Structural investigation of functional oxides using compositional spreads

Leonid A. Bendersky Metallurgy Division, MSEL NIST, Gaithersburg, MD

In collaboration with I. Takeuchi and his students from Univ. of Maryland

Functional Oxides

Topics addressed in this symposium will include, but not be limited to:

- Multiferroics
- Artificially layered materials, including strain effects
- Ferroelectric and dielectric oxides
- Piezoelectric/electrostrictive oxides for MEMS, acoustic wave devices, sensors, and actuators
- Magnetic and electro-optic oxides
- Superconducting oxides, particularly in hybrid heterostructures
- Semiconducting oxides
- Electric field effect on functional and multifunctional oxides
- Multifunctional oxides on silicon and compound semiconductors (e.g., for novel devices)

Functional Oxides (cont.)

• Search for optimal or novel properties in multi-parameters space of *composition* and *processing* variables

• Most studies are for *thin films* (epitaxial films) because of deviceoriented applications

• Many parameters - MANY specimens

• *Combinatorial approach* of using one or more-dimensional compositional thin film spreads

• Different deposition methods for producing compositional spreads

• Large number of tools with localized probes are available for structural and physical properties measurements

Functional Oxides (cont.)

Difficulties:

• Complex process of synthesis of compositional spreads involving interdiffusion, thus reproducibility problem

• In many systems the properties are highly sensitive to crystallographic details and defects

• Limited ability to detect the crystallographic details, thus limitation in interpretation of composition-property relationship

TEM - imaging of microstructure, interfaces, domains, diffuse scattering, precipitation, ordering, dislocations and other defects

Recent combi projects for studying functional oxides

- BaTiO₃ SrTiO₃ on a SrTiO₃ substrate.
 High dielectric material for microwave and storage applications
- ZnO-MgO on a sapphire substrate.
 The effect of MgO on a band gap of ZnO semiconductor.
- LaMnO₃ CaMnO₃ on SrTiO₃ and LaAlO₃ substrates. CMR material, constructing magnetic diagrams
- BaTiO₃-CoFe₂O₄ and PbTiO₃-CoFe₂O₄ on a MgO substrate. Multiferroic material - ferroelectric/ferromagnetic

Deposition of compositional spread films

- Combinatorial pulsed laser deposition system of UMD
- Atomic layer-by-layer deposition controlled by a moving shutter
- Substrates at >600 °C in 10⁻⁴ Torr of oxygen

Preparation of the TEM specimens from a compositional spread

Zn_{1-x}Mg_xO spread

Composition tuned $Mg_xZn_{1-x}O$ band gap and the corresponding phases.

Phases according to scanning x-ray diffraction.

Zn_{1-x}Mg_xO spread, region 1

ZA=[0110]_S

A ZnO-based phase with a high density of extended planar defects. Orientation relationship: $(0001)_{s} //(0001)_{ZnO}$; $[2110]_{s} //[0110]_{ZnO}$

Zn_{1-x}Mg_xO spread, region 3

Dark field image of one of the twin variants.

SAED pattern showing MgO cubic phase in the following OR with a substrate: (111)//(0001)_S and [1<u>1</u>0]//[2<u>11</u>0]_S. Two twin variants are present.

Zn_{1-x}Mg_xO spread, region 2

 $\begin{array}{c} (0001)_{S} //(0001)_{h-(Zn,Mg)O} //(100)_{c-(Mg,Zn)O}; \\ [2\underline{11}0]_{S} //[01\underline{1}0]_{h-(Zn,Mg)O} //[110]_{c-(Mg,Zn)O} \end{array}$

Concept of multiferroic magneto-electric composites:

Piezoelectric, $\varepsilon_{jk} = d_{ijk}E_i$; E_i - electric field; ε_{jk} - strain (PbTiO₃)

Piezomagnetic, $M_i = q_{ijk}\sigma_{jk}$; M_i - magnetic moment; σ_{jk} - stress (CoFe₂O₄)

 $\varepsilon_{jk} = s_{ijkl} \sigma_{kl}$ s_{ijkl} - effective elastic compliance, $s_{ijkl}(s_1, s_2, \alpha, shape)$

 $B_i = q_{ijk} \epsilon_{jk} + \lambda_{in} E_n + \mu_{in} H_n \qquad \qquad D_i = d_{ijk} \epsilon_{jk} + \lambda_{in} H_n + \kappa_{in} E_n$

 λ_{in} - magnetoelectric coefficient

0.1 PTO

0.1 PTO

