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EFFECTS AND CORRECTION OF CLOSED ORBIT MAGNET ERRORS IN THE 
SNS RING
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ABSTRACT

We consider the effect and correction of three types of orbit errors in SNS: quadrupole displacement errors, dipole 
displacement errors, and dipole field errors.  Using the ORBIT beam dynamics code, we focus on orbit deflection 
of a standard pencil beam and on beam losses in a high intensity injection simulation.  We study the correction 
of these orbit errors using the proposed system of 88 (44 horizontal and 44 vertical) ring beam position monitors 
(BPMs) and 52 (24 horizontal and 28 vertical) dipole corrector magnets.  Correction is carried out numerically by ad-
justing the kick strengths of the dipole corrector magnets to minimize the sum of the squares of the BPM signals for 
the pencil beam.  In addition to using the exact BPM signals as input to the correction algorithm, we also consider 
the effect of random BPM signal errors.  For all three types of error and for perturbations of individual magnets, 
the correction algorithm always chooses the three-bump method to localize the orbit displacement to the region 
between the magnet and its adjacent correctors.  The values of the BPM signals resulting from specified settings 
of the dipole corrector kick strengths can be used to set up the orbit response matrix, which can then be applied to 
the correction in the limit that the signals from the separate errors add linearly.  When high intensity calculations are 
carried out to study beam losses, it is seen that the SNS orbit correction system, even with BPM uncertainties, is 
sufficient to correct losses to less than 10-4 in nearly all cases, even those for which uncorrected losses constitute a 
large portion of the beam.

INTRODUCTION

The correction of magnet alignment and field errors in 
high energy particle accelerators is an essential and well-un-
derstood subject.  Because of the exceedingly high precision 
required in these machines, the magnet errors must be small 
and there must be provisions to correct the orbit deviations of 
the beam particles caused by those errors.  Orbit deviations are 
normally detected by beam position moniters (BPMs), located 
at various positions in the accelerator, that measure the trans-
verse position of the passing beam.  These measured deviations 
are then corrected through the use of dipole corrector magnets, 
also located around the accelerator, which kick the beam to 
straighten the orbit.  The accumulator ring of the Spallation 
Neutron Source (SNS), now under construction at Oak Ridge 
National Laboratory, will support an extremely intense proton 
beam, and this paper presents the initial study of orbit errors 
and their correction in the SNS ring.

The SNS ring will be required to accumulate in excess 
of 1014 protons at 1 GeV during a time span of approximately 
1 ms, or about 1000 turns of the 248 m ring.  At a pulse rate 
of 60 Hz, the beam intensity will be in the megawatt range, 
and unprecedented low loss constraints will be required.  At 
megawatt powers, the fractional beam loss requirements are 
10-4 for uncontrolled losses and 10-3 for total losses including 
the collimation system.  Because magnet errors can contribute 
significantly to degradation of beam quality and to beam loss, 
it is essential to study their effect and to provide for their cor-
rection.  In response to this need, the authors have developed 
a comprehensive family of computational  models for magnet 
field and alignment errors.  In this paper, we present our initial 
applications of these models by examining some of the most 
serious errors, namely dipole and quadrupole errors that deflect 
the closed orbit.  In particular, we examine quadrupole and 
dipole displacement errors as well as dipole field errors.

The SNS ring is 248 m long and consists of four superperi-
ods.  Each period contains a 90˚ achromatic arc of four FODO 
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cells with nine quadrupoles and eight dipole magnets, as well 
as a straight section containing two doublet cells and ample 
drift spaces for insertions.  The basic structure of the SNS Ring 
lattice is shown in Table 1.  Each FODO cell is seen to be eight 
meters in length, so that the arc is 32 meters long; adding to 
this the 30 meter length of the straight section, we obtain 62 
meters for each superperiod and 248 meters for the ring.  This 
basic structure is supplemented by small dipole, quadrupole, 
sextupole, and octupole corrector magnets, by various diagnos-
tic apparatus, and by the insertion elements.  The insertions in 
the four straight sections include the injection chicane, col-
limation, extraction, and RF, respectively.  The details of these 
supplemental elements are too many to be discussed here, but 
they are included in the calculations which we present.  Thus, 
the basic ring contains 32 arc dipoles and 52 quadrupoles, as 
well as sextupoles and octupoles for chromaticity and higher 
order corrections.  Relevant to the present work, there are also 
24 horizontal and 28 vertical dipole corrector magnets to be 
used for orbit correction and equal numbers of horizontal and 

vertical beam position monitors to provide the orbit correction 
information.  The lattice is tunable in the range 4 < νx,y < 7, and 
acceptable sets of lattice functions can be found between 5 < 
νx,y < 7.  The present calculations are restricted to the baseline 
SNS operating point of νx = 6.23, νy = 6.20 and to natural chro-
maticity (all sextupoles turned off).

In this work we study the effects of closed orbit-deflecting 
errors in the 32 ring dipoles and 52 quadrupoles.  This will be 
done using ORBIT [1], a comprehensive beam dynamics code 
for high intensity rings.  A good description of ORBIT’s scope 
and capabilities is given in Ref. [2].  In the present calcula-
tions, we use the complete model for the injection process 
and proton-foil interactions.  We use a correlated transverse 
painting scheme that gives total (x+y) emittances of about 
165π mm-mrad at the 10-3 level and total losses below 10-4 
when errors are not present.  The foil model includes multiple 
Coulomb scattering and slowing down, Rutherford scattering, 
and nuclear elastic and inelastic scattering with a carbon foil of 
assumed thickness 300 μg/cm2.  Particle tracking through the 
lattice is carried out with a symplectic tracking scheme includ-
ing hard edge fringe fields.  Collective effects are modeled 
using the 2.5D transverse space charge model, and longitudinal 
transport with space charge and the dominant extraction kicker 
impedance.  Correct incorporation of transverse impedance 
effects requires the use of the 3D space charge routine, making 
the calculations very time consuming.  Fortunately, a test calcu-
lation with these capabilities activated shows that, at full power 
of 1.44 MW, the beam is stable with respect to the dominant 
extraction kicker impedance.  Therefore, it is not necessary to 
consider transverse impedances or 3D space charge model-
ing here.  Losses are evaluated by the placement of apertures 
and collimators around the ring using ORBIT’s aperture and 
collimation modules.  For these studies, we set all apertures 
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Figure 2.  Three-bump correction scheme for 1mm horizontal offset of quad-
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Figure 1. Maximum deviation of pencil beam orbit for 1 mm magnet displace-
ment.
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   A.   Achromatic Arc of Four FODO Cells in Succession. Each FODO Cell 
Contains:
          Element           Length [meters]
          Quadrupole Magnet             0.5
          Drift Space             1.0
          Sector Bending Magnet             1.5
          Drift Space             1.0
          Quadrupole Magnet             0.5
          Drift Space             1.0
          Sector Bending Magnet             1.5
          Drift Space             1.0

   B.   Straight Section of Two Doublet Cells and Long Drift Spaces for Inser-
tions:
          Element           Length [meters]
          Quadrupole Magnet             0.5
          Drift Space             6.85
          Quadrupole Magnet             0.7
          Drift Space             0.4
          Quadrupole Magnet             0.55
          Drift Space           12.5
          Quadrupole Magnet             0.55
          Drift Space             0.4
          Quadrupole Magnet             0.7
          Drift Space             6.85

TABLE 1. Basic SNS Ring Lattice Structure: Four Superperiods, Each Containing 
achromatic arcs and straight sections.
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and collimators, except for the adjustable scrapers, to perfect 
absorbers.  The adjustable scrapers are treated using the full 
collimation model, which contains the same physics as the foil 
model, except for the material and thickness: tantalum of thick-
ness 4.5 mm backed by copper of thickness 14.55 mm.

A comprehensive selection of magnet alignment and field 
errors can be studied through ORBIT’s error module.  These 
can be specified for selected magnets or assigned by random 
distribution to groups of magnets.  In this work we utilize both 
assignment schemes: direct assignment to individual mag-
nets to ascertain the effects of specific errors or activation of 
individual dipole correctors to determine the orbit response 
matrix [3], and random distributions of errors to carry out real-
istic calculations of the effects of errors in the ring and of the 
usefulness of proposed correction schemes.  The orbit correc-
tion model in ORBIT works by adjusting the dipole corrector 
magnet kick strengths to minimize, in a least squares sense, the 
sum of the squares of all the BPM signals for a chosen beam.

The module can carry this minimization out in either 
of two ways: 1) direct minimization using either the calcu-
lus-based VMCON [4] optimization package or the genetic 
algorithm optimization package GALIB [5], both of which 
are accessible to ORBIT through its driver shell, SuperCode 
[6]; or 2) minimization of the difference between the observed 
BPM signals and the product of the orbit response matrix 
with a vector consisting of the dipole corrector strengths to be 
determined.  To use this latter method, it is first necessary to 
obtain the orbit response matrix.  This is done by recording the 
BPM signals resulting from the activation of a standard (say 
one milliradian) kick in each dipole corrector node, in succes-
sion.  Thus, from the standard activation of each of 52 dipole 
corrector nodes we obtain a vector, in a linear algebra sense, of 
88 BPM signal values.  We combine these vectors as columns 
to create an 88 × 52 matrix, R, the orbit response matrix of 
the SNS Ring.  Under the assumption that the orbit deviations 
which give the BPM signals due either to separate magnet er-
rors or to dipole corrector node kicks superpose linearly, then 

these signals may be minimized for any set of orbit-deflecting 
errors by setting the dipole corrector strengths to minimize the 
square of the vector V = E – R×D, where E is the 88 dimen-
sional vector of BPM signals due to the errors and D is the 52 
dimensional vector of dipole corrector kick strengths.  We note 
that the matrix R is not invertible and that the system is under-
determined, so that the best we can do is to minimize the vector 
V.  In general, an exact solution is not possible.  Most of the 
calculations presented in this paper were carried out using the 
direct minimization method with the VMCON optimizer.  We 
are currently investigating the orbit response matrix method, 
and will report the results of this investigation in a later publi-
cation.

In the present calculations, we determine the corrector 
strengths using a pencil beam with initial coordinates on the 
desired (error free) closed orbit.  Without magnet errors, this 
beam lies precisely on the closed orbit.  By minimizing the 
excursions of this beam in the presence of errors we align the 
desired and actual closed orbits as much as possible.  One ad-
ditional feature of the orbit correction scheme is the option of 
statistically including the effects of errors in the BPM signals 
into the function to be optimized.  We will show here that, 
with realistic values, such errors impact the desired correction 
scheme only slightly.

As stated above, we have developed a comprehensive set 
of computational models for magnet alignment and field errors.  
It is our intent to study all these errors and their correction for 
realistic tolerances in the SNS Ring.  This paper constitutes the 
first such study, and we focus on three types of error that effect 
the closed orbit.  In the following we present our analysis of 
quadrupole displacement errors in Sect. 2, dipole displacement 
and field errors in Sect. 3, and a summary of our results in Sect. 
4.  Other alignment errors, such as rotations leading to roll, 
pitch, and yaw, and errors involving sextupoles and octupoles 
will be examined in future studies.  Because of the higher order 
of sextupole and octupole fields, alignment errors involving 
these magnets are expected to have small effects on the closed 
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Figure 3.  Three-bump correction scheme for 1mm offset of quadrupole Q52.  Horizontal and Vertical dipole moments are shown for 8 turns.  The first four turns 
are without correction, while the last four are with correction.  The left hand plot was calculated assuming no errors in the BPM signals.  The right hand plot as-
sumes errors in the BPM signals, distributed randomly with a Gaussian distribution and sigma = 0.5 mm.
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orbit, although the very presence of any sextupole or octupole 
fields does introduce coupling between the horizontal and verti-
cal transverse motions.

QUADRUPOLE DISPLACEMENT ERRORS

The first topic we will treat in this paper is that of quadru-
pole displacement errors in the SNS ring.  We define horizontal 
and vertical quadrupole displacement errors to be uniform dis-
placements of the magnet in or out or up or down, respectively.  
There are 52 quadrupole magnets in the ring and, because of 
the fourfold ring symmetry, for determining corrector strengths 
it is only necessary to focus on the 13 magnets of one period.  
This is not true when losses are considered, because the aper-
tures and collimators do not obey the fourfold symmetry.  We 
begin by examining the pencil beam deviation caused by a 1 
mm displacement in each individual quadrupole.  Because the 
sextupole and skew quadrupole strengths are set to zero in this 
natural chromaticity case, the vertical and horizontal planes 
are decoupled to lowest order and the horizontal and vertical 
displacements lead to horizontal and vertical orbit deviations, 

respectively.  Figure 1 shows the maximum horizontal and 
vertical orbit deviations of the pencil beam for 1 mm displace-
ments of each of the 13 quadrupoles in the first superperiod.  
Focusing now on the curves for the uncorrected errors, we 
note that this plot repeats exactly for each of the three remain-
ing superperiods.  While the maximum vertical and most of 
the horizontal pencil beam orbit deviations vary in the range 
2-5 mm, the maximum horizontal deviations for the displaced 
second and twelfth magnets peak above 9 mm.  These magnets 
are focusing doublet quadrupoles in the straight sections, and 
their locations correspond to the maximum horizontal beta 
function values, namely βx = 27 m.  It is therefore not surpris-
ing that the horizontal uncorrected orbit attains its maxima at 
these locations.

Correction of these quadrupole displacement errors is 
achieved by adjusting the dipole kicker magnet strengths to 
minimize the orbit deviations of the pencil beam.  In SNS the 
information about such deviations comes in the form of BPM 
signals from the 44 horizontal and 44 vertical beam position 
monitors.  In the present ORBIT calculations, these BPMs are 
included in the lattice and their signals are obtained, with or 
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Figure 4.  Horizontal and vertical kicker strengths needed to correct 1 mm horizontal and vertical offsets in the 13 quadrupoles of the first superperiod are shown 
in the left and right hand plots, respectively.

Magnet Horizontal Corrector 1 Horizontal Corrector 2 Vertical Corrector 1 Vertical Corrector 2
Corrector # Kick [mrad] Corrector # Kick [mrad] Corrector # Kick [mrad] Corrector # Kick [mrad]

Q01 DX24 0.0182 DX01 0.2729 DY28 -0.0821 DY01 -0.5102
Q02 DX24 -0.0057 DX01 -0.4351 DY28 0.0236 DY01 0.4576
Q03 DX01 0.0493 DX02 0.1042 DY02 0.0096 DY03 -0.2686
Q04 DX02 0.0041 DX03 -0.3510 DY02 0.1055 DY03 0.0989
Q05 DX02 0.1058 DX03 0.1137 DY03 0.0074 DY04 -0.3929
Q06 DX03 0.0061 DX04 -0.3537 DY03 0.1014 DY04 0.0994
Q07 DX03 0.1144 DX04 0.1120 DY03 -0.0068 DY04 -0.3933
Q08 DX03 -0.0063 DX04 -0.3526 DY04 0.1015 DY05 0.0991
Q09 DX04 0.1149 DX05 0.1082 DY04 -0.0068 DY05 -0.3933
Q10 DX04 -0.0064 DX05 -0.3524 DY05 0.1013 DY06 0.1048
Q11 DX05 0.1032 DX06 0.0502 DY05 -0.0045 DY06 -0.2645
Q12 DX06 -0.4351 DX07 -0.0057 DY07 0.4574 DY08 0.0237
Q13 DX06 0.2730 DX07 0.0182 DY07 -0.5102 DY08 -0.0821

TABLE 2.  Dipole Corrector Selection and Kick Strengths Required to Correct 1 mm Horizontal and Vertical Displacement Errors of Specified Quadrupole 
Magnets
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without errors, as center of charge beam positions in millime-
ters for the ring beam.  Without errors, the BPM nodes return 
the exact dipole moments of any selected longitudinal por-
tion of the beam in millimeters.  When errors are invoked, a 
random component is added to each exact BPM signal.  In the 
calculations here, when BPM errors are included, we assume a 
truncated Gaussian distribution with mean of 0 mm, sigma of 
0.5 mm, and cutoff of ±1 mm.

In our ORBIT calculations, we adjust the strengths of the 
24 horizontal and 28 vertical dipole corrector magnets, which 
are also included in the computational lattice.  To do this, we 
use the optimization routine VMCON [4] to minimize the least 
square sum of the BPM signals, with or without errors, due 
to the pencil beam.  The results of this correction for 1 mm 
displacements of the first 13 quadrupole magnets are shown in 
Figure 1, both with and without assumed BPM errors.  We see 
that the maximum deviations of the pencil beam orbit are less 
than 2 mm in either case, so the dipole corrector magnets suc-
cessfully correct individual quadrupole displacement errors.

In performing the minimization of the BPM signals 
without BPM errors for displacement errors of each individual 
quadrupole magnet, we find that only two dipole corrector 
kicks are required for each error.  The optimization routine 
chooses a three-bump orbit correction scheme [3], with the 
bumps corresponding to the quadrupole displacement error 
and to kicks from the two adjacent dipole correctors.  Figure 2 
shows the kick strengths in milliradians required to correct a 1 
mm horizontal displacement of Q07, the seventh quadrupole in 
the ring, taken from the injection point.  We see that only two 
correctors, those surrounding Q07, are significantly activated 
when the BPM signal contains no error.  The resulting kick 
strengths are also shown with random BPM errors assumed, 
and although the largest kicks are almost unchanged, all the 
kickers are activated to some extent to correct the erroneous 
signals due to the BPM errors.

The BPM signals obtained during the correction of Q52 
are shown in Figure 3, both without and with BPM errors.  
The plots show the signal taken over 8 turns, the first 4 turns 
without correction and the last 4 turns following correction.  
Without BPM errors, the dipole moment is essentially zero 
except for tiny perturbations at the quadrupole.  When errors 
in the BPM signals are included, the maximum position errors 
remain small, but the corrected orbit is noisy and not localized 
in the ring.

The required dipole corrector magnets and their associated 
kick strengths to correct 1 mm displacement errors are shown 
for the first superperiod in Table 2 and plotted in Figure 4.  
The strengths are again the same for each superperiod.  Using 
these strengths, we can define an orbit correction matrix Cij = 
the kick in milliradians required from the ith dipole corrector 
magnet to correct a 1 mm displacement of the jth magnet.  To 
the extent that the effects of the quadrupole displacements 
superpose linearly in the beam position signals, the matrix C 
can be multiplied by an actual set of magnet displacements to 
correct the combined effects on the orbit.  We have compared 
the corrector strengths calculated this way to those obtained 

from direct optimization for randomly generated sets of magnet 
errors, and the results are in excellent agreement.  This dem-
onstration of linearity suggests that the orbit response matrix 
method for orbit correction will work well, at least for quad-
rupole displacement errors.  However, it should be mentioned 
that unlike the orbit response matrix R, which relates BPM 
signals to dipole kick strengths that are known in general, the 
orbit correction matrix C can not be used in practical situations 
because the sizes of the magnet errors are not known.

We now consider the beam losses induced by 1 mm 
horizontal and 1 mm vertical displacement of selected quad-
rupole magnets in a standard SNS beam accumulation.  The 
accumulation was carried out as described in the introduction 
to this paper.  Specifically, correlated injection painting was 
applied to accumulate a beam of 1.5×1014 1 GeV protons over 
1060 turns, which corresponds to 1.44 MW operation at a pulse 
rate of 60 Hz.  Figure 5 shows the results of these calculations.  
The horizontal line gives the fractional beam loss, less than 
1×10-4, when no magnets are displaced.  The red symbols show 
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the losses for the displacement of each of the 13 individual 
quadrupoles in the first superperiod.  These vary from less than 
1×10-4 to more than 15% in the case of Q12.  Unlike the orbit 
deviations and correction strengths, the losses do not obey the 
fourfold ring symmetry.  The constraining apertures in the ring 
are the collimators in the second straight section, especially 
the adjustable scrapers that serve as the first point of contact 
for beam destined to be lost.  Because of this, magnet displace-
ments in the first superperiod tend to lead to greater losses than 
displacements in other superperiods.  An example is shown 
in Figure 5, where the loss resulting from displacement of 
Q25, exactly one superperiod downstream from Q12 and thus 
after the collimation, is seen to be one and one half orders of 
magnitude less than that resulting from displacement of Q12.  
Correction of the magnet errors is seen to cure the losses from 
individual magnet displacements.  Losses with correction were 
calculated only for the 7th, 12th, and 13th quadrupoles, and these 

were all at or below the 10-4 level.  It is interesting that BPM 
errors have little effect on the observed losses for these cases.  
The plausibility of this can be inferred by looking at the results 
in Figs. 3 and 4, which show that the effect of BPM errors is to 
add a small jitter to the results without errors, but not to change 
the overall picture significantly.

In order to consider a somewhat more realistic set of 
cases, a study was carried out in which horizontal and vertical 
displacements were assigned at random to all 52 ring quadru-
poles.  For this assignment, a uniform distribution satisfying –a 
< displacement error < a was used.  In most cases, a was taken 
to be 0.25 mm, consistent with the SNS displacement require-
ments; but some cases were also run with a = 0.50 mm and a 
= 1.00 mm.  In all cases, full SNS beam accumulation calcu-
lations were performed and losses tabulated, using the same 
dynamic assumptions as in the single quadrupole displace-
ment loss calculations.  For the default case of a = 0.25 mm, 
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the calculation was performed 10 times with different random 
number seeds ranging from 0 → 0.9 in intervals of 0.1.  The 
results, plotted in red in Figure 6, show a variation from less 
than 10-5 (seed = 0.8) to 48% of the beam (seed = 0.2).  For 
the worst case uncorrected lattice, the moments of the pencil 
beam showed maximum values of 13 mm (horizontal) and 12 
mm (vertical).  The variation in loss values is not surprising in 
light of the results for the individual quadrupole displacements: 
some magnet displacements lead to little loss while others can 
have a major impact.  Depending on the particular random 
displacements corresponding to various seeds, losses can be 
small or large.

A more important question regards the beam losses when 
the dipole corrector magnets are activated.  For each of the 
seed values, a correction calculation was carried out.  The 
corrector strengths were calculated in two ways: first by direct 
least square minimization of the BPM signals for the standard 
pencil beam with initial coordinates on the desired closed orbit, 
and second by matrix multiplication of the orbit correction ma-
trix C defined above with the displacements of the quadrupoles 
obtained from the random distribution with the given seed.  
The resulting dipole corrector strengths proved to be in excel-
lent agreement for the two methods, indicating that the effects 
of the displacement errors in this size range superpose linearly.  
The resulting losses for a = 0.25 mm, plotted in green in Figure 
6, are less than 10-4 in all but two cases, with a worst-case value 
of 2.5×10-4 when the seed is 0.2.  In this case of corrected lat-
tice errors, the maximum values of the moments of the pencil 
beam are still less than 2 mm.  These results are clearly quite 
satisfactory, demonstrating that the anticipated errors can be 
corrected to limit total losses well below the required 10-3 for 
a variety of cases.  These calculations were carried out assum-
ing no errors in the BPM signals but, as we shall show later, 
the results with BPM errors assumed are also acceptable.  For 
two of the seed values, namely 0 and 0.5, the calculations were 
repeated for larger displacement ranges a = 0.5 mm and a = 
1.00 mm.  In both these cases, with a = 1.00 mm, the losses 

exceeded 50% of the beam, but with correction they dropped to 
less than 10-4, as shown in Figure 6.

We therefore conclude that losses caused by orbit devia-
tions due to quadrupole displacement errors are readily correct-
able in the SNS ring.

DIPOLE DISPLACEMENT AND FIELD ERRORS

Let us now consider the effects of dipole displacement 
and field errors.  We define horizontal dipole displacement 
errors to be uniform displacements of the magnet in or out 
along its center line and vertical dipole displacement errors to 
be uniform displacements of the magnet up or down.  By field 
errors, we simply mean changes in the dipole bending field 
strength.  With the symplectic transport models and hard edge 
fringe fields used here, vertical dipole displacements have no 
effect on the beam nor do any of these errors effect the vertical 
motion, so we report the pencil beam results only for horizontal 
motion with horizontal dipole displacement errors and with 
field errors.  The simulations are all performed in the full six 
dimensional phase space.

As with quadrupole displacement errors, we begin our 
study of dipole errors by considering the effects of perturbing 
individual magnets.  Figure 7 shows the maximum deviations 
of the pencil beam orbit for 1 mm displacements of the 8 first 
superperiod individual ring dipoles in the left hand plot and 
for 0.1% field errors of the same dipoles in the right hand plot, 
both without correction and with correction assuming no BPM 
errors.  The simulations lead to the following conclusions: 1) 
the maximum orbit deviations not only demonstrate the four-
fold SNS ring periodicity, but are nearly independent of which 
dipole is perturbed; 2) even without correction the dipole 
displacement and field errors are small, disturbing the orbit by 
about 0.25 mm in the former case and by less than 2 mm in 
the latter; and 3) with correction the orbit deviations are much 
smaller yet, being < 0.2 mm in all cases.

As with the quadrupole displacement errors, the correc-
tion of individual dipole errors localizes the maximum orbit 
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deviation to the vicinity of the magnet having the error.  Figure 
8 shows the BPM signals for eight turns, the first four turns 
without correction and the second four turns following correc-
tion, for a 1 mm displacement of dipole number 4 in the left 
hand plot and for a 0.1% field error in dipole number 4 in the 
right hand plot.  The correction was performed using a pencil 
beam with initial coordinates on the desired closed orbit.  For 
both types of error, the corrected BPM signal shows only tiny 
orbit deviations in the immediate vicinity of the dipole with 
error.  These results were all obtained under the assumption of 
no BPM errors.

An examination of the dipole corrector kick strengths 
obtained in the correction process shows that once again the 
optimization scheme selects the three-bump method.  For each 
individual magnet error, the correction scheme selects the 
adjacent dipole corrector nodes to minimize the BPM signals.  
Outside the region determined by the two activated correctors 
and the magnet with error, the signals are essentially zero.  The 
two dipole corrector kick strengths needed to correct 1 mm dis-

placement and 0.1% field errors are plotted versus ring dipole 
number in Figure 9.  As with the orbit deviations, the required 
kick strengths satisfy the fourfold symmetry of the SNS ring 
lattice.  Comparison with Figure 4 shows that the kick strengths 
required to correct 1 mm quadrupole displacement errors are 
about twice the size of those required to correct 0.1% dipole 
field errors, and about twenty times larger than those required 
to correct 1 mm dipole displacement errors.

Calculations for more realistic situations were carried 
out with randomly assigned sets of dipole errors.  As with the 
random quadrupole errors, the dipole errors were assigned 
from uniform random distributions with –a < error < a.  For 
dipole displacement errors, a was chosen to be 0.25 mm in 
keeping with the SNS specifications and errors assigned for the 
10 random number seeds 0 → 0.9 in intervals of 0.1.  Closed 
orbit calculations showed a worst-case maximum closed orbit 
deviation of 0.9 mm.  A complete beam accumulation calcula-
tion was carried out without correction for this case and losses 
were below the 10-4 level.  The same exercise was performed 
for random dipole field errors with a chosen to be 0.1%, again 
in accord with SNS specifications.  In these calculations, the 
worst-case losses were all below the 10-4 level.  The maximum 
deviations occur in the arcs, rather than in the collimation sec-
tion, where the limiting apertures are found.

SUMMARY AND CONCLUSIONS

As a summary of this work we present the following case: 
we consider a lattice with simultaneous random quadrupole 
displacement errors, random dipole displacement errors, and 
random dipole field errors.  All three sets of errors are assigned 
from uniform distributions with a = 0.25 mm, a = 0.25 mm, 
and a = 0.1%, respectively, in accord with SNS specifications.  
The calculations were performed for a number of different seed 
values, and we present the worst-case results here.

Figure 10 shows the horizontal and vertical moments of 
the standard pencil beam taken over eight turns.  The left hand 

-10

-5

0

5

10

0 200 400 600 800 1000 1200 1400 1600

]
m

m[ tne
mo

M elopi
D

Lattice Elements Traversed

Three-Bump Dipole Correction of Random Errors in All Magnets, No BPM Errors

X Moment
Y Moment

-10

-5

0

5

10

0 200 400 600 800 1000 1200 1400 1600

]
m

m[ tne
mo

M elopi
D

Lattice Elements Traversed

Three-Bump Dipole Correction of Random Errors in All Magnets, With BPM Errors

X Moment
Y Moment

Figure 10.  Three-bump correction scheme for random quadrupole displacement, dipole displacement, and dipole field errors.  Horizontal and vertical dipole mo-
ments are shown for 8 turns.  The first four turns are without correction, while the last four turns are with correction.  The left hand plot was calculated assuming 
no errors in the BPM signals, while the right hand plot was calculated with BPM errors.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

500 600 700 800 900 1000

ssoL 
mae

B la noitcarF

Turns

Beam Losses With Errors

Figure 11.  Fractional beam loss versus time (turn number) for full beam 
accumulation with no error correction at 1.44 MW.



U.S. Department of Energy Journal of Undergraduate Research   35

http://www.scied.science.doe.gov

plot was calculated without BPM errors, and the right hand plot 
includes BPM errors.  In the first four turns the magnet errors 
are uncorrected and the vertical and horizontal moments are 
seen to peak at values of 11 mm; while in the last four turns 
the corrected moments are much less than 1 mm without BPM 
errors and never exceed about 1 mm, even with BPM errors.  
The inclusion of BPM errors adds a little noise to the corrected 
moments but the overall effect is minor.

Figure 11 shows the fractional beam loss versus turn 
number for the full beam accumulation without error correction 
at 1.44 MW.  Without any error correction, the fractional beam 
loss of this worst case exceeds 15%.  In contrast, with correc-
tion fractional losses are less than 10-4 whether BPM errors are 
assumed or not.  We find this result for many cases, namely, 
that BPM signal errors at the anticipated level do not seriously 
affect the correction scheme.  

A final comment is in order regarding the adequacy of the 
dipole corrector strengths required for correction.  In all cases 
examined here, the maximum required kick strengths were less 
than 0.3 milliradians change in the orbit angle.  Because the 
dipole correctors are capable of kicks in excess of 0.5 mil-
liradians, the corrections are well within the capabilities of 
the system.  Thus, the proposed SNS orbit correction system, 
consisting of 88 BPMs and 52 dipole corrector magnets, is 
sufficient to correct the closed orbit-deflecting magnet errors 
studied here to the required level.

In summary, we have considered the effect and correction 
of three types of orbit-deflecting errors in SNS: quadrupole 
displacement errors, dipole displacement errors, and dipole 
field errors.  Of these, the quadrupole displacement errors show 
the greatest severity at the anticipated level, followed by dipole 
field errors and finally by dipole displacement errors, both with 
respect to orbit deflections and to beam losses.  The dipole 
field and displacement errors lead to small orbit deflections 
and also fail to induce significant losses.  We study the correc-
tion of these orbit-deflecting errors using the proposed system 
of 88 ring BPMs and 52 dipole corrector magnets.  Correction 
is carried out numerically in the ORBIT code using VMCON 
to adjust the kick strengths of the dipole corrector magnets to 
minimize the sum of the squares of the BPM signals.  In future 
work we will present this minimization using an orbit response 
matrix technique.  For all three types of error and perturbations 
of individual magnets, the correction algorithm always chooses 
the three-bump method to localize the orbit displacement to the 
region between the magnet and its adjacent correctors and to 
reduce the maximum orbit deflection.  If we also consider the 
effect of errors in the BPM signals, we find that the three-bump 
scheme becomes imperfect, with some activation of nonadja-
cent corrector magnets and some noise in the orbit deflection 
signal outside the three-bump vicinity.  At the anticipated BPM 
uncertainty level these effects are small.  The dipole corrector 
kick strengths obtained from correction of known errors can 
be used to set up a matrix which can be multiplied by arbitrary 
sets of magnet errors to obtain sets of kicks that agree closely 
with those obtained directly from the optimizer for those errors.  
When high intensity calculations are carried out to study beam 

losses, it is seen that the SNS orbit correction system, even 
with BPM uncertainties, is sufficient to correct losses to less 
than 10-4 in nearly all cases, even those for which uncorrected 
losses constitute a large portion of the beam.
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