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Abstract

We present an efficient second order accurate scheme to treat stiff source terms
within the framework of higher order Godunov’s methods. We employ Duhamel’s
formula to devise a modified predictor step which accounts for the effects of stiff
source terms on the conservative fluxes and recovers the correct isothermal be-
havior in the limit of an infinite cooling/reaction rate. Source term effects on the
conservative quantities are fully accounted for by means of a one-step, second order
accurate semi-implicit corrector scheme based on the deferred correction method
of Dutt et. al. We demostrate the accurate, stable and convergent results of the
proposed method through a set of benchmark problems for a variety of stiffness
conditions and source types.
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1 Introduction

We wish to solve the following system of partial differential equations describ-
ing a hydrodynamic flow with a stiff (energy) source term

∂U

∂t
+

D
∑

d=1

∂Fd(U)

∂xd
= S(U) (1)

where D is the dimensionality of the problem, U, F (U), S(U) are the con-
servative variables, the conservative fluxes and the source term respectively,
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given by
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. (2)

In the above equations, ρ is the density, ud the velocity in the d direction,
E = e +

∑D
d=1 u2

d/2 is the total specific energy with, e, the specific internal
energy. Λ(e, ρ) is the term describing the source of specific internal energy.

In the following we consider the case of a stiff source term corresponding to
an endothermic process, such as occurs in radiative losses. In this case, the
characteristic relaxation time scale for S may be much smaller than the CFL
time step for the hydrodynamic waves. For that reason, we would like to use
a semi-implicit method, treating the stiff source term implicitly, while using
an explicit method for the hyperbolic terms. However, the classical analysis
of such fast endothermic processes shows that, in the limit as the relaxation
time goes to zero, the gas can be described by the compressible flow equations
with an isothermal equation of state [12]. Pember [8] showed that the use of
such a formally second-order accurate semi-implicit method could lead to a
substantial loss of accuracy, due to inconsistencies between the flux calculation
without sources and the effective limiting isothermal equation of state.

In this paper, we present a semi-implicit predictor-corrector method that
avoids the problems described in [8]. We use a second-order accurate deferred
corrections method of a type presented in [4], obtaining a semi-implicit cor-
rector that is a special case of the algorithms described in [7], although any
implicit L-stable second-order one-step method would be acceptable. The main
new idea in our work is contained in our treatment of the predictor step for
computing the hyperbolic fluxes, based on the derivation of a local effective
dynamics using Duhamel’s formula. This leads to an explicit predictor step
that corresponds to that for a conventional second-order Godunov method for
Eq. (1) in the limit where the relaxation time is comparable to or greater than
the hydrodynamic CFL time step; and to a second-order Godunov method
for the isothermal equations in the limit where the relaxation time is much
smaller than the hydrodynamic time step. Our approach is analogous to that
used in [11] for obtaining a well-behaved numerical method for incompressible
viscoelastic flows in both the viscous and elastic limits; however, the details
there are quite different than those for the present setting.

The earlier work by Pember, as well as that of Roe and Hittinger [9], ad-
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dressed the issues raised here in relation to Godunov’s method with stiff re-
laxation. Pember observed that a second-order Godunov method based on a
semi-implicit corrector step with implicit treatment of the source term could
still have a large loss of accuracy due to the incompatibility of the characteris-
tic tracing step with the limiting equilibrium behavior of the gas, particularly
at sonic points. He also proposed various approaches to the problem based
on classical relaxation theory. Roe and Hittinger’s approach split the equa-
tions based on a splitting of state space into stiff and non-stiff subspaces of
the linearized source term to obtain in the stiff limit formulations similar to
ours. However, in neither case did the authors present a complete method that
is second-order accurate in both the stiff and non-stiff limits, and uniformly
well-behaved for the full range of possibilities in between, nor did they discuss
the extension to more than one dimension.

The paper is organized as follows. In section 2 we describe a second order
accurate, semi-implicit corrector method based on the deferred corrections
ideas presented in [4,7] to be used for the final source term update. In section 3,
based on Duhamel’s formula, we work out a modified formulation of Godunov’s
predictor step and flux calculation suitable for the case of stiff source terms. In
section 4 we discuss stability issues for our approach, and Section 5 contains
the extension of the method to the case in which the source term depends
both on the gas density as well as the internal energy. In section 6 we test
the performance of the code and demonstrate the accuracy of the method
in various stiffness conditions. The paper concludes with section 7 where the
main results of the paper are summarized.

2 Semi-Implicit Predictor-Corrector

Our time-discretization for the source terms is a single-step, second-order ac-
curate scheme based on the deferred correction ideas in Dutt, Greengard &
Rokhlin [4]. Given the system of equations (1)

∂U

∂t
= −∇ · F + S(U) (3)

we aim for a scheme in which an explicit approach is retained for the non-stiff
conservative hydrodynamic term, ∇ · F , and a implicit method is employed
for the stiff part of the equation, S. The particular approach is a special case
of a more general class of semi-implicit methods by Minion [7]. Consider the
first order system of ordinary differential equations (ODEs)

dY

dt
= C(t, Y ) (4)

Y (t = 0) = Y0 (5)
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with Y ∈ R
n, C : R × R

n → R
n. In [4], Eq. (4) is reformulated in terms of its

equivalent Picard integral equation, to which a deferred corrections algorithm
is iteratively applied. First an error is estimated according to

ǫ̃(t) = Y0 +
∫ t

0
C
[

τ, Ỹ (τ)
]

dτ − Ỹ (t) , 0 ≤ t ≤ ∆t (6)

where, Ỹ (t), is an initial guess to the solution to be corrected iteratively.
Then a correction is computed by solving the error equation for the correction
δ(t) ≡ Y (t) − Ỹ (t)

δ(t) =
∫ t

0

{

C
[

τ, Ỹ (τ) + δ(τ)
]

− C
[

τ, Ỹ (τ)
]}

dτ + ǫ̃(t) (7)

Ỹ (t) → Ỹ (t) + δ(t) , 0 ≤ t ≤ ∆t.

To complete the specification of the method, we need to choose a quadrature
scheme to replace the integrals in time by sums over a finite number of points.
The choice of quadrature method in the error calculation (6) and of the number
of iterations determines the accuracy of the method. However, as noted in
[4], the rate of convergence of the method is independent of the accuracy of
the quadrature rule used in the correction calculation (7). In particular, for
stiff systems, one uses a quadrature rule corresponding to backward Euler,
replacing the integrand by its linear approximation. In the present case, we
are only interested in second-order accuracy, so we can use the trapezoidal
rule for the quadrature rule in the error calculation, and iterate only once.

Our semi-implicit method will correspond to solving a collection of ODEs, one
at each grid point

dU

dt
= S(U) − (∇ · ~F )n+ 1

2 (8)

where we view the time-centered flux divergence as a constant source, whose
computation using a modified Godunov method is decribed below. Following
[7], we solve the resulting collection of ODEs using the method described
above. For our initial guess, we use

Ũ = U0 + (I − ∆t∇US|U0
)−1

[

S(U0) − (∇ · F )n+ 1

2

]

∆t (9)

where U0 ≡ U(t0). In the above expression we have used backward Euler to
estimate the effects of the source term and we have then Taylor expanded
the implicit part of it into a linear form. This yields a second order accurate
estimate. Based on Eq. (6) the error is then estimated as

ǫ̃(∆t) = U0 +
∆t

2

[

S(Ũ) + S(U0)
]

− ∆t (∇ · F )n+ 1

2 − Ũ (10)

where we have used the trapezoidal rule to estimate the integral of the source
term. The sought correction is obtained in implicit form by applying backward

4



Euler to the integral in the correction equation (7)

δ(∆t) = (I − ∆t∇US|Ũ)−1 ǫ̃(∆t) (11)

U(t0 + ∆t) = Ũ + δ(∆t) (12)

From Eq. (10)-(11) it is clear that the final solution will have a truncation
error O(∆t2) and global second order accuracy in time.

3 Effective Dynamics and a Modified Godunov’s Method

In order to compute the flux divergence (∇ · ~F )n+ 1

2 , we use the quasilinear
form of the equations in primitive variables to extrapolate from cell centers to
cell faces

∂W

∂t
+

D
∑

d=1

Ad
∂W

∂xd
= S(W )(W )

S(W ) = ∇UW S(U).

Usually W = (ρ, u, p)T , but we will not specify the precise choice of prim-
itive variable until later. Hereafter, we will denote S(W ) ≡ S, dropping the
superscript. We can also give the evolution along the Lagrangian trajectories

DW

Dt
+

D
∑

d=1

AL
d

∂W

∂xd
= S(W )

AL
d = Ad − udI ,

DW

Dt
=

∂W

∂t
+ (u · ∇)W

We will derive from the quasilinear form of the equations a new system that
includes, at least locally in time and state space, the effects of the stiff source
terms on the hyperbolic structure, and use that quasilinear system to extrap-
olate from cell centers to faces in a Godunov method.

We first illustrate the approach for the case of a system of ODE. Consider the
system of differential equations

dY

dt
= BY + C(t), Y (t0) = Y0 (13)

Y : R → R
n, B ∈ R

n×n, C : R → R
n. (14)

The evolution of the rate of change of Y (t), namely δY ≡ Y (t) − Y0, is then
described by dδY/dt = BδY + BY0 + C(t) with δY (0) = 0. According to
Duhamel’s formula,

δY (t) =
∫ t

0
e(t−τ)B [BY0 + C(τ)] dτ. (15)
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When B is stiff, the exponential term in the above integral is the one that
changes most rapidly, motivating the approximation

δY (t) = IB(t) [BY0 + C(0)] t + O(t2) (16)

where

IB(t) ≡ t−1
∫ t

0
eτBdτ. (17)

For the specific application considered here the integral can always be com-
puted exactly. From Eq. (15) we deduce an effective equation for Y

dY

dt
= IB(t) [BY0 + C(0)] + O(t). (18)

Eq. (18) implies that if B has eigenmodes with large negative real components
on the t timescale, then the operator IB(t) projects out the component of C(0)
corresponding to those fast modes. Inspection of Eq. (17) indicates that the
suppression of such components occurs at a rate inversely proportional to the
magnitude of the large eigenvalues of B, analogous to the behavior of the
semi-implicit method described in the previous section. We have used various
approximations to the integral in Eq. (17), such as the midpoint rule, and have
found the behavior of the method to be insensitive to those choices (provided,
of course, they cause stiff modes to decay).

We apply this idea to the dynamics along Lagrangian trajectories. We define

δW = W [x(t), t] − W [x(t0), t0] ≡ W − W0 (19)

and

DδW

Dt
+ G = S0 + Ṡ0δW + O(t− t0) (20)

G =
D
∑

d=1

AL
d

∂W

∂xd
(21)

We have linearized the source term around the value of the state at the be-
ginning of the Lagrangian trajectory, with Ṡ = ∇W · S. Here W = (ρ,u, e)T.
By applying Duhamel’s formula to Eq. (20) we obtain

δW (t) =
∫ t

t0
e(t−τ)Ṡ0(−G + S0)dτ + O(t − t0)

2. (22)

Following similar reasoning to the ODE case, we obtain

DW

Dt
+

(

D
∑

d=1

IṠ0
(t − t0) AL

d

∂W

∂xd

)

= IṠ0
(t − t0) S0 + O(t− t0). (23)
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3.1 Characteristic Analysis

We will use the quasilinear system (23) with (t − t0) → ∆t/2 to compute the
Godunov predictor step. In order to do that, we need to analyse the hyper-
bolic structure of those equations. Without loss of generality in the following
subsections we still consider the 1-dimensional case. Also, in this section we
will focus on the case Λρ ≡ ∂Λ/∂ρ = 0, Λe ≡ ∂Λ/∂e 6= 0; we will discuss the
more general case in Sec. 5. With this choice of Ṡ0, from Eq. (17) we obtain

IṠ0
(∆t/2) =















1 0 0

0 1 0

0 0 α















(24)

where

α =
e

1

2
Λe∆t − 1
1
2
Λe∆t

0 < α < 1. (25)

Thus, the presence of a stiff source term leads us to the transformations:

A ≡ AL + uI → Aeff =















0 ρ 0

1
ρ

(

∂p
∂ρ

)

e
0 1

ρ

(

∂p
∂e

)

ρ

0 α p
ρ

0















+ uI. (26)

3.1.1 Modified eigenvalues

Characteristic analysis of the matrix Aeff leads to the characteristic equation

det(Aeff − λI) = (λ − u)



(λ − u)2 − α
p

ρ2

(

∂p

∂e

)

ρ

−
(

∂p

∂ρ

)

e



 = 0 (27)

which admits the the familiar solutions

λ0 = u, λ± = u ±


α
p

ρ2

(

∂p

∂e

)

ρ

+

(

∂p

∂ρ

)

e





1

2

. (28)

It appears from the above equation that the presence of the source term alters
the sound speed according to

cs =

(

∂p

∂ρ

) 1

2

s

→ ceff =



α
p

ρ2

(

∂p

∂e

)

ρ

+

(

∂p

∂ρ

)

e





1

2

. (29)
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For a γ-law equation of state, we have

p = (γ − 1)ρe (30)

ceff =

{

[α (γ − 1) + 1]
p

ρ

} 1

2

. (31)

Thus, when the source term is negligible α → 1, ceff = (γp/ρ)1/2 and the poly-
tropic behavior is recovered. When the source term is stiff, however, α → 0,
ceff → (p/ρ)1/2 and the isothermal regime is approached. This is also appar-
ent from the expression for the rate of change of the internal energy along
Lagrangian trajectories

De

Dt
= −α

p

ρ

∂u

∂x
(32)

suggesting the limit, de → 0 as α → 0. Notice that in our aproach we retain
the polytropic form of the equation of state p = (γ − 1)ρe, γ 6= 1, but we
avoid differentiating it when the presence of source terms must be taken into
account. Based on Eq. (32) the pressure change is found to be

Dp

Dt
= c2

eff

Dρ

Dt
= −ρ c2

eff

∂u

∂x
(33)

Finally, we note that in general, in D−dimensions, the above analysis ap-
plies unaltered to the linear operator, Aeff

d , for each direction, d, after properly
transforming u → ud, x → xd. In addition, D − 1 equations are added de-
scribing the passive transport of momentum components perpendicular to the
d direction, and the eigenvalue λ0 becomes D−degenerate.

3.1.2 Modified Eigenvectors

Given Eq. (33) we can now replace internal energy with pressure and find out
the expression for the eigenvectors for the usual set of primitive variables. This
reads

W = (ρ, u, p, s). (34)

where in addition to density, velocity and pressure, we have also included the
specific entropy, s = pρ−γ (useful, e.g., for the case of hypersonic flows). The
change in specific entropy is given by

Ds

Dt
= ρ−γ

(

Dp

Dt
− c2 Dρ

Dt

)

= −ρ1−γ
(

c2
eff − c2

) ∂u

∂x
≡ −ρ1−γ δc2

∂u

∂x
(35)

The linear operator is
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Aeff =





















0 ρ 0 0

0 0 ρ−1 0

0 ρc2
eff 0 0

0 δc2ρ
1−γ 0 0





















+ uI. (36)

The extra variable ‘s’ results in an additional eigenvalue, λ = u, for the oper-
ator Aeff . The set of left and right eigenvectors are given respectively by

l1 =

(

0,− ρ

2ceff
,

1

2c2
eff

, 0

)

(37)

l2 =

(

1, 0,− 1

c2
eff

, 0

)

(38)

l3 =

(

0, 0,− δc2

ργc2
eff

, 1

)

(39)

l4 =

(

0,
ρ

2ceff
,

1

2c2
eff

, 0

)

(40)

r1 =





















1

− ceff
ρ

c2
eff

δc2ρ
−γ





















; r2 =





















1

0

0

0





















; r3 =





















0

0

0

1





















; r4 =





















1

ceff
ρ

c2
eff

δc2ρ
−γ





















. (41)

3.2 Godunov Predictor in One Dimension

With the operator Aeff and the sets of left and right eigenvectors that we have
worked out in the previous section, the Godunov predictor step is carried out
as usual as follows.

First the local slopes are defined. In particular at each point left and right
one-sided slopes as well as cell centered slopes are evaluated and then a final
choice on the local slope ∆Wi is used based on a 2nd or 4th order limiter. The
upwind, time averaged left (−) and right (+) states at cell interfaces due to
fluxes in the normal direction, d, are then reconstructed as:

Wi,± = W n
i +

1

2

(

I − ∆t

∆x
Aeff

i

)

P±(∆Wi) (42)

9



where
P±(W ) =

∑

±λk>0

(lk · W ) · rk. (43)

The source term component is likewise accounted for as

Wi,±,d = Wi,±,d +
∆t

2
IṠ0

(∆t/2)S0. (44)

The fluxes at the cell faces Fi+ 1

2

are computed by solving the Riemann prob-

lem with left and right states given by (Wi,+, Wi+1,−) to obtain W
n+ 1

2

i+ 1

2

and

computing Fi+ 1

2

= F
(

W
n+ 1

2

i+ 1

2

)

.

To modify this procedure to account for the effective dynamics, we use the
characteristic analysis of the effective dynamics to perform each of the three
steps. The projection operator and any limiting in characteristic variables is
done using the eigenvectors and eigenvalues for the effective dynamics derived
in Sec. 3.1. Typical approximate Riemann solvers use weak-wave approxima-
tions to compute the jumps, which only require the linearized jump relations
provided by the characteristic analysis for the effective dynamics. For the
case of a polytropic gas, one can use more nonlinear approximate Riemann
solvers, e.g. two shock approximations, to compute the jump relations, treating
1+α(γ−1) as an effective polytropic γ. This is done for the results presented
here. Finally, any entropy fixes required to eliminate rarefaction shocks require
only the sound speed, for which we again use ceff .

3.3 Extension to More than One Dimension

For directionally unsplit schemes in D dimensions an additional step is re-
quired in order to correct the time-averaged left/right states at cell interfaces,
Wi,±,d in eq (44), for the effects of D − 1 fluxes perpendicular to the cell in-
terface normal direction. Based on Eq. (23) the effect of the stiff source term
would be accounted for by carrying out for each additional direction, d, a
transformation

Ad → IṠ0
(∆t/2)AL,d + udI ≡ Aeff

d (45)

analogous to that described in Eq. (26). In the method proposed by [3,10] the
corrections due transverse fluxes are computed according to a conservative
scheme. For example in two dimensions

Wi,j,±,x = Wi,j,±,x −
∆t

2∆y
∇UW

(

F y

i,j+ 1

2

− F y

i,j− 1

2

)

(46)

where the input Wi,j,±,x is computed using a one-dimensional Godunov calcu-
lation as in the previous section, as are the fluxes F y

i,j+ 1

2

. Thus, if we indicate
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with ∆F y
ρE the undivided flux difference in the d direction for the total energy,

the above transformations imply the following correction

∆F y
ρE → ∆F y

ρE + (α − 1)
1

2

(

pi,j+ 1

2

+ pi,j− 1

2

) (

uy,i,j+ 1

2

− uy,i,j− 1

2

)

This modification leads to a pressure change in accord to Eq. (33). Similarly,
the entropy flux difference is modified as

∆F y
ρs → ∆F y

ρs + (α − 1) (γ − 1)
1

2

[

(ρs)i,j+ 1

2

+ (ρs)i,j− 1

2

] (

uy,i,j+ 1

2

− uy,i,j− 1

2

)

.

4 Stability Considerations

The method outlined above satisfy a number of conditions required for nu-
merical stability. It is easy to see from Eq. (32) that, as dΛ/de → −∞, the
internal energy decays rapidly to its equilibrium value, and thereafter remains
constant, at that value. Inspection of the characteristic analysis shows that,
in this limit, no information is carried along the entropy wave corresponding
to the eigenvalue λ0. This means that the system of equations (1) effectively
reduces to the equilibrium system in which the internal energy is fixed at its
equilibrium value. In addition, Eq. ( 28) and (29) indicate that the so called
subcharacteristic condition for the characteristic speeds at equilibrium is al-
ways satisfied. That is

λ− < λeff
− < λ0 < λeff

+ < λ+ (47)

where λeff
+,− and λ+,0,− are the equilibrium and frozen eigenvalues, respectively.

The above condition, while being necessary for the stability of our linearized
system [13], also guarantees that the numerical solution tends to the solution
of the equilibrium equation as the relaxation time tends to zero [2]. Since
the structure of the equations and the numerical framework, including the
Riemann solver, remain basically unaltered with respect to classic Godunov’s
schemes except for the modification of the sound speed, one expects the usual
stability analysis to apply. The latter implies the familiar CFL condition on
the time step

max(|λ∗|)
∆t

∆x
≤ 1 ∗ = −, 0, +. (48)

As for the step involving the source update, stability analysis for deferred cor-
rection methods of the type adopted here was carried out through numerical
experiments by Dutt et al. [4]. Minion [7] extends such considerations to the
case of semi-implicit schemes as the one adopted here. While the stability
and convergence properties of such schemes have not been fully elucidated
analytically, the analysis of these authors suggest that they are in general
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very satisfactory and competitive with commonly employed modern integra-
tion schemes. In any case, as far as the stability of our particular scheme is
concerned, detailed inspection of equations (10)-(11) indicates that the em-
ployed method is stable for all −∞ < dΛ/de < 0. This stability derives from
the implicit treatment of the stiff term.

5 Extension to the Case Λρ 6= 0

When the source term depends on both the internal energy as well as the gas
density, Λρ 6= 0 and we obtain

IṠ0
(∆t) =















1 0 0

0 1 0

(α − 1) Λρ

Λe
0 α















(49)

with α defined in Eq. (25). As a result

Aeff =















0 ρ 0

1
ρ

(

∂p
∂ρ

)

e
0 1

ρ

(

∂p
∂e

)

ρ

0 (α − 1)Λρ

Λe
ρ + α p

ρ
0















+ uI (50)

and the sound speed is now given by

ceff =







[

(α − 1)
Λρ

Λe
ρ + α

p

ρ

]

1

ρ

(

∂p

∂e

)

ρ

+

(

∂p

∂ρ

)

e







1

2

. (51)

Since α < 1 the term in squared brackets can become negative and the sound
speed imaginary. This behavior is related to the fact that when Λρ 6= 0 the gas
is prone to thermal instability so that the scheme cannot be simply generalized
without taking into account the specific properties of the source term. In
general one cannot expect an implicit method to work properly except in the
case of a system with a stable solution. For a γ−law equation of state, Eq. (30),
c2
eff > 0 requires

e

ρ

Λe

Λρ
>

1 − α

α (γ − 1)
(52)

which is reminiscent of thermal stability criterion [5], in which case the term
on the right-hand-side is 1. In both the stiff limit and non-stiff limits the RHS
in Eq. (52) is of order −Λe ∆t ≫ 1, indicating the potential for triggering
thermal instability of ‘numerical nature’. For example, consider a source of
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the form Λ(ρ, e) = ρn Λ̃(ρ, e), so that

Λρ(ρ, e) = nρ−1 Λ(ρ, e) + ρn Λ̃ρ(ρ, e). (53)

In general the former term can take both positive and negative values. So
even though it vanishes at equilibrium, its effect is destabilizing and should be
resolved in time. Depending on the definition of Λ, it is possible that Λ̃ρ ≥ 0.
Only in this case the latter term is stabilizing and should contribute to the
sound speed in Eq. (51).

So our approach is to decouple any destabilizing component of Λρ, which we
indicate with Λρ,<, from the characteristic analysis and associate it explicitly
with the source term so that its effect does not enter the sound speed. In this
case one would have to add a term

∆p = ρ∆e = −(α − 1)
Λρ,<

Λe
ρ2 (∇ · u)

∆t

2
(54)

to the pressure component of the right hand side of Eq. (44). In order to
preserve second order accuracy, one would require that the above term is
resolved in time, i.e. the time step is sufficiently small that ∆e < e. The
approach described here is the one we take in carrying out the tests below for
density dependent sources.

6 Tests

In this section we test the performance of the proposed method in terms of
both accuracy and robustness. As for the accuracy we consider a set of one
dimensional problems for which the analytic solution is known. In particu-
lar, we use the test problems in [8] for an isothermal rarefaction fan and an
isothermal shock wave and consider a flow with a stiff relaxation term in the
limit in which the relaxation time approaches zero. We then consider the case
of a sinusoidal perturbation with wave-vector both parallel (1-D) and skew
(2-D) with respect to the x-axis, and prove the second order accuracy of the
scheme for a variety of stiffness conditions. This we show both for the case in
which the source term does or does not depend on density. As for the robust-
ness of the method, we turn to multidimensional problems involving strong
shocks and large spatial gradients. In particular we consider the interaction of
a strong shock with an spherical cloud, again assuming a variety of stiffness
conditions. The aim of the tests is to prove the code performance in the case
of complex and computationally more challenging calculations.

As for the source term, in the following we mostly present results based on a
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relaxation law of the form

Λ = K ρζ

[

e − e0

(

ρ

ρ0

)η]

(55)

where K is the heat transfer coefficient and the internal energy, e, is related to
pressure and density by the equation of state (30), and ζ and η are parameters.
When ζ = η = 0 the relaxation law expressed by Eq. (55) reduces to the case
studied in [8] and in the limit K → ∞ it enforces isothermality.

Finally, we test the case of a density dependent source term, by setting ei-
ther ζ or η, or both parameters, to a non zero value. Only the latter case is
reported here although in all cases we obtain consistent results in terms of
convergence and accuracy. When η 6= 0, Eq. (55) forces the system towards
an equilibrium configuration described by polytropic-like equation of state in
which e = e0 (ρ/ρ0)

η. Thus, when η > 0, Eq. (51) implies an effective adiabatic
index that, as it should be, tends to (1 + η), as α → 0.

6.1 Riemann Problems

We first consider one-dimensional Riemann problems described by the follow-
ing initial conditions

(ρ, u, p)[x, t = 0] =











(ρl, ul, pl) if x ≤ 0.5

(ρr, ur, pr) if x > 0.5
(56)

and with a source term described by Eq. (55). Following [8] we adopt

K = 108 (57)

e0 =
pl,r

ρl,r (γ − 1)
= 1 (58)

γ = 1.4 (59)

∆x = 2.5 × 10−3. (60)

The stiff nature of the problem is apparent as K−1 ≪ ∆x/ceff , i.e. the relax-
ation time is much shorter than the hydrodynamic time scale.

6.1.1 Isothermal Rarefaction

We begin by setting the state variables to the values

ρl = 1.0, pl = 0.4, ul = −0.8

ρr = 2.5, pr = 1.0, ur = ul + 0.5795
(61)
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Fig. 1. Isothermal rarefaction wave. From top to bottom: density, velocity and
pressure solutions, respectively. The initial conditions are given in Eq. (61) with
ul = −0.8. A mesh size ∆x = 2.5 × 10−3 was employed.

representing an isothermal rarefaction in the λ+ characteristic family. For the
calculation we employ a grid with Ncell = 400 grid cells [8]. The results from
the code are illustrated in Fig. 1. From top to bottom the plot shows the
density, velocity and pressure solutions at time t = 0.4, respectively (the same
time as in [8]). The solutions are free of numerical artifact and well reproduce
the analytic solution. In particular both the foot and the front edge of the
rarefaction wave are accurately reproduced as sharp features. In addition,
there is no numerical ‘kink’ along the wave in correspondence of the point
where the the eigenvalues λ+ = u + ceff changes sign 1 as it was noticed in the
‘non-stiff’ schemes presented for comparison in [8]. If we estimate the error in
the numerical solution as in [8]

ε =
1

Ncell

N
∑

i=1

∣

∣

∣qn
i − qiso

(

xi+ 1

2

, tn
)∣

∣

∣ (62)

1 This occurs as the effective sound speed is ceff ≃ 0.63 and ul varies from −0.8 to
−0.2205.
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Fig. 2. Top panels: slow left-moving (left panel) and right-moving (right panel)
isothermal shock waves. In each panel, from top to bottom: density, velocity
and pressure solutions, respectively. The initial conditions are given in Eq. (63)
with ul = −1.2 (top left), and ur = −0.3 (top right). Bottom: slow left-moving
quasi-isothermal shocks. In both cases we set ur = −0.3 and use a heat transfer
coefficient K = 500 (bottom right) and K = 50 (bottom left) respectively. In all
cases a mesh size ∆x = 2.5 × 10−3 was employed.

that is the average of the absolute value of the difference between the numerical
and analytic result, we find that the error is ερ = 4.2 × 10−4 for the density
and εu = 1.5× 10−4 for the velocity. As an aside, the latter is a factor almost
20 smaller than obtained with the ‘frozen method’ proposed in [8].
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6.1.2 Shocks

Next we study the case of an isothermal shock with initial conditions

ρr = 1.0, pr = 0.4, ur = ur

ρl = 2.5, pl = 1.0, ul = ur + 0.6.
(63)

The numerical results are shown in Fig. 2 for two different values of ur, namely
−1.2 (top left) −0.3 (top right) producing isothermal shock fronts slowly mov-
ing to the left and the right, respectively. Neither artificial viscosity nor flat-
tening was employed. Overall the algorithm performs very well. As the shocks
are well captured within a couple of zones, the properties of the scheme have
not degraded with respect to the non-stiff case. We notice that minor oscilla-
tions appear in a few zones downstream the shock front. These have not been
introduced by our method for treating the stiff source, but rather, are due to
the fact that the dissipation in a Godunov method vanishes for slowly-moving
shocks, such as the ones being computed here. A thorough discussion on this
is found in [14]. In particular, we find that the same oscillations appear in the
purely hydrodynamic version of the algorithm with the relaxation term turned
off, if we use an adiabatic index 0 < γ−1 ≪ 1 in order to mimic isothermality.

Finally, in the bottom right panel the same initial conditions as in the top
right panel are used but in combination with a much smaller heat transfer
coefficient, K = 500 (bottom left) and K = 50 (bottom right). In these
cases K−1 ≤ ∆x/ceff and K−1 ≥ ∆x/ceff , respectively, so that while the gas
behavior is not strictly isothermal, the relaxation time is still relatively short.
Assessing the algorithm performance for this situation is of relevance as well, as
in general stiffness of the conditions will vary across a flow. The bottom panels
of Fig. 2, in addition to density, velocity and pressure also present results for
the temperature. As it appears from this plot, the numerical solution is very
satisfactory, without numerical artifacts or oscillations.

6.2 Convergence Rates in Smooth Flows

In this section we test the convergence of the method by studying the case of
a smooth flow with the following initial conditions

ρ = ρ0

{

1 +
A

2
[cos(2π k · r) + 1]

}

(64)

p = p0 = 0.5 (65)

ux = ux0 = 0.3 (66)

uy = uy0 = 0.5 (67)
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Table 1
Run Set for Convergence Study with Relaxation Law Eq. (55)

run A k K ζ η Note

A 10−2 (1, 0) K = 108 0 0

B 10−2 (1, 0) K = 1 0 0

C 10−2 (2/
√

5, 1/
√

5) K = 108 0 0

D 10−2 (2/
√

5, 1/
√

5) K = 1 0 0

E 10−2 (1, 0) K = 108 0 0 δe/e0 = 0.4

F 10−2 (2/
√

5, 1/
√

5) K = 108 0 0 δe/e0 = 0.4

G 10−2 (1, 0) K = 108 1 0.1 δe/e0 = 0.4

H 10−2 (2/
√

5, 1/
√

5) K = 108 1 0.1 δe/e0 = 0.4

where r is the position vector and we use ρ0 = γ = 1.4. The above initial
conditions produce a sinusoidal wave with amplitude A propagating in the
domain along the direction defined by the vector k. While we have experi-
mented with various values for the parameters A, k and K, below we present
results for a few cases only, summarized in Table 1.

In particular we consider a perturbation amplitude A = 10−2 and both a
wave-vector aligned with the grid k = (1, 0) and skew with respect to it,
k = (2/

√
5, 1/

√
5). We adopt a source term as given in Eq. (55) with values

of the transfer coefficient K = 108 and 1, to explore different regimes in which
the relaxation is stiff and resolved in time, respectively (cases A-D). We then
repeat case A and C but with the initial value of the internal energy offset
from the equilibrium value by δe/e0 = 40% (cases E-F). Finally, we consider
the case in which the source term depends both on density and internal energy,
as described by Eq. (55). In particular, we show results concerning the case
in which K = 108, ζ = 1, η = 0.1, δe/e0 = 40% (cases G-H). Consistent test
results were also found by setting ζ = 1, η = 0 as well as ζ = 0, η = 0.1.
Note that the smallness of the perturbations is such that the term given by
Eq. (54), to be added to the energy in the predictor step, is resolved in time.
In order to measure the rate at which the numerical solution converges, for

each problem we carry out a set of 4 simulations each separated by a factor
of two in resolution for a total range of 16. Given the numerical result qr at
a given resolution r and at a given point (i, j), we measure its “error” with
respect to the next finer resolution, s, as

εr;i,j = qr(i, j) − q̄s(i, j) (68)

where the bar indicate proper spatial averaging of the finer solution. We then
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Table 2
Convergence Rates: 1-D Case: A = 10−2, k = (1, 0)

K = 108 K = 1

Npart L1 L2 L∞ R†
1 L1 L2 L∞ R†

1

density

32 6.5E-7 1.4E-6 4.2E-6 – 1.3E-6 2.8E-6 8.0E-6 –

64 1.6E-7 3.6E-7 1.0E-6 2.0 2.8E-7 6.3E-7 1.8E-6 2.2

128 4.1E-8 9.1E-8 2.6E-7 2.0 6.6E-8 1.5E-7 4.2E-7 2.1

momentum

32 1.2E-6 2.7E-6 7.7E-6 – 3.5E-7 7.8E-7 2.2E-6 –

64 2.6E-7 5.8E-7 1.6E-6 2.2 6.9E-8 1.5E-7 4.4E-7 2.4

128 6.0E-8 1.3E-7 3.8E-7 2.1 1.5E-8 3.3E-8 9.4E-8 2.2

total energy

32 9.6E-7 2.1E-6 6.2E-6 – 6.6E-7 1.5E-6 4.2E-6 –

64 2.2E-7 4.9E-7 1.4E-6 2.1 1.5E-7 3.3E-7 9.6E-7 2.1

128 5.3E-8 1.2E-7 3.4E-7 2.0 3.5E-8 7.9E-8 2.3E-7 2.2
† R1 is the convergence rate based on the L1 errors.

take the n-norm of the error

Ln = ‖εr‖n =
(

∑

|εr;i,jvi,j|n
)1/n

(69)

where, vi,j = ∆x2 is the cell volume, and estimate the convergence rate as

Rn =
ln(Ln(εr)/Ln(εs))

ln(∆xr/∆xs)
. (70)

For each studied case listed Table 1, we produce a corresponding table (2-5)
reporting the L1, L2 and L∞ norms of the error as defined above. Inspection of
their values shows that the error drops with second order accuracy, supporting
our analysis in Sec. 2.
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Table 3
Convergence Rates: 2-D Case: A = 10−2, k = (2/

√
5, 1/

√
5)

K = 108 K = 1

Npart L1 L2 L∞ R†
1 L1 L2 L∞ R†

1

density

32 7.2E-5 8.0E-5 1.2E-4 – 1.9E-5 2.1E-5 3.1E-5 –

64 1.6E-5 1.8E-5 2.6E-5 2.2 2.5E-6 2.8E-6 4.2E-6 2.9

128 3.9E-6 4.3E-6 6.3E-6 2.0 3.8E-7 4.2E-7 6.5E-7 2.7

momentum

32 4.9E-5 5.4E-5 7.9E-5 – 4.5E-6 5.0E-6 7.5E-6 –

64 1.1E-5 1.2E-5 1.8E-5 2.1 3.0E-7 3.4E-7 5.4E-7 3.9

128 2.6E-6 2.9E-6 4.2E-6 2.1 2.5E-8 2.8E-8 4.9E-8 3.6

total energy

32 8.9E-5 9.9E-5 1.5E-4 – 7.5E-6 8.3E-6 1.2E-5 –

64 2.0E-6 2.3E-5 3.3E-5 2.1 2.0E-6 2.2E-6 3.1E-6 1.9

128 4.9E-6 5.5E-6 7.9E-6 2.0 5.1E-7 5.7E-7 8.0E-7 2.0
† R1 is the convergence rate based on the L1 errors.

6.3 Adaptive Mesh Refinement and Strong Shock Problems

In applications involving the interaction of strong shocks, it is useful to use the
dissipation mechanisms described in [3], which generalize without modification
to the present case. In addition, it is also desirable to couple this method to
a block-structured adaptive mesh refinement (AMR) [1,6]. In AMR calcula-
tions, the conservative variables are updated for the conservative fluxes in two
steps. The first step constitutes the main flux update and it simply consists
in modifying the state variables U for the total fluxes across the cell bound-
aries. In addition, as part of the operations of synchronization among different
levels, the conservative variables at the coarse-fine grid interfaces are further
updated for the flux difference between the level on which they are defined
and the next finer level. This operation is referred to as refluxing and it is
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Table 4
Convergence Rates: Off Equilibrium Case: δe/e0 = 0.4, A = 10−2, K = 108

k = (1, 0) k=(2/
√

5, 1/
√

5)

Npart L1 L2 L∞ R†
1 L1 L2 L∞ R†

1

density

32 5.0E-7 1.1E-6 3.3E-6 – 6.5E-5 7.2E-5 1.1E-4 –

64 1.2E-7 2.7E-7 7.9E-7 2.1 1.5E-5 1.7E-5 2.5E-5 2.1

128 3.0E-8 6.7E-8 1.9E-7 2.0 3.8E-6 4.2E-6 6.1E-6 2.0

momentum

32 1.3E-6 2.9E-6 8.3E-6 – 5.4E-5 6.0E-5 8.8E-5 –

64 2.9E-7 6.4E-7 1.8E-6 2.2 1.2E-5 1.4E-5 2.0E-6 2.2

128 6.6E-8 1.5E-7 4.2E-7 2.1 2.9E-6 3.2E-6 4.7E-6 2.0

total energy

32 9.2E-7 2.0E-6 5.9E-6 9.4E-5 1.0E-4 1.5E-4 –

64 2.1E-7 4.6E-7 1.3E-6 2.1 2.2E-5 2.4E-5 3.6E-5 2.1

128 4.9E-8 1.1E-7 3.2E-7 2.1 5.4E-6 6.0E-6 8.8E-6 2.0
† R1 is the convergence rate based on the L1 errors.

aimed at preserving the convervative character of the numerical scheme when
applied to a hierarchy of nested grids.

For the purpose of the current discussion, the effect of this operation can be
expressed as

U → U − ∆t

∆x
δF (71)

where δF is the difference between the fluxes at the coarse-fine interface com-
puted on a given level and the next finer level. In AMR calculations refluxing
on a given level is enforced as a separate operation, after the source update
and the main flux update have been carried out on that level and also on all
finer levels. Therefore, an additional measure must be taken to ensure that the
effects of refluxing are also subjected to the action of the deferred corrections
(just like the flux update does). Thus, inspection of Eq. (9)-(11) indicates that
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Table 5
Convergence Rates: Off Equilibrium, ρ-dependent Source Case: δe/e0 = 0.4, η =
0.1, A = 10−2, K = 108

k = (1, 0) k=(2/
√

5, 1/
√

5)

Npart L1 L2 L∞ R†
1 L1 L2 L∞ R†

1

density

32 3.8E-7 8.4E-7 2.5E-6 – 6.5E-5 7.2E-5 1.0E-4 –

64 7.5E-8 1.7E-7 5.3E-7 2.3 1.5E-5 1.7E-5 2.5E-5 2.1

128 1.7E-8 3.9E-8 1.2E-7 2.1 3.8E-6 4.3E-6 6.3E-6 2.0

momentum

32 1.4E-6 3.1E-6 8.7E-6 – 5.4E-5 6.0E-5 8.8E-5 –

64 3.0E-7 6.7E-7 1.9E-6 2.2 1.2E-5 1.4E-5 2.0E-5 2.2

128 7.1E-8 1.6E-7 4.5E-7 2.1 3.0E-6 3.4E-6 4.9E-6 2.0

total energy

32 8.6E-7 1.9E-6 5.4E-6 – 9.4E-5 1.0E-4 1.5E-4 –

64 1.8E-7 3.9E-7 1.2E-6 2.2 2.2E-5 2.4E-5 3.6E-5 2.1

128 4.0E-8 8.9E-8 2.7E-7 2.2 5.6E-6 6.2E-6 9.0E-6 2.0
† R1 is the convergence rate based on the L1 errors.

the flux correction must be modified according to

δF →
{

(I − ∆t∇US|U0
)−1 + (I − ∆t∇US|Ũ)−1

[

I − (I − ∆t∇US|U0
)−1

]}

δF.

(72)

In the following we employ an AMR code and carry out a calculation involving
the interaction of a spherical overdense region with a strong hydrodynamic
shock to assess the robustness of our proposed numerical method. We assume
a cloud overdensity with respect to the ambient medium χ = 10 and a shock
Mach number M = 10. We use a base grid of 256×256 zones and allow for
two additional levels of refinement with refinement ratio 2 in regions where
the undivided, relative density gradients, ∆ρ/ρ, exceed 20%.

We begin assuming that a stiff relaxation term of the form in Eq. (55) acts on
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Fig. 3. Logarithmic pressure maps from the shock-cloud interaction run. The shock
Mach number is 10 and the cloud overdensity is 10. The left panel shows the
‘isothermal’ case with K = 108 and the right panel shows the case in which
K−1 ≃ ∆x/vshock, i.e. the relaxation time is comparable to the shock cell cross-
ing time. These calculations were performed with an AMR code which employed a
base grid of 256×256 zones and two additional levels of refinement with refinement
ratio 2.

the flow internal energy and we consider both the case of a exceedingly large
transfer coefficient, K = 108, as well as the case in which the relaxation time
is comparable to the shock cell crossing time. This requires, roughly, that

K−1 ≃ ∆x/ushock (73)

where ∆x is the mesh size and ushock is the shock speed. Note that the presence
of refined grids does not affect in any significant way the stiffness of the prob-
lem, i.e. the relation between relaxation and sound time remains unchanged
for the purpose of these tests. At simulation start the temperature is constant
throughout the domain, so that the cloud is in thermal equilibrium but it has
higher pressure than its surroundings. As a result, it expands sonically into the
background. The shock propagates from the right to the left along the x-axis
and as it runs into the cloud it crushes it. In Fig. 3 we plot the logarithmic
pressure map as the shock is roughly half-way through the cloud. The high
pressure postshock region is clearly thinner in the case of the larger value of
K and the shock has also propagated slightly further down the axis. In both
cases, however, the result is sound and shows no sign of numerical artifact
both in the presence of strong shock and large gradients, and independently
of the magnitude of the transfer coefficient.

As a final test, we consider the same shock cloud interaction problem as de-
scribed above but with a source function appropriate for a mixture of hydrogen
(76 %) and helium (24 %) illuminated by a uniform ionizing background ra-
diation field. The cooling part of the source function is proportional to the
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Fig. 4. Logarithmic density (left) and pressure (right) maps from the shock-cloud
interaction run for a density dependent source term at t = 0.018 (top) and t = 0.07
(bottom) time units. As before, the shock Mach number is 10, the cloud overdensity
is 10 and the calculation was performed with an AMR code employing a base grid
of 256×256 zones and two additional levels of refinement with refinement ratio 2.

density and the equilibrium temperature, of order 104 K, depends slightly on
the density. This function has a very strong temperature gradient about the
equilibrium value, behaving analogously to the stiff source terms used in the
previous sections were accuracy and convergence studies were carried out.

We set the background gas temperature to 106 K and its number density to
0.1 cm−3. The gas is collisionally ionized, its sound speed is of order 1.2× 107

cm s−1 and it has a cooling time τcool = P/(γ − 1)ρΛ ≃ 1.4 × 107 yr. With
a box size L = 1.7 kpc = 5.2 × 1021 cm, the latter is much longer than the
CFL time, τCFL ≤ ∆x/ushock ≃ 5.4 × 103 yr. The cloud of overdense gas is in
pressure equilibrium with a density contrast χ = 10 so that its temperature is
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105 K. When unperturbed, the cloud’s gas cooling time is about 1.4 × 104 yr
≃ 2.6× τCFL. A background radiation field, producing about Γ ∼ 2.4× 10−12

s−1 ionizations of neutral atoms of hydrogen and helium keeps the cloud’s
temperature at the equilibrium value of ∼ 1.5104 K. However, the cloud’s
pressure quickly falls below the background value and, as a minor effect, the
cloud slowly contracts.

Fig. 4, shows a snapshot of the density (left) and the pressure (right) dur-
ing the initial (top) and final stages (bottom) of the simulation. The reverse
shock is non-radiative, thus extending further ahead of the cloud than in the
previous cases in Fig. 3. Inside the cloud strong radiative losses prevent the
full temperature rise in the postshock region and produce a density jump sub-
stantially larger than in the corresponding adiabatic case. The bottom panel
shows the later stages of the cloud evolution, when Rayleigh-Taylor instability
with scales comparable to the cloud size have developed and are shredding the
cloud. As in the previous case, in which the source term is described by a re-
laxation law, the code appears to produce reliable numerical results, without
numerical artifact despite the presence of strong shock and large gradients.

7 Conclusions

We have presented a second order accurate semi-implicit predictor-corrector
scheme to treat stiff source terms within the framework of higher order Go-
dunov’s methods. Our treatment of the predictor step for computing the hy-
perbolic fluxes, is based on the derivation of a local effective dynamics us-
ing Duhamel’s formula. This leads to a conventional second-order Godunov
method when the system relaxation time is larger than the time step and to
a second-order Godunov method for the isothermal equations in the limit of a
stiff source term. Finally, we obtain a semi implicit corrector using a one-step
second-order accurate deferred corrections method as suggested in [4,7].

Our tests indicate that the proposed method is stable, robust and its second
order accuracy preserved across a variety of stiffness conditions. We have also
discussed the case of a general source term which depends both on e and ρ
and shown that the method is applicable provided that the flow is thermally
stable or the non-stiff part of the source term is resolved in time.
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