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The Informatics side of Proteomics,
Chemometrics, Metabolomics,
Metabonomics, …
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Goal of the StudyGoal of the Study

Various experimental techniques can
generate a large volume of data
(Microarray, MS, NMR,…).
Applied mathematicians (statisticians,
numerical analysts,…) can “slice and dice”
the data beyond recognition.
The goal is to find biologically/chemically
relevant information from the data.
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AnalysisAnalysis
Determine the goal of the analysis and apply the

appropriate mathematical technique(s).

Numerical Analysis
“Find a mathematical model that separates one

histological state from another”

Bioinformatic Analysis
“Find one or more biomarkers that separate one

histological state from another”



ABCCBrian T. Luke
5

Source of the DataSource of the Data

Microarray Experiments
Florescence intensity is proportional to the concentration of

gene-specific mRNA.  It is assumed that this is also
proportional to the expression level of the particular gene.

NMR/Mass Spectra
Material obtained from particular cells – Metabolomics
Spectra taken of plasma or urine – Metabonomics
Spectra produces a fingerprint of the sample.
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Conditioning DataConditioning Data

Make sure there is no missing data.
Remove background intensities (NMR and
MS)
Remove effects of added markers,
substrate or solvent, and any other
“constant” features.
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NMR SpectraNMR Spectra
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Preprocessing DatasetPreprocessing Dataset

In many cases, the original data can be
reduced.

Microarray
Remove any gene with a constant expression level across

different histologies.

Spectra (NMR/MS)
Replace peaks by single lines or separate integrated

intensities into bins (binning).
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Spectral FittingSpectral Fitting
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BinningBinning
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Preprocessing DatasetPreprocessing Dataset
Normalize the data so that different runs can

be combined and new results added.

Microarray
Use “control” spots to normalize intensities.

NMR and MS
Constant integrated intensity, constant maximum

intensity,…
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Search for OutliersSearch for Outliers

An outlier is a run/sample/cohort that, when
taken as a whole, is not similar to any
others.
Normal Distribution
Principal Component Analysis
Sammon Map
Closest Neighbor Plot
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Statistical Method of FindingStatistical Method of Finding
outliersoutliers

Statistics textbooks state that an outlier has a
feature value that is more than two or three
standard deviations from the mean.

The underlying assumptions are
The number of samples is large.
Each sample has a small number of features.
The values for a feature over all samples forms a normal
or gaussian distribution.
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Statistical Method of FindingStatistical Method of Finding
outliersoutliers
For most datasets, none of these assumptions

hold.

The number of samples is small so the mean and standard
deviation are not well defined.
There are a large number of features per sample so
examining any one is not relevant.
The hope is to find multi-modal features that can
distinguish one Class of samples from another.
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Principal Component AnalysisPrincipal Component Analysis

PCA is also known as Factor Analysis, or
Karhunen-Loeve Transform, or
Eigenanalysis and are the eigenvectors of
the variance/covariance, or dispersion,
matrix that correspond to the largest
eigenvalues.

Really, Principal Components are linear
combinations of features that do the best
job of spreading out the data.
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Principal Component EigenvaluesPrincipal Component Eigenvalues

Each eigenvalue divided by
their sum represents the
fraction of the total
variation explained by
that linear combination.

A plot of the first few
Principal Components
will hopefully identify an
outlier.
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First Two Principal ComponentsFirst Two Principal Components
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Sammon MapSammon Map

A Sammon Map is a (non-unique) projection
of samples from a high dimensional space
(the number of features/samples) to a
lower dimensional space such that the
distances between all sample-pairs is
preserved to the greatest possible extent.

This distance can be a Euclidean distance
using all features.
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Sammon MapSammon Map
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Closest Neighbor PlotClosest Neighbor Plot

Plots of the distance to the first, second, and
third closest neighbors can show if there
are zero, one, or two outliers.

This procedure also identifies which sample
is the outlier
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PCA Does Not Always WorkPCA Does Not Always Work

The first few Principal Components are
linear combinations of features that result
in the largest variation (spread) in the data.
Distances are not preserved unless all
Principal Components are used.
The large number of features allow an
outlier to be spread across many features.
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Variations in Small and Large Peaks/BinsVariations in Small and Large Peaks/Bins
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PCA ResultsPCA Results
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Sammon Map ResultsSammon Map Results
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Nearest Distances ResultsNearest Distances Results
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Finding OutliersFinding Outliers

Spectra are dominated by a few large
peaks which therefore have a large
variance.
PCA will only find an outlier if it has
extreme values in the large peaks or if its
total variance is concentrated in a single
feature.
Other techniques should also be used.
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Construct a Classification ModelConstruct a Classification Model

Notation:
N is the number of samples.
L is the number of features (L>>N).
J is the number of features used in a classification

model (J<<L).
X is an N×L matrix containing the dataset.
xi,j is a particular feature (I=1,N; j=1,L).
Xi is the sum of features for Sample-I (Σj=1,L xi,j)
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Construct a Classification ModelConstruct a Classification Model

Use a Feature Selection method to
efficiently choose sets of J features.
Choose a Distance Metric to determine
how similar/different two samples are.
Construct a Classification Model using
these distances.
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Feature Selection MethodsFeature Selection Methods

Choosing the best J features from a group of
L scales as O(LJ), which means that trying
all unique sets is impractical.

Feature Selection Methods include
Heuristic searches
Stochastic searches using a single solution
Stochastic searches using a population of
solutions
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Heuristic Feature Selection MethodsHeuristic Feature Selection Methods

Greedy Search
Try each feature and find the one that classifies
the samples the best.
Keeping this “best” feature, sequentially try all
others and find the best combination of two.
Continue adding one feature at a time to the
best set so far until all J features are located.

Scales as L×J, so it is fast but the final feature set is
sub-optimal.
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Branch and Bound
Like Greedy only you keep NBB solutions instead

of just the best.
Try all unique sets of two features and store the
best NBB.
For each set, try all unique features and keep
the best NBB sets of three.
Continue process until you have the best NBB
sets of J.

The computational time grows very rapidly with
NBB, but this must be large to ensure that you
find the best solution at the end.
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Stochastic Feature SelectionStochastic Feature Selection
Using a Single SolutionUsing a Single Solution
These are guided random searches that allow

a single feature set to travel through search
space.

Tabu Search
Simulated Annealing
Gibbs Sampling
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Tabu Search

This procedure searches a “local region” of
feature space and selects the best new
solution (even if it is worse that the
original).

The region is placed on the top of a tabu list
and cannot be searched again.

The best feature set found during the search
is the final solution.
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For example, given a tabu list of length less than J,
a randomly generated set of J features and a
maximum number of local searches MLS, a
search is
Set ILS=0
Increment ILS by 1
Randomly select a position in the feature set list.
If this position is on the tabu list return to Step 3.
Try all other features in this position and select the new
set that categorizes the samples the best.
If this is the “best-to-date” feature set store it.
Place this position at the top of the tabu list, moving all
other positions down and dropping off the last one.
If ILS is less than MLS, return to Step 2.
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Simulated Annealing
Starting with a randomly generated feature set, FSold, and

its quality, Qold, the search is as follows.
Set T=Ti.
Set ISTEP=0.
Increment ISTEP by 1.
Copy FSold to FSnew and randomly change one or two
of its features.
Calculate its quality, Qnew.
If Qnew is greater than Qold, change FSold and Qold.
Otherwise if e(Qnew-Qold)/T is greater than a random
number in [0.0,1.0] change FSold and Qold.
If ISTEP is less than MAXSTEP go to Step 3.
If T is greater than Tf, reduce T slightly and go to Step
2.
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In this process, T is an “effective temperature” and
e(Qnew-Qold)/T is the Boltzmann acceptance
probability.  The temperature slowly changes
from and initial (high) value Ti to a final (low)
value Tf using a cooling schedule.

Simulated Annealing is as much an art as math
since good choices need to be made for Ti, Tf,
the cooling schedule and MAXSTEP, the number
of Monte Carlo steps at each temperature.
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Gibbs Sampling

Gibbs sampling is basically a combination of Tabu Search
(with or without the tabu list) and Simulated Annealing.

As in the Tabu Search, a position in the feature set list is
randomly chosen and all other features are tried in this
position.  The quality of the initial set, Qo, and all
subsequent sets, Qi, are used to generate un-normalized
acceptance probabilities, UAPi=eQi/T (i=0,N-J).

They are then normalized by dividing by their sum to give
NAPi.  A random number between 0.0 and 1.0 is chosen
and each NAPi is subtracted from this number.

As soon as this number becomes zero or negative this is the
feature set that is selected to start the next search.
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As with Simulated Annealing, the effective
temperature starts at a high value and is
slowly decreased to a final, small value.

With this procedure you still have to worry
about the initial and final temperatures, the
cooling schedule, and the number of
searches at each temperature.

In addition, each feature set is compared to
the “best-to-date” set, and only this best
feature set is reported at the end.
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Stochastic Feature SelectionStochastic Feature Selection
Using a Population of SolutionsUsing a Population of Solutions
Instead of using FSold(J) and Qold as before,

we have FSold(J,NPOP) and Qold(NPOP)
where NPOP is the size of the population.

Population based methods include
Genetic Algorithms
Evolutionary Programming
Ant Colony Optimization
Particle Swarm Optimization
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Genetic Algorithms
Start with a randomly generated population of J feature sets

FSold(J,NPOP) and qualities Qold(NPOP).  Then

Choose two feature sets using a probabilistic selection
procedure.  The probability of being selected is
proportional to the feature set’s quality.
Create a complimentary pair of offspring using a
mating operator, and determine their qualities.
Have the higher quality offspring replace the feature set
in the population with the lowest quality.
If all feature sets in the population are not the same,
return to Step 1.
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This is only one example of possible search
heuristics.  Options can include
generating a mating population
using mutation and/or maturation
operators
placing offspring in a new population and,
once full, building a new parent population
using either a deterministic or probabilistic
(µ,λ) or (µ+λ) selection procedure.
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The most popular mating operator is the
1-point crossover.

         (A,B,C,D,E)   Parent 1
                 |                 cut point
           (a,b,c,d,e)       Parent 2

          (A,B,c,d,e)      Offspring 1
            (a,b,C,D,E)   Offspring 2

Other mating operators are possible.
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Evolutionary Programming

This independently developed procedure uses asexual
reproduction and a generational algorithm.  Start with a
population of feature sets FSold(J,NPOP) and their
qualities Qold(NPOP).

Set IGEN=0.
Increment IGEN by 1.
For each parent, copy the feature set to an offspring
and then randomly change one or two of the features.
Calculate its quality and place it in a new population.
Combine the parent and offspring populations and
deterministically or probabilistically choose the next
generation’s parents.
If IGEN is less than MAXGEN, go to Step 2.
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I have modified the offspring generation step
slightly by including a uniqueness operator as
a special maturation operator.

For each parent m
Copy FSold(J,m) to FSnew(J,m).
Randomly change one or two features in
FSnew(J,m).
Compare FSnew(J,m) with all FSold(J,m) and
FSnew(J,n) [n=1,m-1].  If it is the same,
return to Step 1.
Determine Qnew(m) and place this offspring in
the new population.
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Ant Colony Optimization

Ant Colony Optimization uses the pheromone-trail
model of ants going to and from a food source.

ACO is like EP only the mutation is not random and
there is no uniqueness operator.

QFS(L) is an array that stores the quality of each
feature and is originally set to a random value.

After a generation, the new parents are examined
and each feature’s QFS’(l) is increased by an
amount proportional to the quality of the feature
set.

                   QFS(l) = λ QFS(l) + QFS’(l)
0.0 < λ < 1.0

λ is the evaporation rate.
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Starting with a randomly generated FSold(J,NPOP)
and their qualities Qold(NPOP), set QFS(L) to
random values.

Examine the feature sets in each parent and update
QFS’(L).
Update QSF(L)
Each parent produces an offspring FSnew(J,L) by
copying their feature set and then changing one or to
randomly selected features.  The probability that
feature l is selected is proportional to QFS(l).
Calculate its quality and place it in a new population.
Combine the parent and offspring populations and
select the next generation’s parent population
If all parent feature sets are not the same, go to Step 1.
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Particle Swarm Optimization

Particle Swarm Optimization (PSO) is modeled
after independent particles whose motion is
influenced by local and global attractors.

Each particle has a position vector FS(J,NPOP) and
a velocity vector V(NPOP).

This is like EP with V(NPOP) representing the
mutation operator, but each offspring replaces its
own parent.

FS’(J,NPOP) is the best feature set found by each
particle to date and FSg(J) is the best feature set
found by any particle.
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Initially load FS(J,NPOP) with random feature sets and
V(J,NPOP) with random numbers.  Store FS(J,NPOP)
in FS’(J,NPOP) and Q(NPOP) in Q’(NPOP).  Store the
best FS’(J,NPOP) in FSg(J) and its quality in Qg.

Mutate each particle: FS(J,n)=FS(J,n) + V(J,n)
Construct the feature set by taking the nearest integer
to each element in FS(J,n) and determine its quality
Q(n).  If Q(n)>Q’(n) update FS’(J,n) and Q’(n).
If the best Q’(n)>Qg, update FSg(J) and Qg.
Update the mutation vector of each particle using
V(J,n)=V(J,n) + C×R(J)×(FS’(J,n)-FS(J,n)) +
C’ ×R’(J)×(FS’(J,n)-FS(J,n))  where R(J) and R’ are
random arrays in [0.0,1.0] and C and C’ are constants.
If all of the particles are not the same, return to Step 1.
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Feature Selection MethodsFeature Selection Methods
Each method has its strengths and weaknesses.

I prefer EP because, except for an exhaustive search
or Branch and Bound which take too long, it is
the only method that can generate multiple
models.
Final population can be used to search for
biologically-relevant markers.
Final population can be used as the initial
population for model updates.  All other methods
would have to start from scratch.
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Distance MetricsDistance Metrics

Many distance metrics are possible.
I generally use Ln-Norms.

Ln(i,k)={‡ j |xi,j –xk,j|n}1/n

L1 is called a Manhattan Distance
L2 is the Euclidean Distance
L� is the Chebyschev Distance
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Ln ¡  Constant

 n=1                 n=2               n=�
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Sample Positions are also
vectors.

Cos(a) = Similarity

Dot Product
(normalized vectors)

Pearson’s r
(standardized vectors)
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S1 = (1.0, 0.0)

S2 = (X2, Y2)
X2 = 2 cos(a)
Y2 = 2 sin(a)
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(1-cos(a)) black
(1-r)          red

S1 = (0.0,0.0,1.0)

S2 = (X2,Y2,Z2)
X2 = sin(a) cos(p)
Y2 = sin(a) sin(p)
Z2 = cos(a)
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Building a Classification ModelBuilding a Classification Model
We now have a method of effectively choosing J

features from the set of L and a means of
measuring a distance in this J-dimensional
sample space.

The classification model will be used on training
samples whose Class is known.  The major
classification methods are
K-Nearest Neighbors
Clustering
Neural Networks
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Crisp versus Fuzzy ClassifiersCrisp versus Fuzzy Classifiers
If an unknown sample is contained in a group of 10

known samples.  If 7 of the samples are Class 1
and the other 3 are Class 2, what is the
classification of the unknown?

Crisp Classification:  The unknown is Class 1 with
100% certainty.

Fuzzy Classification:  The unknown is 70% Class 1
and 30% Class 2.
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Maximum Likelihood is just a nice way of saying
“winner take all” so this is a crisp classification
and the unknown is 100% Class 1.

Beware of a crisp classification.  Though the model
gives you a definitive classification and may be
right all of the time, the uncertainty in the
assignment is unknown and can be quite large.
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K-Nearest NeighborsK-Nearest Neighbors
The known samples represent points in

J-dimensional space.
The unknown sample is then placed in this sample

space.
KNN finds the K known samples that are closest to

the unknown and uses their Classes to predict the
Class of the unknown.

KNN classification is independent of the distances
to these neighbors.
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Should the fuzzy classification be the same in each case?

Case 1: 66.7% red, 33.3% green

Case 2: >66.7% red, <33.3% green

Case 3: ???
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There should be a distance dependence in the extent to which
the unknown agrees with each neighbor.

DD-KNN:  The extent to which the unknown is in the same
Class as neighbor I, P(Ci), is a decreasing function of their
separation.  P(Ci) = ƒ(Du,i)

This takes care of Cases 1 and 2,
but not 3. Add an unknown Class.

P(unk) is constant until P(Ci) is large
enough.  P(unk) then monotonically
Decreases to zero.
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Classification by ClusteringClassification by Clustering
The goal is to choose the feature set, distance

metric, and clustering method such that the
clusters are as homogeneous as possible.

The prediction of the unknown will then be as
certain as possible.

Three types of clustering algorithms.
Agglomerative Hierarchical Clustering
Divisive Hierarchical Clustering
Non-Hierarchical Clustering



ABCCBrian T. Luke
64

Agglomerative Hierarchical ClusteringAgglomerative Hierarchical Clustering

All samples start in their own cluster (singletons).
A rule is used to decide which two clusters are merged.
This continues until the desired number of clusters is

obtained.

Common Agglomerative Hierarchical Clustering methods
are
Single Linkage Clustering
Average Linkage Clustering
Complete Linkage Clustering
Ward’s Method
Jarvis-Patrick Clustering
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Single Linkage Clustering

Each pair of samples from different clusters is
examined.
The pair with the smallest distance is located.
The clusters containing these samples are
merged.

This allows a cluster to “snake” its way through the
sample space.
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Average Linkage Clustering

Every pair of clusters is examined and the
average inter-cluster distance is calculated.
The cluster-pair with the smallest average
distance is merged.
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Complete Linkage Clustering

Every pair of clusters is examined and the
maximum inter-cluster distance is
calculated.
The cluster-pair with the smallest
maximum distance is merged.
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Ward’s Method

Every pair of clusters is temporarily
merged.
The centroid of the merged clusters is
determined and the variance is calculated.
The cluster-pair with the smallest
combined variance is merged.
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Jarvis-Patrick Clustering

A neighbor list of length NJP is calculated
for each sample.
Every pair of samples from different
clusters is examined and the pair with the
most common neighbor lists is selected.
The clusters containing this pair are
merged.

Like Single Linkage but distance-independent.
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NJP=10



ABCCBrian T. Luke
75

NJP=8
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Divisive Hierarchical ClusteringDivisive Hierarchical Clustering

All samples are placed in one cluster.
In each cycle, each cluster is examined and
the sample-pair with the largest
within-cluster distance is found.
The cluster with the largest within-cluster
distance is split using this pair as seeds.
All samples in this cluster are placed in the
split cluster containing the closest seed.
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Instead the K seeds (K>2) can be used to
distribute all samples,
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or a non-hierarchical procedure can be
used to find the K point with the largest
total distance.
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Non-Hierarchical ClusteringNon-Hierarchical Clustering

The bet known Non-Hierarchical Clustering
is K-Means Clustering (a.k.a. c-Means
Clustering and others).

The goal is to select K centroids so that the
sum of the distance-squared between each
sample and their centroid is a minimum,
though we are more interested in finding
homogeneous clusters.
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A true K-Means Clustering assigns each
sample to a cluster, determines the position
of the centroid, and calculates their
summed distance-squared.

Each sample is moved to a new cluster, the
new centroids are determined, and the new
summed-distance squares.

This sample is placed into the cluster with
the smallest sum of squares.

This process continues until no samples
change clusters.
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Finding the optimal cluster assignments is
very difficult and other algorithms have
been proposed (H-Means Clustering,
J-Means Clustering, Variable
Neighborhood Search, etc.).

In K-Means Clustering, the final set of
clusters depend on
The initial distribution of samples amongst
clusters.
The ordering of the samples.
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There are KN ways to initially distribute the
points amongst the clusters and N! orders
of the points, so trying all is impossible.

I use the following procedure.
Choose K samples as initial centroids.
Assign all samples to the nearest centroid.
Use the assigned points to determine the
new centroids.
Re-assign the samples and continue the
process until no samples change clusters.
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The resulting clusters depends upon which
K samples are chosen as initial
centroids.
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This procedure is independent of the sample
order and finding the best initial set of K
centroids (samples) is a much easier
problem.

I use Evolutionary Programming to search
for the best set of K samples to use as the
initial centroids.
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If the number of samples is large, the
centroid will be close enough to a sample
point that the iteration is not necessary.
The K samples are then known as medoids.

PAM (Partitioning Around Medoids)
searches through all unique sets of K
samples.

CLARA (Clustering LARge Applications)
and CLARANS (Clustering Large
Applications based on RANdomized
Search) speed up the search by using a
series of reduced-dimensional searches.
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Comparison of Clustering MethodsComparison of Clustering Methods

In general, each clustering method can
generate a different partitioning of the
samples.

Simple Linkage and Jarvis-Patrick Clustering
are basically 1-Nearest Neighbor methods.
They do not generally form neat clusters,
but they are the only methods which
guarantee that “close” samples will end up
in the same cluster.
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Neural NetworksNeural Networks
Neural networks are algorithms that learn

from a set of training samples.  The hope is
that the trained algorithm will cause an
unknown sample that is similar to a
training sample to produce approximately
the same result.

There are two training methods.
Supervised
Unsupervised
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Supervised Learning Algorithm
Feedforward Backpropagation Multilayer

Neural Network
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In a classification problem, this network can
be used by assigning diseased samples a
value of 0.0 and non-diseased samples a
value of 1.0.

Once trained, an unknown sample is put in
and its response can be used in either a
crisp or fuzzy classification.
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Unsupervised Learning Algorithm
Self-Organizing Map (SOM) or

Kohonen Map.
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Each node has an associated array C(i,j,J) where
the first two give its location and the third its J-
dimensional coordinates.

A training sample is assigned to the node with the
closest coordinates and the coordinates of all
nodes are moved towards this sample.

This continues though the training samples and as
the training proceeds the size of the step and
nodes affected decrease.

At the end, the step size is small and only the
assigned node and the adjacent neighbors have
their coordinates moved.
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A SOM is therefore similar to a K-Means
Clustering with the centroids plotted using
a Sammon Map.

A SOM suffers from the same problems.
The final results depend upon the initial,
random coordinates of each node.
The final results depend upon the ordering
of the training samples.
Two closely-spaced samples are not
guaranteed to end up on the same node.
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Examination of the ModelExamination of the Model

Has a good model been produced or has it
numerically done a good job on a small
number of samples?

Robustness:  Jackknife or Bootstrap
Cluster Statistics:  Average Silhouette Width,

Kelley Analysis
Fuzzy Classifier:  Receiver Operating

Characteristic
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RobustnessRobustness

A Jackknife Analysis is simply a leave-one-out
cross-validation.  For small sample sizes this
may be all that you can do, but the standard
deviation of the quality is not well defined.

An nth-Order Bootstrap Analysis yields more
tests.  Remove n samples, build model on the
(N-n) remaining and test those removed.
Repeat this process a large number of times.



ABCCBrian T. Luke
97

Cluster StatisticsCluster Statistics

The Average Silhouette Width (ASW) is a
measure of the extent each sample should
be in their assigned cluster.

For sample i, A(i) is the average distance to
all other samples in its cluster and B(i) is
the smallest average distance to samples in
another cluster.

SW(i) = [B(i) – A(i)]/MAX[A(i),B(i)]
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If SW(i) is near 1.0 the sample is well
clustered.

If SW(i) is near 0.0 the sample is between
clusters.

If SW(i) is negative it is probably in the
wrong cluster.

ASW is the average of SW(i) over all
samples.
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A Kelley Analysis is a measure of the
compactness of the clusters and uses the
average spread (AS) of clusters containing
more than one sample (non-singletons).

SPi is the average separation between all
samples in cluster i.

The average spread of K cluster with Kns
non-singletons is the sum of the spreads
divided by Kns.

AS(K) = ‡  SPi / Kns
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ASn(K) is AS(K) normalized to lie between
1 and N-1.
ASn(K) = [(N-2)(AS(K)-ASmin) / (ASmax-ASmin)]+1

The Kelley Penalty Function is
P(K) = ASn(K) + K

and the goal is to minimize P(K).

At this point the clusters are dense and
compact.
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Using Fuzzy ClassificationsUsing Fuzzy Classifications

Since a fuzzy classifier yields the probability
that a sample is in a given state, a
threshold value (T) is used determine if it
is or isn’t in that state.

Sensitivity: True positive fraction (TPF).
Specificity: True negative fraction (TNF).
(1-specificity): False positive fraction (FPF).
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Both the sensitivity and specificity are
functions of T.

A Receiver Operating Characteristic (ROC)
Analysis graphically displays the quality of
a diagnosis as a function of T.  As T
decreases from 1.0, the sensitivity
increases and the specificity decreases.

The goal is to find T such that the sensitivity
and specificity are maximized.
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The area under a ROC curve is a measure of
the average quality of the model for all
values of T.

Because the sample size is usually small, this
is not a smooth (monotonic) curve and the
area may be of limited value.
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Verification of the ModelVerification of the Model
We are still left with the problem of

determining whether a model is a valid
classifier, or if its simply a good numerical
procedure that separates one class from
another.

Since the number of features far exceeds the
number of samples the latter is likely.

Tests of robustness and cluster quality can
help.
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The best model yields a biological basis for
the classification.

Microarray:  Likely
Metabolomics:  Possible
Metabonomics:  Unlikely
Mass Spectra:  Impossible
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In the real world, the only option is to
produce multiple, quantitatively good
models and blind-test them on a large
number of subjects.

As the number of tests increases, so does the
confidence in the models.
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ConclusionsConclusions
Many ways to generate classification
models.
Most models are probably nothing more
than good numerical separations of a small
number of samples.
Experimental and computational scientists
must work together to ensure that each
choice makes physical sense and the
verification/analysis of the models are
sufficient.
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The scientists and staff of the ABCC are here
to help.

Thank you for your attention.
lukeb@ncifcrf.gov

www.abcc.ncifcrf.gov


