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The three-dimensional steady radial expansion of a viscous,
heat-conducting compressible fluid from a spherical sonic
source into a vacuum is analysed using the Navier-Stokes equa~
tions as a basis. It is assumed that the model fluid is a
perfect gas having constant specific heats, a constant Prandtl
number of order unity, and viscosity coefficients varying as a
power of the ahsolute temperature. Limiting forms for the flow
variable solutions are studied for the case where the Reynolds
number based on the sonic source conditions goes to inifinity
and the ratio of the constant specific heats goes to one,

Through the use of asymptotic expansions and matching, it is
shown that, for the above limit, in what is, to 1eading“éPPPGXw
imation, an isothermal process, the velocity goes to zero and

the pressure goes to a finite vacuum value, as the radial dis-
 tance approaches infinity. Three distinct regions span the
distance between the sonic source and the vacuum, namely: (1)
an inviscid source region, in which there is a convection-
pressure gradient balance; (2) a (slightly) viscous downstream
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region, in which there is a convection-pressure gradient-hoop
stress balance; and (3) a (fully) viscous far downstream region,.
in which there is a convection-shear stress-hoop stress balance.

Nomenclature

Variables

r*/t, radial distance

r, = r¥p
1 172

u; = a¥*a = a¥%Q , radial velocity

Py = p*p, density

Py = p¥p, pressure

Tl = T#T, temperature _

By = BFR, first viscosity coefficient

hl = P¥\, second viscosity coefficient

kl = k¥*k, thermal conductivity coefficient
(where fi = dimensional variable; f* = dimensional reference
state at the spherical sonic source of inviscid flow limit;
and f = non-dimensional variable)

Parameters
& = (u#/p*a¥r#*), inverse of sonic source Reynolds number
€ = (y~1)/(y+1), Newtonian parameter
C = (ulcp /kl), Prandtl number
K =2+ (%l/ul), viscosity coefficient ratio
w = exponent in viscosity-temperature law N



1. Introduction

The radial source flow problem has received considerable
theoretical attention in the past decade, with the primary
attention being given to the two-dimensional case, since, in
this case, the explicit appearance of the radial distance vari-
able can be transformed away and a topological study made of the
resulting equations., For the three-dimensional case, however,

. the existence of a transformation that eliminates the explicit
appearance of the radial distance variable has not been shown.,

Sakurai (1958), noting the difficulty in expressing the
solutions for the three-dimensional case in analytical forms
valid over the whole range of the radial variable, attempts to
find solutions that span the domain through the finding of
approximate solutions for subregions within this domain and
connecting these approximate solutions for the various sub-
regions by 'using boundary layer techrnigue',

This three-dimensional analysis of Sakurai's, which relies
heavily on the two-dimensional viscous source flow solutions
for expansion into a vacuum as a guide for determining its
approximate solutions, unfortunately, does not, itself, describe
the expansidn of the gas into a vacuum,

This fact is brought out by Ladyshenskii (1962). Although
Ladyshenskii presents no (analytical) solutions, he is able to
show, for the expansion of a gas into a vacuum, from the inte-
-gral forms of the three~dimensional equations of motion, that,
for @ = 0, and for O < w < (1+3€)/4e (for € fixed), the radial
velocity goes to zero as the radial distance goes to infinity
~=a result quite different from the two-dimensional result that
the radial velocity tends to a value somewhat less than the
correspohding maximum velocity for the inviscid source solution,

With the above in mind, the purpose of this paper, then, is .



to present uniformly valid solutions for the three-~dimensional
case, and, hence, to some extent, to present quantitative details
to complete the qualifative picture that Ladyshenskii gives.

The method of making this presentation is essentially thdat

which Sakurai proposes. Approximate solutions for regions with-
in the domain are obfained through the use of asymptotic ex-
pansion techniqgues and these solutions are Jjoined through
matching techniques for the limiting case of © » 0 and € - 0.
The former limit corresponds to taking the large Reynolds num-
ber regime approach to the problem., The latter limit corresponds
to taking the gas under consideration to be one whose ratio of .
specific heats is approaching one--this has been doﬁe for réaw
sons of mathematical convenience,

In §2, the basic Navier-Stokes equations of motion, as well
as the appropriate boundary conditions, whose validity Lady-
shenskii has proven, are given,

In §3, the approximate solutions for the inviscid source flow
(sub)region, in which there is a convection-pressure gradient
balance, are given,

In §4, the approximate solutions for the geometrical stress
(sub)region, in which there is a convection-pressure gradient-
hoop stress balance, are given, The matchings of these solu-
tions to those found in {3 are alsoc given,

In §5, the approximate solutions for the shear stress (sub)- -
. region, in which there is a convection-shear stress-hoop stress
balance, are given, The matchings of these solutions to those
-found in §4 are also given,

In §6, a brief discussion of the results is presented.



2. The equations of motion

Consider the three-dimensional steady radial flow of a vis-
cous, compressible gas from a spherical sonic source into a °
vacuum. Let

ry = r¥r = r*/t

represent the radial distance, with r#* the radius of the sonic
sphere. The radial velocity, pressure, temperature, and density
are

= a‘i%Ql/z9

u; = a*u Py = P¥*P, Tl = T#*T, pl = p¥#p,

2
where a%*, p%*, T%, and p* are the reference states at the sonic
source,

The gas is assumed to be a perfect gas (p = pT), having (1)
‘constant specific heats, Cy and ¢ with v = cpl/cvl = const.;
= cofist, = 0(1));
and (3) its first and second viscosity coefficients proportional
to a power, w, of the absolute temperature (u1"= PEL = u%Tm;
Ay = WEA = ~(2-K)n*1®, K = const, = 0(1)).

The dimensionless Navier-Stokes equations of motion for the

(2) a constant Prandtl numbdr of ordler unity (o

radial flow of such a gas can be written (cf., Ladyshenskii
(1962)) as two primary equations ‘ ’

1-¢ dQ 1-€.,,aT T

(Q - ()7} q¢ + 2(0igE + 2 ¢!
2
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.
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SRS =28

1 dT K '
+6I(Tw{:'5“f{" dt (T:%“){ ..._(..;2.;-—-“-)- % = l-mE; . (zoglb)w
plus two seéondary equations,
2 2 '
t _1°T
p = -517_?: N P = -(3“’]?7— o (ZoOlC,d)

In (2.01), & is the inverse of the sonic source Reynolds nui-
ber and € is the Newtonian parameter; both quantities are
taken to be small for this analysis, i.€.,

& = pu/prayr® << 1, € = (v-1)/(y+l) << 1. (2.02a,b)*®
Uniformly valid-solutions of the system of equations of (2.01),

for the limits of (2.02), subject to the boundary conditions
at the sonic source and at the vacuum, respectively,

Q, Ty ps, p= 1, as t = 1, - (2,03a)
Q 0, pPd) <<1, as t = 0Oy (2.03b)

are determined in the following sections,

# A realistiec value for ¢ is that given by Eucken (1913),
namely, :

= [1+(5/z){e/(1+8)}]"le
Thus, for € << 1, it follows that (1-0) << 1.



3. The inviscid source flow solution

Near the sonic source, t = 1, the flow is taken to be
characterized by the following expansions for the variables:

t o= ty; (3.01a)
Q = Qi + eooe ] T = ]_ + £ Ti + oooe ; ‘ ' (3501b)
P o= pi + soe = tg/Q%/z + ooo0 g | - )

P =Dy + eoo = ti/Qi/Z + eee o © (3.01¢)

With these representations, for 6,6 << 1, the leading terms in
the equations for Q;(%;) and T,(%t;) become those for an in-
vigcid Newtonian source flow, namely,

aq,

1 L. = 1
Q; -1 T, + 4 g; =0, (1) = 13 (3,02a)
T; = m(Qi - 1), Ti(l) = 0, (3.02b)

The solutions of these equations, subject to the boundary
conditions at the sonic source, are
Qi = 1 - log Qi = 4 log (l/ci); Ti = -»(Qi - 1), (3.03)

. For the solutions' supersonic branch, i.e., for Qi > 1, the
aéymptotic behaviors for Q and T are seen to be

>



Q -1 =2{2(1;ti)31/2

(1-T)/e :2[2(1»ti)]1/2 * oo * 0, as t; » 1 (3,04a)

+ oo = O

Q = 4 log (l/ﬁi) + oeo -+ mg

(1-T)/e = 4 log (1/ti) * eee ?w, as t, * 0, (3.04h)
In turn,
l“p = [2(1“%1)31/2 + L) =» 09
l“p 5 [Z(Imti)]l/z + oo -4 09 as ti - l; (3@053)4
p = % t? [log(l/ti)]ml’/2 + oee = Oy
p = % t? [leg(l/ti)]"l'/2 * eeo 2 0, as t; » O, (3905b)
Further, it is

noted that the local Mach number for this
region is '

W= (2= ol2 . L,
so that

M-1 = [2(1mti)]l/2
M= 2 [log(l/ti)]

* oo 0, as t, 1

1/2 t see = as‘ti -+ 0O,

From (3.04b) and (3.05b), it is seen that the solutions of
'this inviscid source flow region do not satisfy the vacuum
boundary conditions of (2.03b), in that: (1) the velocity does
not go to zero; (2) the pressure does not approach a small, .
fixed value. Therefore, it is clear that the flow field for

t » O must be studied in greater detail in order to determine
this flow in the interior'(with réspect to t) region or regions
necessary for the satisfying of (2.03b).



4, The geometrical stress région

The logarithmic forms of the asymptotic solutions for the
inviscid region dependent variables as ti + 0 suggest that the
proper expansions for the variables in a region interior to the
inviscid one are:

t =‘Dgtg, Dg << 13 (4.01a)
Q:’.‘:!.“"" (l + AQ 000)9 T = l '*‘"E';"'T (1 + AT +°°°)7
Ag g9 Ag g,0 g8
€ << Ag << 1, Qg,o’ Tg,o = constsS.; (4.01b)
' 1t
2.1/2 2.1/2

had D A +°00 D A + e ¢ O

P =% * g8 Ql§2 :
’ 9.1/2 o172 27

= D A o o0 DMA + sooe © 400}.0

P = Dghg Pg ¥ g'g Pg ( / )

With these representations, for Ang = 0 << 1, the leading terms
in the equations for Q and T are:

Te,o * Y0 =
d 4KC
Q _.u?.g. ER ﬂ,... . mggls?sg = £
g50 dtg tg £2 ?
& 4(2-K)Q,
T T 3 haad 2 = Oo 4‘902
£:0 & * Qgso Qg L+ tg ( )

It is seen that (4.02) defines a flow (with a local Mach number
of M = (Q / )1/2 + ooo >> 1) in which the inviscid terms are
in balance w1th the geometrical(or hoop) stress terms.

The solutions of Qg and Tg, found fyom (4.02), are:

4 4K
Q. = - logt_ + C_ =~ o , C_ = const.;
8 U o & f . tg g |
Tg = - Qé, log tg - ( Qg°0 F) B(Eml) o (4.03)
_ g,0 0 8
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Therefore, as t_ - oo

g
Q = ‘%"" O(l + A ["’ Q4 log t + eoo] + oao)9
g K & , 850 &
T =-' l s §"'"" Q (l + A C“" 4 l()g t + oou] + ooo);
Ag 850 g Q5 g
o (4.04a)
Further, as tg + 0:
Q= da 1 al- a1,
g -’ g
T = 1 e %‘“‘“ (l + A ["” 8 i{“’l + ooo] + -oe)o (4004b)
g 5° & g

To verify that the geometrical stress region formulation is
compatible with that of the inviscid source flow region, it
nust’ be demonstrated that the solutions of the former region as
tg <+ o match to the solutions of the latter region as ti < 0,
The matching of the solutions for these two regions is performed
through the introduction of the intermediate limit, lim,

ig?
defined by
= =t £

tig = Dig fixed, Dg << Pig << 1, (4.05a)

In this limit,
Dig ‘
t; = Digtig -+ 0, tg = ﬁg tig % 00, (4.05b)
The Q-matching requires
lim. gﬁ[Q (Dlgtlg) + osol .
-{-A-; oll + 8,0, (D by /D) + ee )L = O,

| (4.06a)
From (3.04b) and (4.04a), it is seen that (4.06a) reduces to



-11=

llm E{4' log(""“"“’“{‘m) + 000}
1g 18
Q
—{~§&—(1 b A [= 2 1og(im
g D
g £50 g

e tosge— + ] -

g,0 1g ig (4. Oﬁb)
Hence, there is Q-matching for the inviscid source flow and .
geometrical stress regions if

1]

Q =4, A= [1og(%~-—)]nl° - (4.07)
g A

£,0 g

Without presenting the details, it is noted that the T-matche
ing for these two regions also requires that the conditions of
(4,07) be satisfied.

From the conditions that Ang = & and Ag [log( )]
follows that :

[log( )] | ~ (4.08a)
or
D, = & log(1/6) [1 - 16§éé2§§g§6}} + 0en] >> 8,
Ay = 8/Dy = [1og(1/Dg)]“l

A[log(l/é)]"l [1 + lo§£é?§§%§6)} ¥ ooo0]e .
(4.08b)

Further, from (4.01b), it has been assumed that € << Ag << 1.
Thus, the formulation presented here is valid if the parameters
€ and & satisfy the inequalities

£ << [_‘Log(l/é)'],wl << 1, - ' ' (4.09)
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Again, from the forms that Q and p take, it is seen that this
geometrical stress region is not capable of satisfying (2.03b)
as t_ = 0, Hence, the examination of the interior region must

*

be extended?
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5. The shear stress region

Once again, using the forms of the asymptotic solutions of .
the geometrical stress region dependent variables as tg -+ 0 as
guides to the postulation of the expansions for these varlables
in a region just interior to the geometrical stress one, (4.04b)
suggests the following representations:

t = Dt , D, << Dg << 1; (5.01a)
1 €

Q = 'r QV + ceo 9 T4‘= 1+ K" TV * o006 3 (Squh)
g g tz .

n2,1/2 2,1/2 _“v_
p = DVAg Py * ece = DVAg Ql 5+ oeeo
/ so |
o 2.1/2 2,.1/2
p = DVAg Py * eee = DVAg Py * eoo o (5.01¢)

1l

With these representations, for D = b << Dg & 1og(l/0) + covo o

the equations for Q and T are:

2
aq da Q aQ., 2 Q -
v 11 v v
el 4 K [mr = & ) = 4 5] = O (5.022a)
dt, dt% 2 Q. dty t% ’ -
T Q. + K[ Ty, Wy, ae-x) ng -0 (5.02b)
v v 14 dtV dtv K tv T ¢

Therefore, (5 02) defines a flow (with a local Mach number of
; M = (Q /A ) + ooo) in which the inviscid terms are in balance
with the shear stress and heat-~conduction terms, as well as the
.geometrical stress terms,

. For Qv = 4U2, t = st, (5.,02a) may be rewritten as the linear
equation
a®v, U ) : -
4+ ds - 2 - (-)9 . ) . (5908)
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whose complete solution is

. 1 2 . ’
U, = ¢ Ug ) . c, Us ?, with ¢;,c, = consts., - (5.04a)
where
1 2

U - 62 axpl-s,) F(2,4,5,),

F = confluent hypergeometric function; (5.04b)
2+8 ’ | _
U\(rz} = ( - V) exp(msv)e (5.04¢)

v

From (5.04b) and (5.04c¢), it is seen that the linearly inde-

(2)

pendent solutions, le) and Uv , have the following asymptotic

behaviors:

i

U‘(’_l) 6(1 = %‘: + oeo) => COHSto«,

2 2 |
) Ué ) exp(msv) (1 + E:) » 0, as s = o} (5.05a)

i

1y _ .2 (2) .2 |
Uv. Sg t oeeo ? 0, UV L= 5Tt e @y, 8S S, + 0,

v (5.05b)
Thus, for c, = 0, so that UV + 0 as s = 0, the solution
for.QV is

Q, = [2¢, (t /K)® exp{-(t /1)) F(2,4,t /K)1°, ~ (5.06a)
where, as tv -+ 0O,

Q, = [2¢; (/)12 + ... 2 0. . (5.06b)
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In turn, this means that the solution for Py is

p, = [(2c,/K%) exp{-(t /K)} F(2,4,t/K)17F, (5.07a)
where, as t€ - 0, |

P, = (KZ/ch) + oo = const, (5°O7bj
" The behaviors of the velocity and pressure functions, as ex—
hibited in (5.06b) and (5,;07b), therefore, satisfy the boundary

conditions of (2.03b). For ¢; = 1/6 (as will be shown), it
follows from these equations, that, as t =+ 0 (r = ),

Q = (1/3K2)6™2[10g(1/6)1t% + ..,
= (1/3K%)6 % [10g(1/8) 1r™2 + .ouy
P = 3K262[1og(1/6)]“1/2 + oo = P(O) + o0 << 1,

. That the shear stress region formulation, with the solution
for Q, given in (5.06a), such that, as t, @

Q=32 (6e)? (1 -2, .., (5.06¢)
A 1 t
g v

is compatible with that of the geometrical stress region re-

mains to be demonstrated. These formulations are compatible if
the solutions for Q of the shear stress and the geometrical
stress regions match as tv - oo and tg + 0, respectively. The
matching of the solutions for Q in these two regions is perform-
ed through the introduction of the intermediate limit, limgv,
defined by

s b fix - - :

tgv " b fixed, D = & << ng << Dg = 0 Llog{l/0) + .o &

| & (5,084)
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In this limit,
t ==t 20, t ==Yt 4o, | - (5.08b)
The Q-matching requires

. 4
ting [17=1 + 800 b, /D) + «2))

L o

"'{‘Z{é‘QV(DthgV/DV) . }3 = 0.7 (5»09&)
ioe09

1imgvi{zm(1 + A [ 4K T * eeel + o00))
g gv gv 5
»{%[4(601)2(1 - 4K ﬁm”{m a oco) + ooo}} = Oo
& gV &v ~ (5.09b)

Since it has been taken that A D =D = 6, it follows that the

£ 8 v
only requirement necessary for matching is that
&

Cl = 1/60 » (5910)

',Thus9 it has been demonstrated that the forms that Q and p
take in this region are capable of satisfying (2.03b) as
tv -+ 0, and the search for further interior regions need‘not be
" continued,
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6, Discussion of the results

The results presented in §§3-5 show that the approximate
analytical solutions for the proposed regions are compatible
with one another and combine to yield uniformly valid sdlutions
over the entire range of the radial variable that satisfy the
boundary conditions established by Ladyshenskii for the three-

. dimensional case.

It is noted that, for the case of € << [log(l/é)]"l << 1
considered here, in all three regions, the approximation for
the temperature takes the form

T =14 000
and, hence, under these conditions, the expansion from a sonic
source into a vacuum is, to leading approximation, an isothermal
process, Further, to this approximation, the basic momentum
equation spanning the domain, a 'composite' equation of the
umentum equations considered in the three regions, becomes

Ca2 2
a9 Q ae 1148 Q.
@Q-Dgrtgror2-35@ -*+3=%
A . (6.,01a)
or, in terms of the variable u,
(2_1)§E+22+6Ku2{§~?}i~29-j—0 o (6.01b)
v dat t 162 27 7 °

To this extent, then, this basic momentum equation is essential-
1y that which Sakurai considers, although Sakurai's formulation
néglects to take into account the hoop stress term.
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The question arises as to the point at which the analysis
presented, based on the Navier-Stokes equations, loses its
validity. If the criterion for this validity (c.f., Ladyshenskii)
is taken to be that the ratio of the supplementary terms in
the Burnett equations to the terms in the Navier~Stokes'equa«
tions representing the effects of viscosity be small, then,
in terms of the variables introduced in this paper, this

criterion becomes

S = it e -—(-:-l:’i;g) m];":““ g;‘g“ << 1. (6002)
1 T ‘ _

For the three regions considered, it is found that, to lead-
ing approximation,
dQ.

5 -
s =3 E%i Foeee T 0(D) << 1; - (6,03a)

2

5 = 2 [Log(1/8)17F =B + ... ~ 0([log(1/6)1™h) << 1;

aQ & | , (6.03b)
S = & [10g(1/6)] ¥ + .. ~ 0([Log(1/6)1) >> 1. (6.03c)
- "

Thus, the criterion is satisfied in the inviscid and geometri-
cal stress regions but not in the shear stress region., Nevere
theless, as Ladyshenskii points out, these eguations, as in the
case of the structure of the shock wave, give, in a certain

. sense, a correct qualitative description of the behavier of

the flow,
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