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The t h ~ ~ e ~ - ~ i ~ ~ ~ n s i ~ ~ a ~  steady radial expansi~n of a viscous , 
heat-conducting compressible f l u i d  from a s p h e r i c a l  son ic  
sou rce  int6-s a vircaurn i s  analysed using the Navier-Sto 
tion$ as a basis, IQ; i s  assumed ttmt tl-re inadel f l u i d  i s  a. 
p e r f e c t  gas having cons t an t  spec i f ic  heats, a cons tan t  Frandt l  
numbex- of o r d e r  u n i t y ,  and v i s c o s i t y  c o e f f i c i e n t s  varying as a 
power of t h e  a b s o l u t e  ternpera-kg-e, Limit ing f o r m  f o r  the  f low 
variable solutions arc? s t u d i e d  f o r  the  case where the Reynolds 
number based on the  sonic source  cond i t ions  goes t o  i n i f i n i t y  
and t h e  r a t i o  of  the  constamt s p e c i f i c  hea$s goes t o  one, 

Through the use  of asymptotic expansions and matching, it is 
sl~otvn that ,  for the above l i m i t ,  i ~ r  what i s ,  t o  l ead ing  *approx- 
imat ion,  a.n i so thermal  P P O C ~ S S ,  %tie v e l o c i t y  goes t o  ze;*o and 
the  p r e s s u r e  goes t o  a f i n i t e  vacuum valtae,, as the radial dis-  
tance approaches i n f i n i t y ,  Three dhis-kinct, regions span the  
d i s t a n c e  between the s o n i c  SQUEW~ and the vacuum, namely: (1) 
an i n v i s c i d  source  r eg ion ,  in which there  is a convection- 
pressure gradient balance j (2) a (s . l ightky)  v iscous  downstream 
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reg ion ,  in which there i s  a convect ion-pressure gradient-hoop 
stress balance; and ( 3 )  a ( f u l l y )  viscoezs far downstream region , .  
i n  which there  i s  a convection-shear stress-hoop stress balance,  

9 

Variables 
r3 = = r*/t, radial  dis tance 

= p p p  dens i ty  

Tl = TST, temperature  

P l  
p1 = pqJ, presstare 

a, = p i ,  seconcl v i s c o s i t y  c o e f f i c i e n t  
= pJ9.L9 first viscosity c o e f f i c i e n t  

Icl = k-slk;, thermal conduct iv i ty  c o e f f i c i e n t  
(where fa. = dimensional v a r i a b l e ;  f %  = dimensimal r e fe rence  
s ta te  at  t h e  s p h e r i c a l  sonic  source o f  inviscid f low l i m i t ;  
and f = non-dimensional v a r i a b l e )  

' 

Parameters 
d = (p*/p+*~it++r*)~ inve r se  of son ic  S Q U P ' G ~  Reynolds nuinber 
E = (y-l)/(y+l) , Newtonian parameter 

IC = 2 + (k /p 
(r3 = exponent i n  viscosi ty- temperature  law 

Cf = (picp /kl19 P r a d t l  numbe:~ 
v i s c o s i t y  c o e f f i c i e n t  r a t i o  1 1  tr: 
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The radial  source  f low problem has received cons iderable  
t h e o r e t i c a l  a t t e n t i o n  i n  the  past  decade, with t h e  primary 

en t iou  being g iven  t o  the two-dimensional case, since, i n  
t h i s  case, t h e  e x p l i c i t  appearance of the radial  d i s t a n c e  vari- 
able cibn be t ransformed away and a t o p o l o g i c a l  study made of the 
r e s u l t i n g  equat ions For t h e  three-dimensional case, however) 
t h e  ex i s t ence  of a t ransformat ion  tha t  e l imina te s  the e x p l i c i t  
appearance of the rad ia l  d i s t a n c e  var iable  has not  been shovm, 

solutions f o r  t he  three-dimensional case i n  a n a l y t i c a l  farms 
v a l i d  over %he svhole range of the  rad ia l  variable,  a t tempts  t o  
f i n d  solutions %hat span t h e  domain through the  finding of 
approximake s o l u t i o n s  f o r  subregions .rvithin this domain and 
connecting these a.pproximate s o l u t i o n s  f o r  the var ious  sub- 
reg ions  by ' u s i n g  boundary l a y e r  technique ' ,  

heavily on t h e  two-dimensional viscous source f low  solution^ 
for expansion i n t o  a vacuum as a guide  f o r  dcterniining i t s  
approximate s o l u t i o n s  , unfo r tuna te ly ,  does n o t ,  i t s e l f ,  describe 
the  exparision of the gas i n t o  a vacuum, 

T h i s  fac t  i s  brought ou t  by Ladyshenskii (1962) e Although 
LaayshensBii presents no ( a n a l y t i c a l )  soltrrtions, he i s  ab le  t o  
show, f o r  the expansion of a gas i n t o  a vaeuuiii, from t h e  i n t e -  
gral  forms of t h e  three-dimensional equat ions of motion, tha t ,  
f o r  0) = 0, and f o r  0 < 03 < (1+3E;)/4& ( f o r  E f ixed) ,  the  rad ia l  
v e l o c i t y  goes t o  zero as t h e  radial  d i s t a n c e  goes t o  i n f i i z i t y  
--a r e s u l t  q u i t e  d i f f e r e n t  from the  two-dimensional r e s u l t  tha t  
t h e  radial  v e l ~ c i t y  terxds t o  a va lue  sonewhat less t h a n  the  

Salrurai (19%) , noting t h e  d i f f i c u l t y  in expressing the  

T h i s  three-dimensional analysis of S&ura i ' s  , tvhich r e l i e s  

corresponding maximum v e l o c i t y  f o r  t he  i n v i s c i d  source  s o l u t i o n ,  
fVi%h tltc above i n  nind,  the purpose of  this papers then ,  i s  
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I t o  p r e s e n t  uniformly v a l i d  s o l u t i o n s  f o r  t h e  three-dimensional 
case, and, hence, t o  some .extent ,  t o  presenk q u a n t i t a t i v e  de t a i l s  

The fnethod of making t h i s  p r e s e n t a t i o n  i s  e s s e n t i a l l y  that 
which Sakurai  proposes,  Approximate s o l u t i o n s  f o r  r eg ions  mith- 
i n  the domain are obta ined  through the  use of  asymptotic ex- 
pansion techniques  and these so l r r t ions  are jo ined  -2;hnoough 
inartchine; techniques  f o r  the l i m i t i n g  case of d -+ 0 and E -+ 0 ,  

The former l i m i t  corresponds t o  t a k i n g  t h e  large Reynolds num- 
ber regime approach t o  the problem, The l a t t e r  l i m i t  corresponds 
t o  taking t h e  gas under cons ide ra t ion  to he one whose r a t i o  of 

e .  t o  complete the q u a l i t a t i v e  p i c t u r e  tha t  Ladyshenskii givesc B 

s p e c i f i c  heats i s  approaching one-this has been done f o r  rea- 
sons o f  mathematical ~QWXXI~CXMX, 

I n  $2, the  basic Navier-Stokes equat ions  of  motion, as well 
as the appropr i a t e  boundary conditions whose v a l i d i t y  Lady- 
shenskii has proven, are given, 

(srab)rcgion, i n  which t h e r e  i s  a convection-pressure gradienk 
balance,  are given, 

X n  $4,  the  approximate s o l u t i o n s  f o r  the geometr ical  stress 
(sub)region, i n  which there  is a convection-pressure grad ien t -  
hoop stress balance, we given, The nadchirctgs of these so la -  
t i o n s  to those  found in $ 3  are a l s o  given,  

I n  $ 3 ,  t h e  approximate s o l u t i o n s  f o r  the i n v i s c i d  source  f low 

In 85% t h e  approximate s o ~ u t i o l z s  f o r  the  shear stress (sub)- 
, reg ion ,  i n  ~Jfiich there i s  a convec$ion-shear stress-hoop stress 

balance, are given,  The rfiatchings of these s o l u t i o n s  t o  t h o s e  

b 

found i n  0 are a l s o  given, 
In $ G 9  a br ie f  d i scuss ion  of t h e  results i s  presente6, 
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s of motion 

Consider the  three-dimensional steady radial f low of a vis-  . 

0 cous, compressible gas from a 'spherical sonic source i n t o  a 
vacuum, L e t  

? 



In (2,0L)9 6 is the inverse of the sonic  sowce Reynolds npm- 

taken do be small f o r  this analysis, i . e e 9  

E is the  N ~ ~ ~ ~ Q ~ ~ ~ ~  parameter; both quant i t ies  are 

are determined in the fo l lowing  see-tiomns 
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Near the sonic  source,  t = 1, thc f low is taken to be 
cha rac t e r i zed  by the  fo l lowing  e ansiowas fox- the  variables : 

t = "i; 

With these representations, f o r  b p s  << 1, the leading terms in 
the equations f o r  rsi(ti> and ~ ~ ( t ~ )  bceorne t OSe f Q Z "  

viscid Nasvtonian source flotv, nantely, 
in- 

The sohutions of these equa-tions, subjec t  t o  t h e  boundary 
condtitions At the  s o n i c  source,  are 
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In tu rn ,  

Further, it is noted t h a t  the local blach number for this 
r eg ion  i s  

so that 

b )  and (3,05b), it is  seen that t h e  s o l u t i o n s  of  P 

t h i s  inviscid source  flow reg ion  do not  s a t i s f y  the vacuum 
boundary conditions of (2,OC4b), in that: (I) the v e l o c i t y  does 

not  g o  t o  zero;  (2) the p r e s s u r e  ddes n o t  approach a small, 
f i x e d  value,  
t -p 0 nust be s t u d i e  
this f low i n  t h e  i n t e r i o r  (with r e spec t  t o  % )  r eg ion  o r  regions 
necessary f o r  the s a t i s f y i n g  of (2,O~b) 

Therefore ,  it i s  c l e a r  that  t he  f low field f o r  
in greater d e t a i l  in order to cletemiw 



-9- 

c The logar i thmic  forins of the asymptotic solvations for t h e  

proper.expansions for the variables in a reg ion  i n t e r i o r  e o  the 
inviscid one are: 

. 

i n v i s c i d  r eg ion  d ~ ~ e ~ ~ ~ n t  variables as ti -g 0 suggest t h a t  t h e  e. 

With these  r e  resentations, f o r  Fi i) = 6 << 1, the Peading terms 
i.n the equat ions f o r  Q and T a r k :  

g g  

= 0, 
+ 9 , 9 Q  

T 
g7Q 
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Further, as t -p 0: g 

In this limit, 
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Hence, t h e r e  i s  Q-matching f o r  the inviscid source  f l o w  and 
geometr ical  stress reg ions  i f  

YJ'bi-th~~t p re sen t ing  the  details, it is noted that the T-match- 
ing for  these two reg ions  also r e q u i r e s  thzzt the cond i t ions  of 
(4,437) be sa t i s f ie  

From t he  cond i t ions  that A .D = 5 and A = [lQg(+j==-)-j-4.y it 
g e g  8 

fo l lows  that  

Fur the r ,  from ( 4 , G l b ) ,  it has been assuined that E << A 

Thus, the f o r m u l a t i o n  presented  heye is v a l i d  i f  the parameters 
E a d  6 s a t i s f y  t he  i n e q u a l i t i e s  

<< 1, 
g 

"c 
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Again, from the forms t h a t  Q and p take,  it is seen that this 
* 

geometrical  stress region. is not capable of satisfying (2,03b) 
as t -B 0 ,  Hence, t h e  examination of the interior region. must 
be extended, 

g t 

4 

J 



5, The shear  s t r e s s  

Once again, us ing  the forms of t h e  asymptotic s~lutions of . 
4 . 0  as the geometr ical  s t r e s s  reg ion  dependent v a r i a b l e s  as t 

guides t o  t he  p o s t u l a t i o n  of t h e  exyaasions f o r  these v a r i a b l e s  
i n  a region j u s t  i n t e r i o r  to t h e  geometr ical  s t r e s s  one, (4 ,Wb) 
suggests  t h e  fol lowing r ep resen ta t ions :  

E ; .  

With t h e s e  r e p r e s e n t a t i o n s ,  for Dv = 6 <a D 
the  equations f o r  Q and T we:  

= 6 log(B/6) .t e a 
g 

Therefore,  (5 ,02)  de9ines a f low (with a local Mach number of 
Ail = (a,/a,) ‘I2 +- e a >  i n  w~lich the i n v i s c i d  terms are i n  balance 
with the shear stress and heat-conduction terms, as ~ 7 e l l  as the 
geometr ical  stress terms, 

equation 

2  or Q, = 4 U v 9  tv =T ICsVS (5,02a) may be r e w r i t t e n  as t h e  l inea-r 

* 
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whose complete s o l u t i o n  i s  

( 5  .Q4c) 

behaviors: 

Thus, f o r  c2 = 0, so tha t  Uv -+ 0 as sv -+ 0 ,  the s o l u t i o n  
f o r - Q ,  is 



where, as dv -+ 0 ,  

*V = (K2/2c,) -F 0 0 ,  =+ consto (5 0 07b) 

. T h e  behaviors  of t h e  v e l o c i t y  and p r e s s u r e  functions, as ex- 
h i b i t e d  in (5,06b) and (5,O?h), %herefore, s a t i s f y  t h e  boundary 
cond i t ions  o f  (2,93b) For cl = 166 (as w i l  
fo l lows  from these equat ions,  that, as t =+ O (r -b b~), 

be shown) , it 

That t h e  shear stress reg ion  f o r i ~ ~ l a t i o n ,  with t h e  soletion 
f o r  Q ,  given in (5,06a) , such t h n t ,  as t, + 

is compatible with that of the geornetrical stress reg ion  re- 
mains t ; ~  be demonstrated, 
the  solu$ions f o r  Q o f  the  shear stress and t he  geometrical 
stress reg ions  match. as tv -O ocf a d  t 
matching of the  s o l u t i o n s  f o r  Q i n  these two reg ions  i s  perform- 
ed through the  i n t r o d u c t i o n  of the in t e rmed ia t e  1jmi-t , L i m  
def ined  by 

'These formulations are compatible if 

3 0, r e s p e c t i v e l y ,  The 
g 

w9 

n 
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In t h i s  limit, 

The Q-matching requires 

Since it has been taken -that A D 
only requirement necessary for matching i s  tha-k 

= Dv = 6 ,  it fol lows t h a t  the 
g g  

4 

ca = 1/60 (Solo) 

Thus, it has been demonstrated tha t  the  for 
t a k e  in this region are capable of satisfying (2,03b) as 
tv -+ 0, ayhd t h e  search f o r  f u r t h e r  interior regions need not  be 

' continued, 

4 
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6 ,  Discussion of the r e s u l t s  
. .  

% The r e s u l t s  presented in $03-5 show that the  approximate 
a n a l y t i c a l  solutions f o r  the proposed reg ions  are compatible 
with one another  a d  combine t o  y i e l d  uniformly v a l i d  s o l u t i o n s  
over  t h e  en t i r e  range of the  radial variable tha t  sa t i s fy  t h e  
boundary condi t ions  established by Ladyshenskii f o r  t he  three- 

. .  dimensional casec  
~t is noted tha t ,  f o r  t h e  case of tz c< [log(l/b)l-1 << 1 

considered here, i n  all three regioras , t.ke approximation f o r  
the temperature  takes the ~ Q F B I  

T = 1 -k . O Q  , 
and, hence, under t h e s e  conditions, t h e  expansion from a sonic 
source i n t o  a vacuwi is, t o  l ead ing  approximation, an isothesnaE 

equat ion spanning the d o m a i ~ ,  a 'composite '  eqtaztj-oa? of  the 
momentum equat ions considered in the  three regions,  becomes 

P~OC~SS,, krrther, to this  at^^^^ the basic ~o~~~~~~~ 

b 

o r ,  i n  terms of t h e  variable u, 

( 6 , O l b )  

To t h i s  extent,  then,  t h i s  b a s i c  momentum equation i s  e s s e n t i a l -  
ly that  which Sakuriai cons iders  $ al though Salmrai' s formulat ion 
neg lec t s  t o  t a k e  i n t o  account t he  hoop stress term, 
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The quest ion a r i s e s  as t o  t h e  po in t  at which t h e  a n a l y s i s  
presented,  based on t h e  Naviex+Xokes equat ions,  l o s e s  i t s  
v a l i d i t y ,  
is taken t o  ,be t h a t  t he  r a t i o  of t he  supplementary terms in 
t h e  Burnet t  equat ions to t h e  terms i n  t h e  Navier-Stokes ’equa- 
t i o n s  r ep resen t ing  the  e f f e c t s  of v i s c o s i t y  be small, then,  
i.n terms of t h e  variables introduced i n  this paper ,  t h i s  
c r i t e r i o n  becomes 

If the  c r i t e r i o n  for this vaiidity ( ~ ~ $ 0  9 Ladyshenskii)  

For  t he  three reg ions  considered,  it i s  found tha t ,  -bo lead- 
ing approximation, 

Thus, the  c r i t e r i o n  i s  satisfied in t h e  inviscid d geometri- 
cal stress regions but no t  i n  tlze shear stress regioii, Neves- 
theless, as Ladyshenskii points out, t h e s e  equat ions,  as in the 
case of t h e  s t r u c t u r e  of the shock wave, g ive ,  in a c e r t a i n  
sense,  a c o r r e c t  quall-i tative d e s c r i p t i o n  of t he  behavior of 
t h e  flow, 



I References 

14, 324, 
e, Eucken, A ,  1913 9 -  

Ladyshenskii , M, De 
1962 P r i k ,  Mat, Etfekh. 26$ 642, 

Sakurai,  A ,  1958 9 -  11, 274, 

.J 

a 


