

United States Environmental Protection Agency Region 10, 1200 Sixth Avenue, Seattle, WA 98101-1128

Mineralogical Study of Boreholes B98-13 and B98-12 Frontier Hard Chrome Site Vancouver, Washington

August, 1999

Prepared By U.S. Environmental Protection Agency (EPA) Office of Environmental Assessment Region 10

CONTRIBUTORS TO STUDY

Project Planning

Office of Environmental Assessment R.F. Weston, Inc.

Field Sampling

Sonia Fernandez and Mark Pugh Roy F. Weston, Inc.

Laboratory Analysis

Sample Preparation, ICP-AES Analysis and X-ray Diffraction Analysis USEPA Manchester Laboratory

Scanning Electron Microscopy/Electron Microprobe Microanalysis Bart Cannon, Cannon Microprobe

Report Compilation

David Frank Office of Environmental Assessment

Site Managers Ken Marcy and Sean Sheldrake Office of Environmental Cleanup

Study Project Officer Bernie Zavala Office of Environmental Assessment

ACKNOWLEDGMENTS

Appreciation for their review comments is extended to Keith Pine and Roger McGinnis, Roy F. Weston, Inc.

DISCLAIMER

Mention of commercial products or trade names is for method documentation and does not constitute endorsement.

CONTENTS

Contributors to Study	ii
Acknowledgments	
Disclaimer	
Contents	iii
Abstract	1
Introduction	1
Methods and Materials	
Study Design	2
Field Work	2
Laboratory Methods	3
Results	
Distribution of Minerals	4
Discussion	6
Conclusions	7
References	

FIGURES

1. Index map of the Frontier Hard Chrome site	9
2. Selection of BSE images	10
3. Distribution of chromium concentration with depth	

TABLES

1.	Field sample and corresponding laboratory sample numbers	.13
2.	Inorganic analyses of soil samples	.14
	Phases discussed in report and appendices	
4.	Summary list of minerals identified by XRD	.16
5.	Summary list of minerals identified by SEM/EPMA	.17

APPENDICES

A. Laboratory Report for X-ray Diffraction Analysis	37 pages
B. Laboratory Report for Scanning Electron Microscope/Probe Microanalysis	66 pages

ABSTRACT

The mobility of chromium in ground water is an important consideration for evaluating remedial options for the Frontier Hard Chrome industrial site, Vancouver, Washington. One factor in assessing metal mobility is the degree of chromium reduction and secondary mineralization in a silt unit and underlying sand and gravel aquifer that extends from the site toward the Columbia River. Samples of fill at 16 feet, silt at 21-22 feet, and the underlying aquifer material at 25-26 feet in boreholes B98-13 and B98-12 were collected for chemical and mineralogical analysis. Samples were analyzed by ICP-AES for metals concentration, scanning electron microscopy/electron microprobe for mineralogical texture and microanalysis, powder x-ray diffraction for mineral identification, and optical microscopy for textural observations.

Microprobe analysis showed that chromium occurred in metallic particles originating in the fill material, in iron and iron-titanium oxides that are part of the sediments that were transported by natural fluvial processes through the Columbia River Basin, and in fine-grained iron aluminum silicates that were found in fine sand- to clay-size fractions of both the Silt and Aquifer Units. X-ray diffraction analysis showed that the fine-grained fraction of these units contained an abundant suite of detrital clay minerals including primarily illite, chlorite, and smectite, and lesser kaolinite. The presence of chlorite and smectite is consistent with the microprobe observation of iron-bearing aluminum silicates in the fine grained fraction of the samples. Chromium concentration in the fine-grained material was elevated to a level consistent with chromium in the bulk material and about 10-20 times nearby background concentrations. Though much higher concentrations are found in the metallic particles and iron-titanium oxides, the sparse amount of these phases suggests that an important contributor to the bulk chromium content resides in the clay minerals.

INTRODUCTION

Remedial planning for the Frontier Hard Chrome site in Vancouver, Washington, requires an understanding of the geochemical processes affecting the fate of chromium in the subsurface. Disposal of chrome-plating liquids has left an area of ground water contamination underlying about 30 acres of industrial land along the north shore of the Columbia River. After years of little apparent extension of a concentrated ground water plume of chromium, interest developed in acquiring a more detailed understanding of the nature of chromium mobility at the site. The objective of this study is to identify metal-bearing phases in the Fill, Silt and Aquifer Units. The emphasis is on chromium compounds as well as other minerals that might provide reactive material for enhancing chromium reduction and precipitation of secondary phases. The goal is to determine if there is evidence for the occurrence of natural attenuation at the site.

Some of the terms used here may warrant clarification. The term "minerals", by strict definition, refers to naturally occurring compounds. Although man-made compounds such as some waste materials found in fill are not natural minerals, they are described here by their mineral analog in cases where compound identification can be analytically matched to a unique mineral composition and structure. "Phase" is used here in the general sense for a particular composition of mineral or other compound regardless if naturally occurring or man-made.

Primary minerals or phases are those believed to be an original part of the solid matrix. Secondary minerals or phases are those believed to have formed as coatings or void fillings after formation of the solid matrix, or as in-situ alteration products of primary phases.

METHODS AND MATERIALS

Study Design

Samples were collected from the Fill, Silt, and Aquifer Units in two boreholes located downgradient from the source of chrome-plating wastes, the property formerly housing the Frontier Hard Chrome facility. A sampling and analysis plan for the study was prepared by Roy F. Weston (1998). The samples were analyzed for metals concentration by ICP-AES, and for mineralogy by scanning electron microscopy/electron microprobe (SEM/EPMA), x-ray diffraction (XRD), and low-power optical microscopy. A sample preparation procedure was used to separate grain sizes as a means of concentrating mineral phases associated with particular size ranges. The separation procedure was expected to potentially concentrate more reactive material, and possibly secondary minerals, in the smaller size fractions. Accordingly, a fine-grained separate was prepared to provide a concentrate of secondary minerals. The coarsergrained separates, on the other hand, provided larger-sized material expected to have intact coatings or alteration rims made up of relatively harder secondary minerals.

Field Work

Samples were collected with a 2.5 inch inside-diameter split-spoon sampler driven through an 8-inch hollow-stem auger (Roy F. Weston, 1999). On April 27, 1998, six samples for chemical and mineralogical analysis were collected from boreholes B98-13 and B98-12, located 100-200 feet southeast of the Frontier Hard Chrome building and approximately 3000 ft north of the Columbia River (Figure 1). Seven additional samples were collected from boreholes B98-20A and B98-21A on April 30 and B98-21B on May 28, approximately 900 feet south and downgradient of B98-12 and B98-13 (Figure 1). These later samples were submitted for chemical analysis and archived for possible mineralogical analysis pending review of the chemical data. Mineralogical analysis of the distal samples was not conducted because of their low chromium content.

For the samples that underwent mineralogical analysis, Table 1 lists the sample numbers, depths, and unit descriptions from the field report (Roy F. Weston, 1999). Three units were sampled in each of the two boreholes. The units include fill at a depth of 16 feet, silt at 21-22 feet, and the Aquifer A-zone at 25-26 feet. In order to provide information on variability within a sampled unit, two portions of the sample from the Silt Unit (SBR1-9813-0210) from borehole B98-13 were prepared for analysis. Therefore a total of six field samples and one duplicate were carried through the mineralogical procedures.

Laboratory Methods

Approximately 500 g of each sample were separated by wet sieving to produce five size fractions: gravel (>2 mm), coarse sand (0.5-2 mm), fine sand (0.07-0.5 mm), and silt and clay (<0.07 mm). The gravel fraction was further divided at about 10 mm into larger gravel and smaller gravel. No gravel fragments were larger than about 20 mm. Each size-separate was assigned a new lab number for a total of 35 laboratory samples generated from the original six field samples and one duplicate (Table 1).

The size separates were well mixed and split for optical microscopy and x-ray diffraction analysis at the Manchester Laboratory, and for scanning electron microscopy/electron probe microanalysis at Cannon Microprobe, Seattle. The larger gravel clasts (>10 mm) were split with a diamond saw. The remaining sand and gravel fractions were split with a riffle splitter, and the silt and clay fractions were split by quartering. Table 1 lists the percent weights resulting from the size separation.

X-ray diffraction analysis was accomplished at the Manchester Laboratory with a Scintag X1 powder diffractometer using CoK α radiation at a wavelength of 1.78897 angstroms (Å), generated at 36 ma and 45 kv. Several diffractograms were also acquired early in the project with CuK α radiation at 1.54056 Å at 40 ma and 45 kv. Diffractograms were recorded at scan speeds of 15 degrees and 0.5-1 degrees of two-theta (°2 θ) units per minute over a 2-76 degree range. The XRD method provided qualitative identification of minerals greater than about five percent in concentration. Identifications were made by matching measured diffraction patterns with a database maintained by the International Centre for Diffraction Data (1996), and by comparison with the literature as noted. Clay mineral identifications were verified by chemical and thermal treatments that alter the structural thickness of clay minerals in a diagnostic manner as described by Brindley and Brown (1980) and Moore and Reynolds (1986). The clay minerals were expanded by intercalation with ethylene glycol, and contracted by heating at 150°, 300°, and 550° C.

A Frantz LB-1 magnetic barrier separator was used for selected samples to provide mineral concentrates for both XRD and microprobe analysis. Additional separation of the finest fractions was accomplished by vacuum filtration of re-suspended particulates in deionized water onto 0.45 μ m cellulose filters. A Wild M5-A stereomicrosope was used for optical microscopy with incident light in order to describe and document samples and XRD specimens. The XRD laboratory report is in Appendix A and contains a list of analyzed separates, matched phases, annotated diffractograms, and notes on microscopic observations.

Scanning electron microscopy/electron microprobe analysis was performed at Cannon Microprobe, Seattle, using an ARL SEMQ electron microprobe at 20 kv and 50 na beam current. Both grain mounts and polished sections were prepared as specimens. Scanning electron microscope images were made in the backscattered electron detection mode (BSE images) by which image contrast is a function of atomic number. Microanalysis was accomplished with the probe using a Kevex energy-dispersive x-ray spectrometer (EDS) for rapid detection of several elements, and four wavelength-dispersive x-ray spectrometers (WDS) for quantitation of chromium, manganese, barium, and iron. The WDS analytical volume is about one cubic micrometer. The microprobe report is in Appendix B and contains a narrative discussion of the distribution of chromium, lists of WDS analyses for four elements, a group of BSE images, x-ray map images for chromium and manganese, and a group of EDS spectra.

RESULTS

The borehole samples consist of granular material that spans a size range from clay to pebbles (Table 1). The Fill Unit has the coarsest material, and the Silt Unit has the finest. Samples from the Fill Unit have primarily dark gray to black sand and gravel with about 14-19% fines of silt and clay. Samples from the Silt Unit have dark gray to dark grayish brown silt and clay with 61-67% fines. Samples from the Aquifer Unit have dark brown to dark grayish brown sand and gravel with 23-27% fines.

Visual examination of the gravel fractions indicate the most common rock types in these samples are black basalt, gray andesite, and white to beige quartz and quartz-rich rocks such as quartzite and granodiorite. The Fill Units from both boreholes contained calcite-coated pebbles from chunks of concrete. The Fill also has a large proportion of angular basalt, suggestive of crushed aggregate. Many of the basalt pebbles in the Fill Unit are coated with asphalt. The Silt and Aquifer Units have a much smaller proportion of angular pebbles than the Fill Unit, though angular basalt fragments are still common in the coarse part of the Silt Unit.

Results of the chemical analyses of borehole samples are listed in Table 2. Included with the results for boreholes B98-13 and B98-12 are the more distal samples from B98-21A, B98-21B, and B98-20 (Figure 1). Table 2 shows that chromium concentrations are highest in B98-13 and B98-12 for all Units. Within each borehole, chromium is relatively higher in the Silt Unit and is also preferentially concentrated in the silt and clay fractions of the Fill and Aquifer Units. Other metals that had highest concentrations in boreholes B98-13 and B98-12 include iron, sodium, calcium, potassium, copper, lead, and zinc.

Distribution of Minerals

Table 3 lists the phases discussed in this report and appendices, including the mineral name, ideal chemical formula, and whether the phase is found by XRD or microprobe analysis. Tables 4 and 5 provide a summary of the XRD and microprobe results, respectively.

With reference to the XRD results in Table 4, the common rock-forming minerals, quartz and feldspar are ubiquitous, occurring as major minerals in all of the samples. Mica and the clay minerals are abundant as minor components in both the Silt and Aquifer Units. From the size distribution (Table 1), the Silt Unit contains over 60% silt- and clay-size grains for which XRD indicates the presence of abundant clay minerals. Prominent among the clay minerals are those that are potentially iron-bearing, chlorite, smectite, and illite. Lesser kaolinite also occurs in the Silt Unit. The Aquifer Unit contains a similar group of clay minerals, but in somewhat less amount than the Silt Unit.

A distinctive feature of the clay minerals is a lack of interstratification. Reaction among clay minerals to form mixed layer clays, or interstratification, is a common occurrence in active soil-forming environments. Lack of interstratification indicates that the clay minerals are detrital rather than authigenic. In other words, these clay minerals probably do not represent secondary mineralization at the site, but rather were transported into the area by fluvial processes.

XRD examination of coatings found calcite coatings to be common. The Fill Unit contains major calcite and trace aragonite and vaterite in coatings associated with remnants of concrete. Vaterite was also detected in coatings in the Silt Unit suggesting that this unit has entrained concrete fragments in the area of Borehole B98-13. The Fill Unit at both boreholes also contains abundant asphalt covered pebbles of angular basalt.

In general, coatings other than calcite or asphalt are not at all common in the borehole samples. Orange and yellow-stained grains occur, but the stains are very thin and did not provide enough mass for identification of a discrete phase by microprobe. A group of such grains was examined by XRD and found to contain chlorite (Table 4-sand and gravel fraction). The association of chlorite with an orange coating suggests that the chlorite is an iron-bearing variety.

No discrete chromium- or manganese-bearing phases were found by XRD, indicating that any such minerals are less than 5% in concentration. Of the minerals identified by XRD, those most likely to provide reactive sites for chromium are the clay minerals which tend to incorporate iron, particularly chlorite and smectite.

With reference to the microprobe results summarized in Table 5, the phases with the highest chromium content are rare grains of chromite, iron-titanium oxides, spinel, and iron metal. Figure 2 shows backscattered electron (BSE) images of representative textures of these phases in the Silt Unit. Chromite (Figure 2A, grain with about 57% chromium), and iron-titanium oxides and spinel (Figure 2B, zoned grain with up to 15% chromium) may be naturally occurring as they would be consistent with the abundant basaltic content of the borehole material. Iron metal (Figure 2C, 4.6% chromium) is probably associated with the man-made fill material. Chromium-bearing metallic grains were identified not just in the Fill Unit, but also in the Silt and Aquifer Units (Table 5).

The microprobe data show that some of the metallic grains which have high chromium content are depleted of chromium around their edges, indicating the grains underwent leaching. For example, an x-ray map of chromium distribution in a grain of metallic iron (image X-1 in Appendix B) from the Fill Unit shows decreased chromium in the corroded rim of the grain. Similarly, some grains of chromium-bearing metallic iron were also found to have iron oxide or iron aluminum silicate crusts which were depleted of chromium (Figure 2C), indicating either the occurrence of leaching or at a lack of secondary chromium mineralization.

In contrast to the rare chromium-rich grains, a fine-grained iron-bearing aluminum silicate phase (FeAlSi in Table 5) was identified by microprobe to be the most common chromium-bearing phase, but with relatively lower chromium content (Figure 2D, 0.5% chromium). Inspection of the WDS quantitative results for chromium in the microprobe report

(Appendix B) shows that many of the chromium values for iron-bearing aluminum silicate in the Silt Unit in B98-13 (sample 56) are in the range of 0.05% (500 ppm) or less. Although this amount of chromium is low relative to discrete chromium minerals such as chromite, 500 ppm is still more than ten times a probable natural background for the Vancouver area. The average chromium content of the iron aluminum silicate is difficult to determine from the data; the probe report suggests a value of about 0.15% for the Silt Unit in B98-13 (sample 56). The chromium content of iron aluminum silicate in the Silt Unit in B98-12 (sample 72) appears to be higher than in B98-13 but still less than a percent. The iron aluminum silicate phase is also found in the Aquifer Unit at both boreholes (Table 5). The microprobe report indicates that some of the iron aluminum silicate phase had no detectable chromium at all, indicating concentrations below the reported chromium detection limit of 200-400 ppm by WDS.

DISCUSSION

The distribution and textural characteristics of the iron-bearing aluminum silicate phase identified by microprobe indicate that it is the same material that was identified as clay minerals by XRD. The microprobe results show that the phase is most concentrated in the Silt Unit and the SEM images show it to be very fine grained. XRD data show that corresponding clay minerals are most abundant in the Silt Unit. Although the iron aluminum silicate material is too fine-grained to yield a discrete description by microprobe, XRD provides identification of a unique set of minerals (illite, chlorite, smectite, and kaolinite) with chlorite and smectite the two most likely to have high iron content.

Since the microprobe found a few hundred to a few thousand parts per million chromium in the iron aluminum silicate, the data suggest that iron-bearing chlorite and smectite may be preferentially incorporating chromium. Not only is the concentration of these clay minerals elevated in the Silt Unit relative to the other Units, but also the bulk chromium content of the Silt Unit exceeds that of the other units in each respective borehole (Figure 3). Additionally the siltsize fractions of the coarser units contain elevated chromium relative to the bulk samples (dotted pattern in Figure 3). Therefore both the mineral and chemical distribution demonstrate that chromium is preferentially associated with fines containing the clay minerals, chlorite and smectite.

The mineralogical data do not establish the specific type of interaction between chromium and the clay minerals. For example, chromium-bearing chlorite could occur in which chromium is an essential part of the chlorite structure. Such binding might provide relative longterm immobility for precipitated chromium. Alternatively, chromium could occur as a coprecipitate in the clayey material, an adsorbed phase on a clay mineral surface, or an exchangeable ion. The various types of binding would have different degrees of permanence for immobilizing chromium, depending on reactivity with future ground water composition. Because of detection limits, the chromium concentrations would have to be higher than those found in these boreholes in order to determine the nature of chromium binding by the mineralogical methods used here.

CONCLUSIONS

With respect to the objectives of the study, several chromium-bearing phases have been found and can be placed in three general groups:

- 1. Metallic materials associated with man-made fill,
- 2. Chromite, iron and titanium oxides, and other igneous minerals associated with basalts, and
- 3. Iron-bearing clay minerals.

A second objective was to determine if phases were present that could be expected to react with chromium in an attenuation process. The iron-bearing clay minerals in the Silt and Aquifer Units represent such phases and they are common.

The goal of the study was to determine if there is sufficient evidence for the natural attenuation of chromium. Sufficient evidence is not available from the mineralogical data at hand. Chromium appears to be somewhat concentrated in the clay minerals, which is consistent with an attenuation process. However, the concentrations are not sufficient to determine the nature of the binding or the presence of a discrete chromium-bearing mineral. Therefore the permanence of attenuation under present or future conditions could not be determined.

REFERENCES

- Brindley, G.W. and Brown, G., 1980, Crystal structures of clay minerals and their x-ray identification: Mineralogical Society, Monograph No. 5, 495 p.
- International Centre for Diffraction Data, 1996, Powder diffraction file 1996 PDF-2 database sets 1-46: International Centre for Diffraction Data, Newtown Square, Pennsylvania, CD-ROM, ICDD 1996 Release A6.
- Moore, Duane M. And Reynolds, Robert C., Jr., 1986, X-ray diffraction and the identification and analysis of clay minerals: New York, Oxford University Press, 332 p.
- Reynolds, R.C., Jr. and Reynolds, Robert C., III, 1996, Newmod for Windows. The calculation of one-dimensional x-ray diffraction patterns of mixed-layer clay minerals: R.C. Reynolds, Jr., 8 Brook Road, Hanover, New Hampshire, 25 p.
- Roy F. Weston, 1998, Final sampling and analysis plan, addendum 5, Frontier Hard Chrome, Vancouver, Washington: prepared for U.S. Environmental Protection Agency, Work Assignment No. 46-38-027N, 13 p., 1 fig., 3 tabs., 1 app.
- Roy F. Weston, 1999, Site conditions technical memorandum, June 1998 soil sampling results, Frontier Hard Chrome, Vancouver, Washington: prepared for U.S. Environmental Protection Agency, Work Assignment No. 46-38-027N, 4 p., 2 figs., 4 tabs., 3 app.

Figures

- Index map of the Frontier Hard Chrome
 Selection of BSE images
 Distribution of chromium concentration with depth

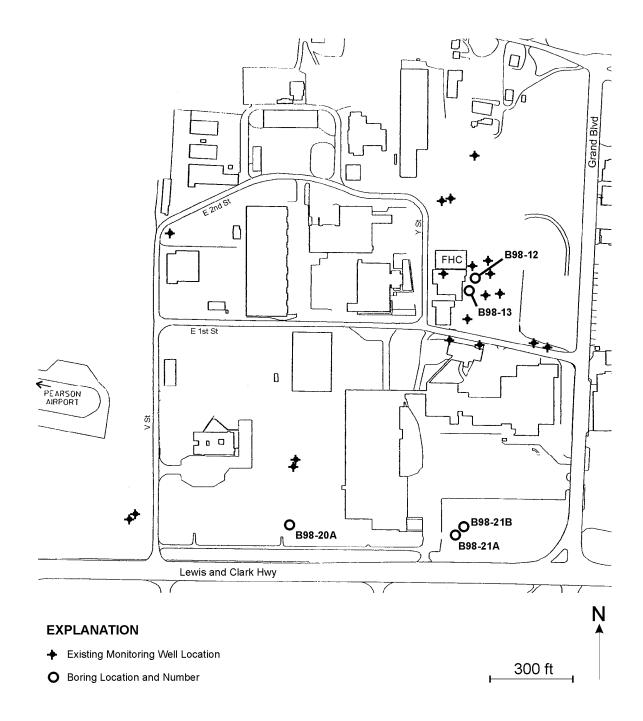
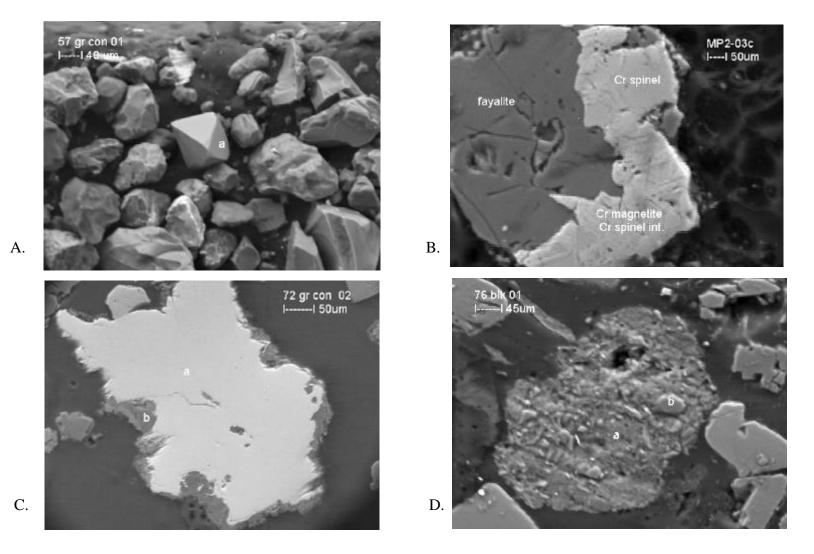



Figure 1. Index map of the vicinity of the former Frontier Hard Chrome building (FHC) and nearby boreholes. Samples from B98-13 and B98-12 underwent mineralogical analysis. Map is modified from Roy F. Weston (1999); newer roads along the south border of map are not shown.

Figure 2. Selection of BSE images that show rep	presentative textures of chrome-bearing phases.	%Cr
A. 98182357, B98-13, Silt Unit	Chromite at (a).	57
B. 98182356, B98-13, Silt Unit	Cr-bearing spinel zones in Cr-bearing magnetite on fayalite.	15
C. 98182372, B98-12, Silt Unit	Cr-bearing iron (a) rimmed with Cr-free Fe Al silicates (b).	4.6
D. 98182376, B98-12, Aquifer Unit	Fe Al silicates (a) with trace Cr in soft matrix. Quartz grain at (b).	0.5

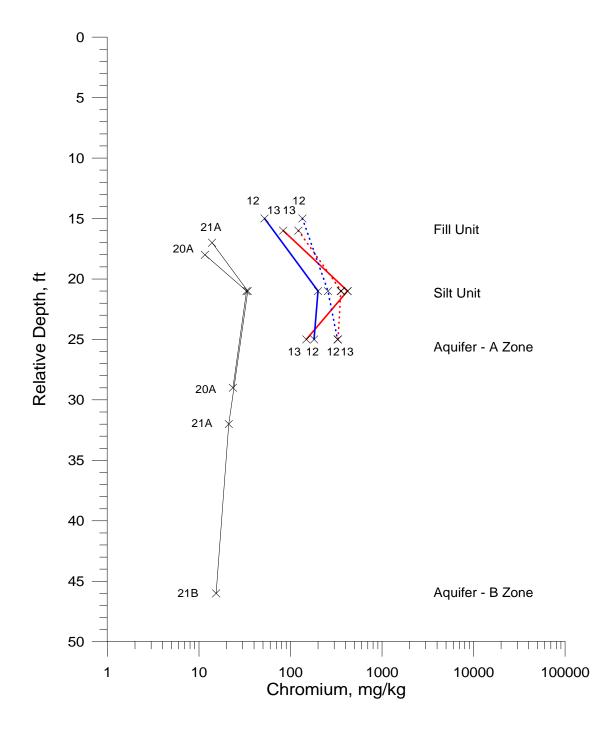


Figure 3. Distribution of chromium concentration with relative depth. Concentration profiles are labeled for boreholes B98-13, B98-12, B98-20A, B98-21A, and B98-21B (deep). Solid lines are for bulk samples from all wells; dotted lines are for the combined silt and clay size fractions from B98-13 and B98-12. Depths are normalized relative to the Silt Unit in B98-13 at 21 ft.

Tables

- 1. Field sample and corresponding laboratory sample numbers
- 2. Inorganic analyses of soil samples
- 3. Phases discussed in report and appendices
- 4. Summary list of minerals identified by XRD
- 5. Summary list of minerals identified by SEM/EPMA

Table 1. Field samples and corresponding laboratory size-separates selected for mineralogical
analysis by x-ray diffraction (XRD) and scanning electron microscopy/electron
microprobe (EM). Field lithologic descriptions by Roy F. Weston (1999) are in bold.

Lab Number	Field Number	Size Fraction	Cum Size	XRD	EM
EPA	Weston	mm	cum%	analysis	analysis
Borehole B98-13					
Fill Unit at 16 ft	si	Ity sand with gra	vel		
98184301	SBR1-9813-0160	field sample			
98182379	SBR1-9813-0160	4 cut pebbles		х	
98182350	SBR1-9813-0160	>2	47.3	x	х
98182351	SBR1-9813-0160	0.5-2	20.6		х
98182352	SBR1-9813-0160	0.07-0.5	18.2	х	х
98182353	SBR1-9813-0160	<0.07	13.9	х	
Silt Unit at 21 ft		silt			
98184302	SBR1-9813-0210	field sample			
98182380	SBR1-9813-0210	1 cut pebble			
98182354	SBR1-9813-0210	>2	16.6	х	
98182355	SBR1-9813-0210	0.5-2	5.1	x	
98182356	SBR1-9813-0210	0.07-0.5	14.7	x	х
98182357	SBR1-9813-0210	<0.07	63.5	x	x
Silt Unit at 21 ft		silt			
98184302DU	SBR1-9813-0210	field sample			
98182381	SBR1-9813-0210	1 cut pebble	45.0		
98182358	SBR1-9813-0210	>2	15.8		
98182359	SBR1-9813-0210	0.5-2	7.6		
98182360	SBR1-9813-0210	0.07-0.5	9.7	Х	
98182361	SBR1-9813-0210	<0.07	66.9	х	
Aquifer A-zone at 25	ft	silty gravel			
98184303	SBR1-9813-0250	field sample			
98182382	SBR1-9813-0250	6 cut pebbles			
98182362	SBR1-9813-0250	>2	55.3		
98182363	SBR1-9813-0250	0.5-2	9.1		
98182364	SBR1-9813-0250	0.07-0.5	12.7	х	х
98182365	SBR1-9813-0250	<0.07	23.0	х	х
Borehole B98-12					
Fill Unit at 16 ft		silt with gravel			
98184304	SBR1-9812-0160	field sample			
98182383	SBR1-9812-0160	7 cut pebbles	22.0	х	
98182366	SBR1-9812-0160	>2	32.6 24.5		
98182367 98182368	SBR1-9812-0160 SBR1-9812-0160	0.5-2 0.07-0.5	24.5 24.4	х	
98182369	SBR1-9812-0160	<0.07	18.5	x	
90102309	3BR1-9012-0100	<0.07	10.5	~	
Silt Unit at 22 ft		silt			
98184305	SBR1-9812-0220	field sample			
98182384	SBR1-9812-0220	2 cut pebbles			
98182370	SBR1-9812-0220	>2	20.1		
98182371	SBR1-9812-0220	0.5-2	6.0		
98182372	SBR1-9812-0220	0.07-0.5	12.7	х	х
98182373	SBR1-9812-0220	<0.07	61.2	х	
Aquifer A-zone at 26	ft	silty gravel			
98184306	SBR1-9812-0260	field sample			
98182385	SBR1-9812-0260	8 cut pebbles			
98182374	SBR1-9812-0260	>2	49.8		
98182375	SBR1-9812-0260	0.5-2	8.4		
98182376	SBR1-9812-0260	0.07-0.5	15.2	х	х
98182377	SBR1-9812-0260	<0.07	26.6	х	х
-		-			

lab number	sample	al	sb	as	ba	be	cd	са	cr	cr6	со	cu	fe	pb	mg	mn	ni	k	se	na	th	va	zn
	borehole-depth	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg					0		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
		5.5	5. 3	3.3	5.5	3.3	5.5	3' 3	5. 5		5. 5	5.5	5. 5	5 5	5.5	5 5	5.5	5.5	5.5	5.5		5.5	
Bulk Sample	es																						
98184301	13-16	18600	4.5	5.3	172	0.918	0.3	8060	83.2	4	13.4	33.1	36400	285	4630	505	23.4	1200	10	468	4	116	162
98184302	13-21	24500	4.5	5.1	209	1.35	0.44	8500	421	26.1	17.6	65.4	40900	26.1	5960	1190	32.5	1560	10	341	4	97.8	112
98184302d	13-21dup	23300	4.5	5.7	204	1.35	0.3	8380	420		17.9	64.8	40000	24.3	5800	1210	32.1	1470	15	321	4	96.1	111
98184303	13-25	21400	4.5	4	234	1.05	0.2	5030	149	17.8	14.8	33.3	37800	9.1	4890	640	21.1	1120	10	475	4	117	75.3
Fine Fractio	'n																						
98182353	13-16	40500	4.5	4.8	388	1.55	1.31	11800	122		15.5	142	45000	257	4770	922	27.4	1840	10	452	4	117	390
98182357	13-21	29300	4.5	8	207	1.4	0.23	7320	360		9.07	55.3	38100	39.4	5770	357	28.7	1460	14	249	4	78.5	116
98182361	13-21dup	25700	4.5	10	210	1.34	0.27	8430	355		11.3	47.4	38900	42.8	5930	503	28	1690	11	284	4	83.8	122
98182365	13-25	39200	4.5	4	427	1.5	0.3	5740	331		16.9	56.5	43500	33.8	5770	897	28	1590	10	330	4	103	105
Bulk Sample	es																						
98184304	-	12200	4.5	4	130	0.691		27700	52	4	11.3	34.3	30600	254	4290	395	21.7	869	10	635	4	85.9	161
98184305		19400	4.5	4	192	1.21	0.52	7290	200	4	13.8	73.1	43000	46.6	5390	457	26.1	1570	10	388	4	89.1	120
98184306	12-26	20000	4.5	6.4	188	1.18	0.2	5370	181	11.6	14.1	28.9	38100	8.7	5060	474	25.2	1090	10	471	4	125	74.6
Fine Fractio	n																						
98182369	-	25400	4.5	7.2	325	1.06	1.6	45200	135		15.7	74.3	38400	729	5510	740	31.6	1540	10	746	4	101	336
98182373		25000	4.5	4.6	230	1.43	0.56	7380	257		14	47.6	37400	58.2	5980	459	25	1700	10	343	4	95.8	134
98182377	12-26	31100	4.5	4	275	1.46	0.23	5900	327		16.5	42.3	40100	15.4	5550	635	26.9	1380	11	385	4	108	88.7
Bulk Sample							ļ																
98184307	21A-7.5	11800	4.5	4	104	0.62	0.2	3630	13.9		8.83	14.1	22200	21.6	2830	323	12.7	593	10	384	4	66.4	61.4
98184308		28500	4.5	11	229	1.63	0.2	5550	34.1		16.3	30.7	39500	13	6750	778	24.6	1270	10	255	4	102	84.4
98184309	21A-22.5	15300	4.5	5.6	150	1.16	0.2	6250	21.2		14.3	27.2	39900	7.5	5120	520	19.1	1150	10	730	4	131	68.9
98184310		5650	4.5	4	71	0.36	0.2	2710	11.6		5.58	8.26	13400	4.8	2430	182	10.4	579	10	312	4	36.9	42.6
98184311	20A-10	26600	4.5	5.5	239	1.58	0.28	5830	33		15.3	32.3	35400	14	6620	820	26.9	1420	10	281	4	87.5	81.8
98184312	20A-17.5	19100	4.5	5.4	170	1.15	0.2	5180	23.5		13.3	23.2	35600	5.7	4620	474	18.4	815	10	658	4	111	63.8
0000 1755	045.00	7070	4 -			0.500		0000	45.4		0.01	45 5	10000	4 -	5400	0	00.0	40.10	4.0	0.01			05.0
98224550	21B-38	7370	4.5	4.8	83.8	0.526	0.2	3620	15.4		8.64	15.5	18900	4.5	5460	277	20.6	1040	10	331	4	46.2	35.8
		mg/L							_		-											 	
98182378		20	45	40	1	1	2	70.6	5		5	9	10	25	25	1.1	10	700	100	87.7	40	3	9.5
98182378d	sieve blank dup	20	45	40	1	1	2	70.7	5		5	8.2	10	25	20	1.3	10	700	100	87.3	40	3	11
																							<u> </u>
dete	ction limit																						

Table 2. Inorganic analyses of soil samples collected April-May, 1998, Frontier Hard Chrome site (from Weston, 1999).

Table 3. Phases discussed in this report. The abbreviations and analytical procedures (XRD or EM) are noted. Phases described by EM that are not discrete identifiable minerals are noted by -- . The phase, FeAlSi, is placed under clay minerals because of the fine-grained texture apparent in SEM images.

XRD	EM	SILICATES Silica		IDEAL FORMULA
х		QZ	quartz	SiO ₂
х		ĈR	cristobalite	SiO ₂
				-
		Other Silic	cates	
х		FS	feldspar	(K,Na,Ca)Al(Al,Si) ₃ O ₈
Х	х	PX	pyroxene	$(Ca,Mg,Fe)_2(Si,Al)_2O_6$
Х	х	AM	amphibole	$(Na,Ca)_2(Mg,Fe)_5Si_8O_{22}(OH)_2$
Х		MI	mica	$K(Al,Mg,Fe)_{2-3}(Al,Si)_4O_{10}(OH,F)_2$
	Х	FA	fayalite	Fe ₂ SiO ₄
		Clay Mine	rals	
х		IL	illite	$(K,Na,Ca)(Mg,Fe,Al)_{2-3}(Al,Si)_4O_{10}(OH)_2$
х		SM	smectite	$Ca_{0.5}(Mg,Fe)_3(Si,Al)_4O_{10}O(OH)_2.4H_2O$
Х		CH	chlorite	$(Mg,Fe)_6$ AlSi ₃ O ₁₀ (OH) ₈
Х		KA	kaolinite	$Al_2Si_2O_5(OH)_4$
	Х	FeAlSi	iron-bearing aluminu	m silicate
		OXIDES		
х	х	MT	magnetite	Fe_3O_4
х		MH	maghemite	Fe_2O_3
х	х	CT	chromite	FeCr ₂ O ₄
	х	ILM	ilmenite	FeTiO ₃
	х	TMT	titanomagnetite	Fe(Fe,Ti) ₂ O ₄
	х	SP	spinel	MgAl ₂ O ₄
	Х	FeHox	iron hydroxide	
		CARBONAT	ES	
х		CA	calcite	CaCO ₃
х		AR	aragonite	CaCO ₃
х		VT	vaterite	CaCO ₃
	Х	SI	siderite	FeCO ₃
		METALS		
	Х	FE	iron or steel	
	X	Cr/Ti	chromium/titanium p	hase –
			presentation and the second se	

Table 4. S	Summary list of	of minerals as	s identified by x-ra	ay diffraction (Appendix A).	

Explanation:					
Phases	am-amphibole ar-aragonite ct-cristabolite	ca-calcite ch-chlorite fs-feldspar	il-illite ka-kaolinite mi-mica	mt-magnetite px-pyroxene qz-quartz	sm-smectite vt-vaterite
Amount of phases Not Analyzed	major mineral +	++ minor mir	neral ++ trace n	nineral +	

Borehole Depth	sili qz	ca ct	fs	silicate px/am	mi	il	clay n sm	nineral ch	ka	oxide mt	са	carbonate ar	vt
					Silt and	l Clav S	ize Fract	tion (<0.0)7 mm)				
B98-13					ontant		1261140		,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
16 ft	+++	+	+++	+	+	+	+	+		+	+		
21 ft	+++	+	+++	+	++	++	++	++	+	+			
21 ft dup	+++	+	+++	+	++	++	+	++	+	+			
25 ft	+++	+	+++	+	++	++	++	++					
B98-12													
16 ft	+++	+	+++	+	+	+	+	+		+	++		
22 ft	+++	+	+++	+	+	+	++	++		+	++		
26 ft	+++	+	+++	+	++	++	++	++	+	+	+		
					Fine Sa	and Size	Fractio	n (0.07-0	.5 mm)				
B98-13									,				
16 ft	+++		+++	+	+			+		+	+		
21 ft	+++	+	+++	++	++		++	++		+			
21 ft dup	+++	+	+++	+	++		++	++		+	+		
25 ft	+++		+++	+	++		++	++		+	++		
B98-12													
16 ft	+++	+	+++	+	+			+		+	+		
22 ft	+++	+	+++	++	++		++	++		+	+		
26 ft	+++	+	+++	+	++		++	++		+	+		
				:	Sand and	d Grave	l Size Fr	action (>	0.5 mm)			
B98-13					or	ange ov	kide-coa	ted grain	15				
21 ft	+++		++	+	+	ange er	+	+					
B-98-13					wh	ite carb	onate-co	oated gra	ins				
16 ft	++	++	+++				+				+++		+
21 ft	++	+	+++	+			+				+++		+
B98-12													
16 ft	+++	++	+++				+				+++	++	+
B-98-13					bla	ack unco	oated ba	salt grai	ns				
21 ft	+	+	+++	++			+			+			

Table 5. Summary list of minerals containing chromium and manganese in samples from Frontier Hard Chrome, as identified by scanning electron microscopy/electron microprobe analysis (see Appendix B).

Phases	am-amphibole cr/ti-chromium/titanium phase ct-chromite fa-fayalite fe-iron or steel fealsi-iron-bearing aluminum silicate fehox-iron hydroxide.	px-pyroxene il-ilmenite mt-magnetite tmt-titanomagnetite or titanian magnetite si-siderite sp-spinel
Amount of phases	common phase ++ rare phase +	
Amount of element in phases	Cr and Mn occur in major to minor amour not shaded.	nts where shaded, and trace amounts where
Not Analyzed	not shaded.	

Borehole Depth	Chromium-bearing Phases									Manganese-bearing Phases									
	px/am	fealsi	fehox	mt	ilm	tmt	ct	fe	other	px/am	fealsi	fehox	mt	ilm	tmt	ct	fe	othe	
		Silt and Clay (<0.07 mm)									Silt and Clay (<0.07 mm)								
B98-13																			
16 ft																			
21 ft		++				+	+				++				+	+			
25 ft						+	+	+							+	+	+		
B98-12																			
16 ft																			
21 ft																			
25 ft		+				+					+				+				
	Fine Sand (0.07-0.5 mm)									Fine Sand (0.07-0.5 mm)									
B98-13																			
16 ft			+			+	+					+		+	+				
21 ft	+	++		+	+	+	+	+	sp	+	++		+	+	+		+		
25 ft	+	+			+	+		+	cr/ti	+				+	+		+		
B98-12																			
16 ft																			
21 ft	+	++	+			+		+	si	+	++			+	+		+	si	
25 ft		+									+								
	Sand and Gravel (>0.5 mm)									Sand and Gravel (>0.5 mm)									
B98-13													_						
16 ft	+			+		+			fa?				+	+	+				