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Experimental Observation of Interdiffusion
Microstructure and Diffusion Path
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Climbing the Multicomponent Mountain with John
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Phase Field

Coupling interdiffusion with 
microtructural evolution:
• Effect of two-phase 

microstructure on interdiffusion
and diffusion path

• Interdiffusion induced phase and 
microstructure instabilities

• Effect of concentration gradient on 
nucleation, growth and coarsening

• Effect of phase transformation on 
interdiffusion

• Roles of coherency/thermal stress 
on interdiffusion and phase 
transformation

• One-dimensional diffusion in a common 
matrix phase

• Precipitates are treated as stationary 
point sources or sinks of solute

• Mutual interactions between 
microstructure and interdiffusion and 
corresponding effects on diffusion path 
and microstructural evolution are ignored



Simple Model System

• Elements A and B form ideal 
solution while elements A 
and C or B and C form 
regular solutions

A B

C

α

α’

Acta Mater., 49(2001), 3401-3408

Free energy model
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Wu et. al. Acta mater. 2001;49:3401
Wu et. al. Acta mater, 2004; 52:1917



Phase Field Equations
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Mij - chemical mobilities

κij - gradient coefficients

βI - atomic mobilities

ρ - molar density

Diffusion equations

Gradient 
thermodynamics

Kinetics parameters( )

( ) ( )

( )

2
11

12 21

2
22

1

1 1

1

B B B B C C B A A

B C B B C C A A

C B C B C C C A A

M X X X X X X

M M X X X X X

M X X X X X X

ρ β β β

ρ β β β

ρ β β β

⎡ ⎤= − + +⎣ ⎦
= = − − − − +⎡ ⎤⎣ ⎦

⎡ ⎤= + − +⎣ ⎦

Wu et. al. Acta mater. 2001;49:3401
Wu et. al. Acta mater, 2004; 52:1917



τ = 0

τ = 100

τ = 2000

Interaction between Microstructure and 
Interdiffusion – Type 0 boundary

4608x64 size simulation, 1024x256 size output

βB=1.0 βC=5.0 βA=10.0

• Ppt and Type 0 boundary 
migrate as a results of 
Kirkendall effect

• Type 0 boundary becomes 
diffuse

• Kirkendall markers move 
along curved path and marker 
plane bends around 
precipitates

• Diffusion path differs 
significantly from 1D calcul.

• Ppt and Type 0 boundary 
migrate as a results of 
Kirkendall effect

• Type 0 boundary becomes 
diffuse

• Kirkendall markers move 
along curved path and marker 
plane bends around 
precipitates

• Diffusion path differs 
significantly from 1D calcul.



Size and position changes 
during interdiffusion

Diffusion path: comparison 
with 1D simulation
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Real Alloy System: Ni-Al-Cr

Exp. Observation by Nesbitt 
and Heckel in Met Trans. A 
(1986)18A: 2087-2094
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Quantitative comparison with DICTRA

Dissolution

Growth

Q. Chen et. al. Scripta mater. 50 (2004)471-476



Exp. Observation by 
Nesbitt and Heckel

Interdiffusion Microstructure and Diffusion Path
0 hr

4 hr

25 hr

320µm

100 hr
at 1200oC

Ni-Al-Cr at 1200oC

• Free energy data from 
Huang and Chang

• Mobilities in γ from 
A.EngstrÖm and J.Ågren

• Diffusivities in β from 
Hopfe, Son, Morral and 
Roming

• Free energy data from 
Huang and Chang

• Mobilities in γ from 
A.EngstrÖm and J.Ågren

• Diffusivities in β from 
Hopfe, Son, Morral and 
Roming

200µm

XCr =0.25, XAl=0.001

γ+β < γ



Annealing time: 
25 hours
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Effect of Cr content on 
interface migration
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Exp. measurement by Nesbitt and Heckel

Diffusion path and 
recess rate -
comparison with 
experiment 

Diffusion path and 
recess rate -
comparison with 
experiment 
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Shape of the Diffusion 
Path

t = 0

t = 25h

t = 100h pure coarsening
γ+β > γ

500µm

β- γ+



Shape of Diffusion Path - Comparison with DICTRA
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A.EngstrÖm, J. E. Morral and J.Ågren
Acta mater. 1997

Growth vs. Nucleation

γ+β > γγ+β < γ



Summary – Remaining Challenges

• Incorporation of nucleation
• Breaking the intrinsic length scale limit of quantitative 

phase field modeling
- effect of surface energy, e.g.,

coarsening and coalescence

• Quantitative comparison with experiment
- accuracy of thermodynamic and mobility databases
- accurate determination of average composition of multiphase 

microstructure in both simulation and experiment
- Accurate determination of boundary position 
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C. Shen et al., Scripta mater. (2004) 50:1023-1028; ibid, 1029-1034. 


