

Resource
Usage

s1

s2

s3

s4

Lupper

Llower

• Case 1: bounds always within limits � solution

• Case 2: bounds at least once outside the limit � inconsistency

• Case 3: otherwise � search

143143

�����
�������
��

• In summary, bounds try to summarize the status of 
an exponential number of schedules

• As in the case of probabilistic measures, we can 
obtain different bounds depending of how much 
structural information on producer/consumer 
coupling we use

• The more information, the tighter the bound

• The more information, the more costly the bound

144144

1��
����	�� ������!����


• Same situation as for statistical measures
• Bounds have to become non-overlapping to eliminate 

contention
• This cannot be done by the addition of precedence 

constraints alone if the schedule is very flexible
• Produced schedules are “flexible fixed time” schedules 

(i.e., constraint earliest and latest event times)



145145�� �����;�	�� ���������,���!��
���


[1, 10]

<e2e, 2>

A1

A2

A3

A4

<e1s, 4> <e1e, -4>

<e2s, 3>

<e4s, 4>

<e4e,- 4>

<e3s, -5> <e3e, 3>

Ts Te[30, 30]

[1, 4]

[2, 5]

[-2, 3]

[1, 5]

[2, 3]

[0, 4]

[-1, 4]

[0, +∞]

[0, +∞]

[1, 1]

[0, 6] e1s e1e

e2s e2e

e3s e3e

e4s

e4e-1 10
5

-2
-1

1

3

-2

0

4 1

0
4

5

-1

0

6

Ts Te30

-30

-1

4 0

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

Anti-Precedence Graph

[et(e), lt(e)] ⇔ et(e) = -|e Ts|
∧ lt(e) = |Ts e|
|e1e2| ≤ 0 ⇔ e1→… → e2

146146

�������#��
������������


• Event centered: measure contention from the point 
of view of an event, not an absolute time reference

• Fundamental idea:
– Make exact measures of consumption/production for 

predecessors and successors

– Make worst case assumptions for all other events

…

A21 A22 A2n

[1, 1]

[2, 2]

-1 1A11 A12 A1n

…

A23

Lmin, ≤ = − n −1 Lmin, ≥ = − n

147147

#�
���	�!���������
�������!����

• Non incremental cost (compute the bound from 
scratch)
– Find the anti-precedence network: O(NE) / O(NE + 

N2log N)
– Compute bounds from each event: O(NE) / O(N2)

• Total cost (time propagation + bounds): O(NE) / 
O(NE + N2 logN)

• Incremental propagation can reduce cost per each 
iteration

• Used succesfully for optimal scheduling in 
[Laborie 2001]

1481481��
���

��	��������#��
�������
�����

• If the two chains in the example operate on a resource with 
capacity 2, no constraint need to be added

• The Balance Constraint Bound however needs the addition 
of quite tight precedence constraints to detect a consistent 
solution

• The cause is the lack of consideration of the structure of the 
network not necessarily ordered with the event

[0, +∞]
[0, +∞]

…

A21 A22 A2n

[1, 1]

[2, 2]

-1 1A11 A12 A1n

…

A23



149149

"�
������
�������


150150

"�
�������������

time

Resource
Usage

Lupper

Llower

Lmin

Lmax

• Manager: “I am tired of half measures. How about giving 
me the tightest possible bounds?”

• Computer Scientist A: “Hmmm…I don’t know. It looks 
difficult. Remember the exponential number of schedules?

• Rocket Scientist B: “Aw, no problem. I’ll give you a fast 
polynomial algorithm for it …”

151151

482/�*5

• ∃s∈St | s ∈Sr Scheduling problem   NP-hard

St

Sr

• ∀s∈St | s ∈Sr Resource envelope      looks hard(er)

152152"�
��������������%�����
;�����������
��������

e1s

0

1

10

r1= 1

-1

3 5

r1= -1

A1

<[0, 3], r1> <[5, 10], -r1>

e1e

<[8, 14], − r2><[5, 11], r2><[0, 3], r1> <[4, 10], − r1>

[1, 1]

0 14

r1= 1; r2 = 2

5

1

2

0 14

r1= 2; r2 = 1

10

1

2

A3A2e2s e2e e3s e3e



153153

������&���	���������

t = 3

t = 4

t = 1 t = 2

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

0 1 2 3 4

Lmax

t = 5

5

t = 6

t = 17

6 17

154154

������&������


Ct
Rt

Ot

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

PX = predecessor set of event set X

P{e2s, e3e} = {e2s, e3e, e3s, e1e, e1s}

Pmax = predecessor set of maximum total weight

t

155155

A����&����� �
���
• “Find predecessor set within events that are pending at t

that causes the maximum envelope increment”

• If we consider all “couplings” (due to anti-precedence links 
posted by the scheduler or due to original requirements), 
we can find sets of events that match. These will balance 
each other and cause no effect of the envelope level

• Events that do not match create a surplus or a deficit

• The amount of surplus (if any) represents the increase in 
resource envelope level.

• KEY PROBLEM: how do we compute the maximum 
match?

156156

%��� � �	�)

f(e1, e2) = − f(e2, e1) skew symmetry
f(e1, e2) ≤ c(e1, e2) capacity constraint
f({σ}, A) = f(A, {τ}) + f(A, Ac) flow conservation

σ
τ A

Ac

f({σ}, A) = value of flow.
Maximize it .

Augmenting path = path from σ to τ with positive residual
No augmenting path = flow is maximum

Residual network
For each pair of nodes: rf(e1, e2) = c(e1, e2) – f(e1, e2)



157157

%��� � �,�)�/&����� 


Distance labelO(N3)FIFO Preflow-push

Distance labelO(N2E)Generic Preflow-push

Shortest 
distance to τ

O(N2E)Successive shortest 
paths

Total pushable
flow

O(NE logU)Capacity scaling

Total pushable
flow

O(N E U)Labeling

Complexity
Key

Time
Complexity

Algorithm

158158"�
������;���� ����,�)�
3��)���

e2e

e4e
e4s

e3e

e2s

e1s e1e

e3s
+∞

+∞

+∞

+∞

+∞
+∞

+∞
+∞

+∞

+∞

Internal flow edges(precedence constraints)

2

3

4

3
4

Incoming flow edges (producer events)

4

5

4

Outgoing flow edges (consumer events)

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e στ

159159

/�
� ���� �� 
������� ���!� 

-

-

-

-

-

+

+

+

+

160160%��� � �"�
�����61����
;���� �����������

���'��

Theorem 1 : Pmax = set of events that is reachable 
from σ in the residual network of a fmax

Theorem 2 : Pmax is unique and has the minimal 
number of events



41

161161'����������'�����������
'������������ �

We know how to 
compute a Pmax but …

… given a Pmax is there a temporally consistent 
schedule and a time tx such that all
events in CH and Pmax are schedule at or before tx and 
all events in Pc

max and OH are
scheduled after tx?

Theorem 
3: Yes!

162162%��� � �"�
������1��������
"�
�������������

• Complete envelope profile [Muscettola, CP 2002]
– Lmax(t) = ∆(Ct) + ∆(Pmax(Rt))

– Pmax(Rt) and Ct change only at et(e) and lt(e).

– Complexity: O(n O(maxflow(n, m, U)) + nm)

• Can we do better?

163163

������&���	���������

t = 3

t = 1 t = 2

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], 4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -5> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

0 1 2 3 4

Lmax

5 6 17

164164

'��&���"�
�������������

• Do not repeat flow operations on portion of the 
network that has already been used to compute 
envelope levels

• Deletion of flow due to elimination of consumers 
at time out do not cause perturbation to 
incremental flow

• We can reuse much (all?) of the flow computation 
at previous stages, increasing performance 



165165

2�)����
����)���*

<[5, 17], -4>

<[6, 13], 2>

<[1, 4], −4>
<[3,9], -4>

<[4, 10], 3>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e2s e2e

e3s e3e

e4s

e4e

<[1, 4], −4>
<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e3s e3e

e4s

t = 3

4 units of flow

3
1

4

2

166166

22

Flow Reduction

1

,�)�#����������
t = 4

<[1, 4], −4>
<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1s e1e

e3s e3e

e4s 4

3
1

4

This event must go!
It enters C4
Push back the flow

Flow Shift

2

0 1

167167

Flow Expansion

,�)������
���
t = 4

<[3,9], -4>

<[3, 15], 4>

<[2, 11], -2> <[3, 15], 3>

e1e

e3s e3e

e4s 3

3
2

4 e4s

<[4, 10], 3>

e2s

New event!
Add flow

0

Pmax(4)

168168

"����
�����<������

Lmax(ti) = Lmax(ti-1) +

∆( E1 = events in Pc
max(ti-1) closed at time ti) + 

∆( E2 = events in Pmax after Flow Contraction on 
remainder of E1 elimination) +

∆( E3 = events in Pmax after Flow Expansion on 
remainder of E2 elimination)



169169

#� �������/���
�

• Look at all known Maximum Flow algorithms

• Identify complexity key
– Total pushable flow (Labeling methods)

– Shortest distance to τ (Successive Shortest Paths)

– Distance label (Preflow-push methods)

• Show that complexity keys have same monotonic 
properties across multiple envelope stages that over a 
computation of maximum flow over entire network.

• Hence, complexity is O(Maxflow(n, m, U))

170170'�  ���@�����������	�� �
���	����  ���
��	�	�������
;#/�'��BB:������)��


“Sure, nice theory. But theory 
ain’t much. Where are the 

empirical results, eh?” 

171171

Average run-time for the calculation of one envelope during search
(minimum and maximum level)

T est set s  from Weglarz, J. (ed.): P roject  S cheduling - R ecent  Models , Algor it hms and Applicat ions. K luwer , B ost on, 199 9, p. 197-
212

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

[number of events]

[s
ec

on
ds

]

INCREMENTAL 0.00080 0.00369 0.01924

NON-INCRMENTAL 0.00143 0.01736 0.14873

20 40 60
SPEED-UP 7.54.51.8

� �������
��������	�
��&���
�&����� 

172172

��������
�������&�
��	��
• [Policella et al. 2004] 

• Non-backtrack, non-randomized commitment procedure
– either it finds a schedule at the first trial or it never will

• Two kinds of contention profiles tested
– Resource envelopes

– Earliest start profiles – profiles obtained by schedule executing all 
activities as early as possible

• Methods using earliest start profiles perform better on 
tested benchmark

• Open problem: is there other structural information in the 
envelopes that can be useful outside of contention 
identification?



173173

+���%���������	�
�

TR

TETS

CECS
[0, 20]

[0, 20]

[3,5]

[3,5]

[-3,3]

-11

-11

THE END



�����������	
The literature on temporal reasoning and planning is extensive. Here we list only some  initial sources for ideas 

and, where avaiable, survey papers that provide detail and additional references; these survey papers are 
in boldface and color.

Constraint-Satisfaction Processing:
• R. Dechter, Constraint Processing, Morgan Kaufmann, 2003.
Qualitative Models of Time:
• J. Allen, “A General Model of Action and Time,” Artificial Intelligence 23(2), 1984.
• M. Vilain and H. Kautz, “Constraint Propogation Algorithms for Temporal Reasoning,” Proc. Of the 5th

National Conference on Artificial Intelligence (AAAI), 1986.
• Chapter 12 of Dechter, Constraint Processing, (see above).
Simple and Disjunctive Temporal Problems:
• R. Dechter, I. Meiri, and J. Pearl, “Temporal Constraint Networks,” Artificial Intelligence, 49(1-3), 

1991.
• E. Schwalb and R. Dechter, “Processing Temporal Constraint Networks,” Artificial Intelligence 

93(1-2), 1997.
• K. Stergiou and M. Kourbarakis, “Backtracking Algorithms for Disjunctions of Temporal Constraints,” 

Artificial Intelligence 120(1), 2000.
• A. Oddi and A. Cesta, “Incremental Forward Checking for the Disjunctive Temporal Problem,” Proc. 

Of the 14th European Conference on Artificial Intelligence (ECAI), 2000.
• I. Tsamardinos and M. E. Pollack, “Efficient Solution Techniques for Disjunctive Temporal Reasoning 

Problems,” Artificial Intelligence, 2003.
• A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea, “A SAT-Based Decision Procedure for the 

Boolean Combination of Difference Constraints,” Proc. Of the 7th International Conference on Theory 
and Applications of Satisfiability Testing, 2004.



�����������		
Dispatch of Disjunctive Temporal Problems:

• I. Tsamardinos, M. E. Pollack, and P. Ganchev, “Flexible Dispatch of Disjunctive Temporal Problems,” Proc. Of the 6th 
European Conference on Planning (ECP), 2001.

Unobservability and Uncontrollability:

• T. Vidal and H. Fargier. “Handling contingency in temporal constraint networks: from consistency to controllabilities” 
Journal of Experimental and Theoretical Artificial Intelligence, 11(1):23-45, 1999.

• P. Morris, N. Muscettola, and T. Vidal, “Dynamic Control of Plans with Temporal Uncertainty,” Proc. Of the 7th 
International Joint Conference on Artificial Intelligence, 2001.

• I. Tsamardinos and M. E. Pollack, “CTP:  A New Constraint-Based Formalism for Conditional, Temporal Planning,” 
Constraints 8, 2003.

Planning with Temporal Constraints:

• M. Ghallab and H. Laruelle, “Representation and Control in IxTeT, a Temporal Planner,” Proc. 2nd Intl. Conference on 
AI Planning Systems (AIPS), 1994.

• N. Muscettola, “HSTS: Integrating Planning and Scheduling,” in Intelligent Scheduling, Monte Zweben & Mark Fox 
eds., Morgan Kaufmann, 1994.

• Chapter 12 of Dechter, Constraint Processing, (see above).
• Chapters 13 and 14 of M. Ghallab, D. Nau, and P. Traverso, Automated Planning:  Theory and Practice, Elsevier, 

2004
• D. E. Smith, J. Frank, and A. Jonsson, “Bridging the Gap between Planning and Scheduling,” The Knowledge 

Engineering Review, 15, 2000.
• J. Frank and A. Jonsson, “Constraint-Based Attribute and Interval Planning,” Constraints 8, 2003.



�����������			
Resource Constraint Reasoning: Scheduling:

• Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and Brian C. Williams. Remote agent: To boldly go where no AI 
system has gone before. Artificial Intelligence, 103(1/2), August 1998

• Cheng, C. and S.F. Smith, Applying Constraint Satisfaction Techniques to Job-Shop Scheduling (The Long Version), 
Robotics Institute Technical Report CMU-RI-TR-95-03, January, 1995. [Published in Annals of Operations Research, 
Vol. 70, Special Issue on Scheduling: Theory and Practice, 1997.] 

• S. Chien, R. Sherwood, D. Tran, B. Cichy, G. Rabideau, R. Castano, A. Davies, D. Mandel, S. Frye, B. Trout, S. 
Shulman, D. Boyer. “Using Autonomy Flight Software to Improve Science Return on Earth Observing One”, Journal of 
Aerospace Computing, Information, and Communication . April 2005  + PDF

• N. Policella, A. Oddi, S.F. Smith and A. Cesta. “Generating Robust Partial Order Schedules” In  Proc of CP 2004,
Lecture Notes on Computer Science (LNCS) Vol. 3258, pp. 496-511, M. Wallace (Ed.), Springer, 2004.

Probabilistic Measures of Resource Contention:

• Beck, J.C. & Fox, M.S., Constraint Directed Techniques for Scheduling with Alternative Activities, Artificial 
Intelligence, 121(1-2), 211-250, 2000.

• Nicola Muscettola: On the Utility of Bottleneck Reasoning for Scheduling. AAAI 1994: 1105-1110

Resource Usage Bounds:

• Philippe Laborie “Algorithms for propagating resource constraints in AI planning and scheduling: Existing 
approaches and new results”, Artificial Intelligence, 143(2), pp. 151-188, 2003

Resource Envelopes:

• R.K.Ahuja, T.L.Magnanti, J.B.Orlin. Network Flows, Prentice Hall, 1993.
• N. Muscettola “Computing the envelope of Stepwise-Constant Resource Allocations”, Proc. of CP 2002, Ithaca, NY, 

2002.

• N. Muscettola “Incremental Maximum Flows for Fast Envelope Computation”, Proceedings of the 14th International 
Conference on Automated Planning & Scheduling, ICAPS04, Whistler, British Columbia, Canada, 2004.

• N. Policella, S.F. Smith, A. Cesta and A. Oddi (2004). “Generating Robust Schedules through Temporal Flexibility” In , 
Proceedings of the 14th International Conference on Automated Planning & Scheduling, ICAPS04, Whistler, British 
Columbia, Canada, 2004.


