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Outline
• Multiscale Predictive Science and Simulations

• Radiation
• Materials Instability, Aging, Microstructure Evolution
• Constitutive Equations, Damage, Fracture
• Novel Materials

• Integrated Computational System and Software Integration:
• Spans the scales QM CM
• Predict thermal-mechanical-electrical performance - harsh environments
• parallel and petaflop computation

• Validation, Verification, and Uncertainty Quantification (V&V, UQ):
•Incomplete experimental information and input and model uncertainties
•Use limited experiments/Inspections e.g. aging and radiation damage
•Large ranges of space and time scales
•Uncertainty Quantification to provide error bounds of the prediction

• A focus microsystem problem to drive research and demonstrate the 
predictive science capabilities

• The design of novel materials for future microsystems



Radiation Effects on MEMS in Satellites

• Radiation accelerates diffusion of 
materials

•Material instability and aging

• Microstructure evolution

• Current diffusion barriers are susceptible 
to radiation damage

• Novel materials design need multiscale 
simulation tools

• Other important design factors:

• Stiction, friction, and impact loading of 
spring contacts

• Thermal cycling

Conclusion: Need validated and verified 
multiscale predictive science methodologies

Single photon detector (courtesy of 
H. Mohseni)

Multi-wavelength laser (courtesy of 
H. Mohseni)



Radiation Effects on Materials

• Interaction of charged particles with crystalline solid
– E.g. energetic electrons or heavy ions
– Electronic and elastic interactions

Electronic excitations
& Auger electrons

Frenkel pairs
vacancy & self-interstitial atom (SIA) 
(point defects)

• Modeling of radiation effects
• Combination of molecular and quantum simulations
• Long time scales (diffusive migration of vacancies) Monte Carlo methods
• Molecular models linked to multiscale continuum models

• predict thermal-mechanical-electrical performance and reliability



Radiation-Induced Degradation Effects
Atomic Displacement by

• particles electrons, protons, neutrons

• high-energy photons

Long-lived effects

• Increased defect concentration

• Decreased charge carrier

• lifetime

• mobility

• concentration

• Local disorder dilation and stress

• Defects coalesce into microvoids

Transient effects

• Change in electrical conductivity

Source: Handbook of radiation effects, A. Holmer-Siedle and L. Adams, 1993.



Radiation-Induced Degradation Effects (Cont’)
Ionization 

• Particles: electrons, protons, and neutrons

• Phonons: high and low-energy

Long-lived effects

• Charge excitation and transport 

• Bonding changes (damage)

• Decomposition

Transient effects

• Photocurrents transient terminal voltage changes

• Latching conditions in bistable circuits

• Breakdown effects high local currents in gas or solid state

• Short-lived color centers

Source: Handbook of radiation effects, A. Holmer-Siedle and L. Adams, 1993.



Radiation Damage Effect Schematic

Vacancies and Defects
Method: MD+MC

Stress State and Temperature
Method: Multiscale Statistical 

Continuum (Steady State)

Radiation

Device Performance and 
Reliability

Method: Multiscale Statistical 
Continuum (Dynamic)

Materials Instability, Aging, 
and Microstructure Evolution

Method: First-
Principles+MC+Phase Fields

• Focus mainly on atomic 
displacement cascades

Microvoid formation
Stress, 
temperature, 
microstructure 
interdependence

Microstructure determines 
thermal-mechanical-electrical 
properties

Barrier: coupling of 
methods at various scales



Radiation Damage Modeling
Modeling Atomic Displacement

• MD: displacement cascade formation in small body (10 nm)^3

• MC: with ‘binary collision approximation’ (BCA) - initial defect production

• LKMC (lattice kinetic Monte Carlo): with residence time algorithm long term 
radiation damage

• Free public domain codes for atomic displacement due to radiation:

• MD: MDCASK (LLNL), MOLDYCASK (Oxford)

• MC with BCA: SRIM (Ziegler)  and MARLOWE (ORNL)

Barriers:

1. Coupling MD to MC 

2. Prediction of interdiffusion between two materials using LKMC

• Incorporation of grain boundaries, dislocations, elastic effects

3. Obtaining Input parameters (ie. activation and bonding energies) for MC or 
LKMC from first-principles calculations

4. Integration of above codes into LAMMPS/Tahoe



Materials Instability, Aging, and Microstructure Evolution

Material instability
• changes in thermal-mechanical-electrical properties
• vacancies, diffusion, defects, phase formation, microstructure evolution 

Radiation and thermal cycling
• radiation and thermal cycling are critical in micro-models
• chemical effects 

– oxidation and corrosion
– mass diffusion and new compound formation from chemical reactions

• occur primarily at the microscale
– kinetics governed by properties at electronic and molecular levels

• grain boundaries, dislocations, and microcracks
• interaction between quantum and micro-mechanical models 

– parametrization of microstructure model: subscale simulations



• Compound formation – Materials A and B 
interdiffuse to form new compound.

New compound voids

• Kirkendall effect – Material A diffuses 
faster than Material B, and voids form in A.

A

B

A

B

• Si-Cu contacts – copper diffuses into silicon to 
degrade device performance.

Si

SiO2 SiO2

Interdiffusion of Cu and Si 
(Spiking)

Complicating factors:

• These phenomena can occur simultaneously

• Diffusion depends also on temperature, 
electric field, microstructure, and stress state

• Typical thin film coating not enough to guard 
against materials aging under radiation.

SiO2

Cu Cu

Mass Diffusion in Materials Aging

A diffuses faster
than B

W (~50 nm)



Other phenomena in Microsystems

• Thermal cycling
• Dynamic loading
• Adhesion, stiction, and arcing and damage in insulating materials that 
can cause electrical leakage 
• Microstructure (ie. grain boundary, dislocations, and voids) evolution 
and  interaction
•Voids diffuse into grain boundaries and grow 

•Metal-Solder reactions
• Residual thermal stresses resulting from manufacturing processes
• Creep and fatigue of solder
• Environmental effects such as oxidation and corrosion
• Tin whisker formation in solders
• Electromigration (with novel materials design, this effect can be minimized and will not 
be modeled)

Ultimate goal: study the selected combined effects of various critical phenomena 
on the long term performance and reliability of the micro-system/device

Barrier: selecting the more important phenomena for a given device



Atomistic to Microstructure Evolution Multiscale Modeling

Multiscale Statistical Continuum Equations (Equations of Motion,
Energy, Continuity, Steady-State Electrodynamics)
• Study performance and reliability of microsystems

• Provide phase-field model with stress state and temperature

>1mm 

Software codes:

FLAPW (commercial)

TB-LMTO-REC (NWU)

CEMC (NWU)

Phase Field Codes 

(NWU)

Multiscale Statistical 

Continuum 

(NWU/Tahoe)

Provide stress state 
and temperature

Provide current 
microstructure

Long time scale (~yrs)

Barriers:

• determining domain 
size at each scale

• coupling between 
scales



Phase Field Simulation 
(All energetics taken from first-principles calculations)

TEM Micrograph of W319 Alloy
(W. Donlon et al.)

Microstructural Evolution Multiscale Model
First-Principles / Phase-Field

Vaithyanathan, Wolverton, and Chen,, Phys. Rev. Lett. (2002). 



From Microstructure Evolution to Constitutive 
Equations, Damage, Fracture, and Performance

Coupled Multiscale Statistical Continuum Equations consist of 
various scales of: 

• Continuity equations 

• Momentum equations

• Energy equations

• Steady-state electrodynamics equations

Barrier: based on these equations, solve the focus problem with 
uncertainty quantification.



Thermal-Mechanical-Electrical-Chemical Coupling

MCStress ( ), Temperature (T)Diffusion Coefficient (D)
Electric current (j) Joule heatingTemperature (T)

First principles 
calculation + 

transport theory

Temperature (T)Electrical conductivity ( )

Transport theory; 
MD

Temperature (T), Electric current (j)Thermal conductivity ( )

Atomic concentration (C), 
Temperature (T)

Stress ( )
Atomic concentration (C)Density ( )

Method to 
Obtain 

Parameter

Direct dependent Parameter / 
Variable

Parameter / Variable

Barrier:

• may require iterations to solve equations because of the nonlinear couplings

• thermal conductivity depends on electron-phonon interaction hard to estimate

ρ
σ

σ

γ

κ



Multiscale Energy EquationMultiscale Energy Equation

Multiscale Continuity EquationMultiscale Continuity Equation

Multiscale SteadMultiscale Stead--State Electrodynamics EquationState Electrodynamics Equation
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Multiscale Statistical Continuum Equations

Barrier: On-the-fly estimation of 
coarser scale constitutive relations 
needs to be implemented
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- Final failure

• Four length scales are observed in 
the final solution:

1. localization between primary 
particles

2. localization between secondary 
particles

3. microvoid shear localization
4. final material rupture

A Four Scale Materials Design ExampleA Four Scale Materials Design Example

• Three scales of localization & final failure in an alloy

• Localization at scale nn strain field resolved to scale nn

• The microstress at each scale has its own constitutive law



Northwestern University 
- a fine institution

Increasing Image ResolutionIncreasing Image Resolution

Increasing Field & Constitutive ResolutionIncreasing Field & Constitutive Resolution

Multiresolution Imaging and Microstructure

Small Number of 
pixels per km2 –
suitable for a global 
image

Small Number of 
degrees of freedom –
suitable for average 
behavior

Very fine resolution – all 
individual micro-constituents

Discrete behavior of 
larger particles begins 
to be observed

More resolution – cities 
can be observed

Increasing resolution –
buildings can be 
observed

Discrete behavior of 
smaller particles is 
observed



Novel Materials Design Based on Fracture Toughness

COD

K
Trends in fracture toughnes

( )MPa m

K-field
P

P
Macro-scale specimen

Small scale yielding

Refined FE discretisation 
around the crack tip

A
B

C

• Similar procedures can also be applied to design novel materials that are
• Resistant to Materials Diffusion
• Formability
• Scratching

• Statistically random distribution of initial microstructure 
• particle clusters at A, B and C



Design of Fracture Toughness
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Computational Mathematics of Thermal-
Mechanical-Electrical-Chemical Coupling

Barriers for Multiscale Momentum Equations and Their Constitutive Equations:

• Modeling Voids

• explicitly in the full simulation

• implicitly in multiscale continuum equation with RVE

• Microstructure evolves spatially and temporally due to diffusion

• Explicit modeling of voids accomplished by the IFEM scheme

• Propagation of microcracks emitted from voids modeled by XFEM

• Stochastic thermal-mechanical-electrical-chemical loadings due to radiation 
need to be formulated



Barriers for Multiscale Energy, Continuity, and Steady-State Electrodynamics 
Equations:

• Thermal conductivity estimation given a microstructure

• MD simulation

• kinetic theory

• Wiedmann-Franz law (great for metals)

• Thermal conductivity depends on electric current

• Joule heating

• Radiation-generated heat/charges

• Dielectric loss

• Surface heat radiation

• Estimation of diffusion coefficient (depends on both stress and temperature)

Computational Mathematics of Thermal-Mechanical-
Electrical-Chemical Coupling (Continue)



Novel Materials Design

• Slowing Down Radiation-Accelerated Diffusion

• Alkane Thiol Self-assembled Monolayers (SAM) Lubrication Coating

• Nanostructured Microactuation Shape Memory Alloys (SMA)

Based on the Naval Materials by design “Cybersteel 2020,” and related 
AFOSR and DARPA initiatives, Navy has begun a Digital 3-dimensional 
(D3D) project on:

“The development of the next generation of integrated research tools 
enabling a new level of science-based materials engineering capability 
keeping pace with advancing computational power.”
(Greg Olson, Northwestern) 



• Radiation environment mass diffusion is accelerated

• Design of diffusion barrier insufficient to slow diffusion (long term)

• Add silver particles to tungsten diffusion barrier traps copper particles

Si

SiO2 SiO2

Interdiffusion of Cu and Si (Spiking)

SiO2

Cu Cu

Slowing Down Radiation-Accelerated Diffusion

W (~50nm)
• Microscopically, copper (Cu) particles 
exhibit random walk in the diffusion barrier:

• Silver (Ag) particle in the tungsten (W) 
barrier layer trap copper (Cu) particles: 
diffusion path is longer.

Ag

Cu

Cu
Comment: The multiscale predictive 
science simulation system will allow us 
to design better material systems to 
guard against diffusion



Radiation-Induced Degradation of Alkane Thiol Self-
Assembled Monolayers (SAM)

• Study degradation of SAM resulting from chemical reaction with atom/ion 
projectiles
• SAM is model for coating or lubricant.  
• Chemical degradation

• formation of free radicals and surface ions
• roughens the surface

• Involves QM/MM coupling
• QM and MM computations based on free open source AMES lab code 

GAMESS (QM)

Troya and Schatz, J. Chem. Phys., 120 (2004). 



Nanostructured Microactuation Shape Memory Alloys

Concept: High strength SMAs
for higher output stress and
greatly enhanced cyclic life

Applications: High power density
microactuation systems and 
nonlinear-compliant tribological
coatings

Predictive Science: Nanodispersion precipitation strengthening 
and martensite kinetic theory



Integrated Software Design
– Multiscale predictive science software system - integrate many 

single-scale tools into an integrated systems mutliscale, 
multiphysics modeling

– Provide a set of components for multiscale simulation that can 
effectively couple the various single scale tools
• Take advantage of existing tools in this process including the 

DOE Tahoe code that supports MD and continbuum
– Other codes to be integrated

• Quantum: TB-LMTO-REC (NWU), GAMESS (NWU)
• MD: LAMMPS (DOE), MDCASK (LLNL, radiation)
• Phase field models (NWU) 
• Continuum: Multiscale Statistical Continuum Equations (NWU), 

IEFEM (NWU), XFEM (NWU)
• Adaptive Continuum/Atomistic Multiscale: Multiscale Adapt 

(RPI)
• Uncertainty quantification: OPTDOE, SORA, SSA, BPM, libuq, 

DAKOTA (SNL), Sundance (SNL)



Integrated Software Design
•Barriers:

– Effective means to integrate a wide variety of different tools into a tool 
capable solving the full range of multiscale, multiphysics problems
• Wide range of different capabilities needed - existing programs 

provide only a subset of what is needed
• Must be able to take advantage of existing tools due to time and effort 

required to redo them from scratch
• Existing tool are not easily changed or integrated

– Supporting the level of computation needed - Even with adaptive 
multiscale methods petascale computed required
• Parallelization to petascale requires extreme scalability - few of the 

individual tools have been scales to 1,000’s of processors, getting to 
the 100,000’s for petascale will be a challenge

• The use of multiple coupled tools will compound the parallization
challenge

• The application of adaptive mutliscale methods further complicates 
parallelization because of the required dynamic laod balancing



Verification Plan

• Perform code and calculation verification

• Code verification based on benchmark solutions

• analytical solutions to manufactured solutions of increasing complexity

• Multiscale statistical continuum code verified by peta-flop direct numerical 
simulations (DNS)

• Convergence of direct numerical simulations studied with LANL group

• ‘three-mesh refinement’ method 

• don’t require knowledge of ‘exact’ solution

Barrier: Verification of atomistic scale methods and coupling of methods



Validation Plan

• Validation limited number of experiments

• Measurement of material degradation and microstructure evolution

• radiation and thermal aging

• mimicked by ion or electron beams (in-situ SEM or TEM)

• TEM and X-ray diffractions

• 3D atom probe (3DAP) allows very fast imaging

• MEMS scale tests validate macro-constitutive equations

• accelerated and unaccelerated conditions.

• Stochastic sensitivity across scales

• Lack of experimental data validation performed by finer-scale method

Barrier: optimization of resources between experiments, modeling, and 
computations



Uncertainty Quantification Plan

• Gage the accuracy with which information is being represented, and the 
significance of the associated loss of accuracy

• Quantify the worth of additional information 

• Develop stochastic scale-bridging techniques

• Stochastic model calibration and prediction uncertainty quantification 

• Efficient algorithms for uncertainty propagation and probabilistic finite 
elements (polynomial chaos, importance sampling, Markov Chain Monte 
Carlo) – all sources of uncertainty rolled up to give a predictable total output 
uncertainty 

• Use examples from other similar problems.

Barriers:

• Quantification of information

• Input uncertainty



Glass/Metal/Polymer
Hermetic Sealing

Wafer fusion techniques combined with MEMS/NEMS and conventional
CMOS and compound semiconductor electronics will be used to realize 
a robust oscillator (clock) as the demonstration system.

Select an Important Aspect of this Device as a Focus Problem

CMOS
VLSI Circuits

Silicon Substrate
Wafer Fusion

MEMS/ NEMSIII-V Devices

• A wide range of heterogeneous 
interfaces are present in this problem

• A wide range of implementations are 
possible (electronics, photonics, 
mechanical, etc)

• Long term stability of the clock is critical 
for many systems and applications

• Frequency of the clock provides a direct 
and convenient measure for the stability



Disc Resonator Gyroscope

Principle of Operation:

Disc Resonator Gyroscope

Standing wave vibration
pattern:  after case rotation

Standing wave vibration
pattern: before case rotation

Etched disc 
w/ internal electrostatic
sense, drive & trim

*

*US Patent: 7,040,163 
May 9, 2006

90º case rotation

36º

[First conception/ FEA]

Boeing Technology-Phantom Works-Disc Resonator
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MTOMTO
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Silicon DRGGyro Performance Metrics

1 (ASIC)
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0.01

NGIMG 
Goals

Existing Silicon Standing-
Wave MEMS Resonator

Fused quartz material properties along with integrated electronics promises 
navigation-grade performance within the desired volume
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• High-Q nav-grade performance
• Large signal-to-noise ratio 

sensing
• Low-cost (2D fabrication)
• Small (1 cm3)
• Reliable
• Low Power(5mW)

A Reliable Navigation Grade Standing-Wave MEMS Gyro



Conclusions
• Aim to develop multiscale predictive science tools to model radiation-

induced damages and materials aging in microsystems

• Long-term materials instability, aging, and microstructure evolution modeled 
by coupling first-principles, Monte Carlo, and phase field models

• Develop multiscale statistical continuum equations to check device 
performance and reliability based on current microstructure

• Verification, validation, and uncertainty quantification of multiscale 
methodologies

• Novel materials design to slow down radiation damage and materials 
diffusion, and design to minimize stiction and adhesion, and arcing of spring 
contacts

• A focus problem to drive research and demonstrate the predictive science 
capabilities


