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Abstract

We compare several methods for sensitivity analysis of differential–algebraic equations (DAEs). Computational
complexity, efficiency and numerical conditioning issues are discussed. Numerical results for a chemical kinetics
problem arising in model reduction are presented. 2000 IMACS. Published by Elsevier Science B.V. All rights
reserved.
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1. Introduction

Sensitivity analysis of large-scale differential–algebraic systems is important in many engineering
and scientific applications, such as chemical, mechanical and electrical engineering and economics.
Sensitivity analysis generates essential information for parameter estimation, optimization, control,
model simplification and experimental design. Consequently, algorithms which perform such an analysis
in an efficient and rapid manner are invaluable to researchers in many fields.

Usually, the DAE and sensitivity systems are solved in sequence, taking into account the linearity of
the sensitivity equations. These methods are so-calledstaggered direct methods[3,5,7,9,11,17]. On each
time step, first the state variables of the DAE system are computed by the nonlinear corrector step and
then the linear sensitivity system is solved directly. This method is sometimes considered to be inefficient
because it needs to evaluate and factor the Jacobian matrix at each step, which is often the most costly
part of the computation. However, as we will point out later, for some special problems, this may not
be the case. We will also see that for problems with an ill-conditioned iteration matrix, the original
implementation [3] of the method can be unreliable.
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Another class of methods is the so calledsimultaneous correctormethod of Maly and Petzold [13].
In this method the state variables and the sensitivity variables are solved simultaneously in the nonlinear
corrector step. In many cases, this method can be as efficient as the staggered corrector method which
we will talk about later, because it evaluates and factors the Jacobian matrix only when necessary.

Most recently, a new method has been proposed by Feehery and Barton [6]. This method is called
the staggered correctormethod. It is similar to the staggered direct method. The important difference
is that instead of using the factorization of the Jacobian matrix computed at the current step directly to
solve the linear sensitivity equations, it uses the factorization of the Jacobian matrix at some past step
and Newton iteration to solve the linear sensitivity system. Thus, it saves on the number of factorizations
of the Jacobian matrix, which can be the most expensive part of the computation for large problems.

There has often been a tacit assumption in the sensitivity analysis literature that the size of the DAE
system is much larger than the number of sensitivity parameters. However, in some optimization and
optimal control problems the number of optimization parameters, i.e., sensitivity parameters, can be
much larger than the number of equations in the DAE system [15,16].

In this paper, we focus on a class of application problems where the size of the original DAE system
is moderate but there are many sensitivity parameters. Our newly-designed software DASPK3.0 [12] for
solving DAEs and their sensitivities is used in all of our examples. Although one integration of the system
is not costly, in a design optimization the original and sensitivity systems will be integrated many times.
Thus, efficiency is a very important issue. We will compare the existing sensitivity analysis methods.
Besides efficiency, numerical stability is also an important consideration.

In [6,12], the simultaneous and/or staggered corrector methods were compared with the staggered
direct method. It was concluded that both of the corrector methods were more efficient than the staggered
direct method, and the staggered corrector method is slightly more efficient than the simultaneous
corrector method for most problems. However, if the cost of a function evaluation is more than the cost
of factorization of the Jacobian matrix (e.g., for the chemical kinetic problem considered in Section 3),
the staggered direct method [3] can be more efficient, although it may fail for an ill-conditioned problem.
In this paper we describe how to modify the implementation of the staggered direct method of [3] so that
it is as reliable for ill-conditioned problems as the staggered corrector method.

In either of the previous generation of DASSL-based solvers (DASSL, DASPK or their sensitivity
analysis solvers DASSLSO [13] and DASPKSO), finite differencing (forward or central) is chosen as the
default method to evaluate the Jacobian matrix for the direct method, the matrix–vector product in the
Krylov iteration, and the residuals for the sensitivity equations in case exact input is not available. For
most well-scaled and smooth problems, the results using finite differencing are nearly as good as for exact
input. However, for some badly-scaled problems, finite-differencing cannot get accurate results for the
sensitivities. For some strongly nonlinear problems, exact input of the Jacobian in the direct method can
greatly improve the accuracy and efficiency. The automatic differentiation tool ADIFOR [1] can generate
a subroutine to compute the Jacobian matrix and/or the sensitivity equations with accuracy up to round-
off error. In our experience, ADIFOR-generated derivative code usually outperforms divided-difference
approximations. In DASPK3.0 [12], we provide an option to use ADIFOR to compute the derivatives.
We embed the ADIFOR-generated routine in such a way that the previous user interface is not altered
very much.
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1.1. Sensitivity analysis problem

To illustrate the basic approach for sensitivity analysis, consider the general DAE system with
parameters,

F
(
t, y, y′,p

)= 0, y(0)= y0, (1)

wherey ∈Rny , p ∈Rnp . Here,ny andnp are the dimension and the number of parameters in the original
DAE system, respectively. Sensitivity analysis entails finding the derivative of the above system with
respect to each parameter. This produces an additionalns = np · ny sensitivity equations which, together
with the original system, yields

F
(
t, y, y′,p

)= 0, (2)

∂F

∂y
si + ∂F

∂y′
s′i +

∂F

∂pi
= 0, i = 1, . . . , np, (3)

where si = ∂y/∂pi . There are three well-established direct methods to solve the system (3) as we
mentioned before. Other methods such as the Green’s function method will not be discussed here.

In the following discussion, we assume that the basic algorithm for the DAE problem (1) is DASSL
[2]. For each time step, a predictor polynomial that interpolates the solution at previous time steps is used
to obtain an initial guessy(0)n+1 andy′(0)n+1. Then a modified Newton iteration is used to solve the corrector
formula foryn+1. DASSL uses the fixed leading coefficient form of thekth order BDF formula for the
corrector [2]. For all three sensitivity methods, the predictor step for the sensitivity equations is the same
but the corrector formula is solved in different ways which we will describe in detail.

There are two ways of using ADIFOR to generate the sensitivity residuals (3); we will investigate both
of them. The first way is to generate the matrix–vector products in (3) directly (without computing the
Jacobian on each time step) via the seed-matrix option of ADIFOR. The second possibility is to form the
Jacobian matrices via ADIFOR and then to multiply by the vector in (3). We will call this thematrix
times vector method.

1.2. Simultaneous corrector method

DefiningY = [y, s1, . . . , snp ]T and

F =
[
F
(
t, y, y′,p

)
,
∂F

∂y
s1+ ∂F

∂y′
s′1+

∂F

∂p1
, . . . ,

∂F

∂y
snp +

∂F

∂y′
s′np +

∂F

∂pnp

]T

,

the combined system can be rewritten

F
(
t, Y, Y ′,p

)= 0, Y (0)=



y0

∂y0

∂p1
...

∂y0

∂pnp


. (4)
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The simultaneous corrector method solves (4) as one nonlinear dynamic system without making use of
the linearity of the sensitivity equations and the fact that the linear sensiti vity equations can be obtained
exactly after solving for the state variables.

Approximating the solution to the combined system by a numerical method, for example, thekth order
BDF formula with step sizehn+1, yields the nonlinear system for the corrector iteration

G(Yn+1)= F
(
tn+1, Yn+1, Y

′(0)
n+1−

αs

hn+1

(
Yn+1− Y (0)n+1

)
,p

)
= 0 (5)

for Yn+1, whereY (0)n+1 andY
′(0)
n+1 are predictor values ofYn+1 andY ′n+1, which are obtained via interpolation

of previous solution values [2]. Also,αs is the fixed leading coefficient which is defined in [2] and is not
important to our discussion here.

Newton’s method for the nonlinear system produces the iteration

Y
(k+1)
n+1 = Y (k)n+1− J−1G

(
Y
(k)
n+1

)
, (6)

where

J =


J

J1 J

J2 0 J
...

...
...

. . .

Jnp 0 . . . 0 J

 , (7)

J = α ∂F
∂y′
+ ∂F
∂y
, Ji = ∂J

∂y
si + ∂J

∂pi
and α =−αs/hn+1.

In the direct option of DASPK3.0, the full Jacobian matrixJ is not actually computed. Instead, it is
approximated by its block diagonal in the Newton iteration. It has been shown in [13] that the resulting
iteration is two-step quadratically convergent for full Newton, and convergent for modified Newton
iteration.

We assume here that all first order partial derivatives can be obtained analytically via the automatic
differentiation software ADIFOR. Thus the Jacobian matrixJ and sensitivity equations are obtained
analytically without using the finite difference method, which can be unreliable in some circumstances.

In the simultaneous corrector method, the Jacobian matrixJ is evaluated and factored only when the
current version does not converge or is expected to not converge the Newton iteration. However, this is at
the cost of having a Jacobian matrixJ which is complex and which is approximated by its block diagonal
part. This approximation may increase the number of Newton iterations needed to converge.

By using the seed-matrix option of ADIFOR, the simultaneous corrector method can avoid computing
the full Jacobian matrix and hence save computation when there are just a few parameters. Even though
the Jacobian matrix is not evaluated on each step, the sensitivity equations are obtained implicitly using
the recently evaluated Jacobian matrix at the latest Newton iteration. This ensures the accuracy of the
sensitivity equations.

1.3. Staggered direct method

Noting that the differential equations for the state variables are independent of the sensitivity variables,
the staggered direct method first solves the differential equations for the state variables at each time step.
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After the Newton iteration for the state variables has converged, the coefficient matrices of the
sensitivity equations are obtained at the current step. This requires updating the Jacobian matrix every
time step. In this way the sensitivity equations are obtained exactly at each step. The linear sensitivity
equations are discretized with the same numerical scheme as the state variables. For example, using the
kth order BDF method with step-sizehn+1 as before, we solve, for theith parameter,

∂F

∂y′n+1

(
s
′(0)
i(n+1)
− αs

hn+1

(
si(n+1) − s(0)i(n+1)

))+ ∂F

∂yn+1
si(n+1) +

∂F

∂pi
= 0, (8)

for si(n+1) .
Because (8) is linear, it can be solved forsi(n+1) directly without using Newton iteration

J si(n+1) =
(
− ∂F

∂y′n+1
βi − ∂F

∂pi

)
, (9)

whereβi = s′(0)i(n+1)
− αs(0)i(n+1)

. However, to solve the linear system in this way requires computation and
factorization of the Jacobian matrix at each step and also extra storage for the matrix∂F/∂y′n+1.

1

Moreover, this implementation may fail when the matrixJ is ill-conditioned, which happened in our
examples in Section 3. This is because the right-hand side of Eq. (9) can be very large and can introduce
large round-off errors whenJ is ill-conditioned, and the large round-off errors can cause the error tests
in ODE/DAE solvers to fail.

To handle ill-conditioned problems, we propose the following modification. Rather than solving (9)
directly, instead solve

Jδ = J s(0)i(n+1)
+ ∂F

∂y′n+1
β + ∂F

∂pi
, (10)

whereδ = s(0)i(n+1)
− si(n+1) . The right-hand side of (10) is easy to obtain by the function evaluations of the

sensitivity equations. It does not require any extra storage and special handling. What is important is that
the right-hand side now becomes much smaller than that of Eq. (9), and the round-off error will be much
reduced.

We note that in practice, the Jacobian matrix is evaluated using the predicted values of the state
variablesy andy′ and then factored. This new Jacobian is then used in the Newton iterations for the
state variables and in forming the sensitivity equations. Since the order of the predictor is the same as
the corrector, the Jacobian matrix evaluated at the predicted values is an accurate approximation to the
Jacobian evaluated after the corrector step. In this way the sensitivity equations are obtained accurately
and also the Jacobian is always current for the Newton iterations for the state variables. Thus there are
fewer Newton iterations for the state variables for problems with a rapidly changing Jacobian matrix.

1 Alternatively, the seed-matrix option of ADIFOR2.0 can also be used to obtain the matrix–vector product(∂F/∂y′
n+1)βi to

improve the efficiency and avoid the storing of∂F/∂y′n+1.
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1.4. Staggered corrector method

The staggered corrector method is similar to the staggered direct method. However, instead of solving
the linear system (8) directly, a Newton iteration is used:

s
(k+1)
i(n+1)
= s(k)i(n+1)

− Ĵ−1
(
J s

(k)
i(n+1)
+ ∂F

∂y′n+1
βi + ∂F

∂pi

)
, (11)

where Ĵ may be a factored Jacobian matrix which is saved from a past step and used in the Newton
iteration for the state variables, whileJ is the current unfactored Jacobian. The updated Jacobian will be
factored if the current version can not converge the Newton iteration. Using this method, an extra copy
of the unfactored updated JacobianJ should be stored for computing the residuals in later iterations as
in [6]. However, as in the simultaneous corrector method, we can use the seed-matrix option of ADIFOR
to avoid evaluating the Jacobian and matrix–vector product, thus the Jacobian matrix is evaluated and
factored only when necessary. This can substantially improve the efficiency of the staggered corrector
method when there are just a few parameters and/or the function evaluation is not costly. However, in
the case of a large number of parameters and costly function evaluation, evaluating the Jacobian first and
then computing the sensitivity equations via the matrix times vector method may be more efficient. We
will give an analysis in the next section.

2. Comparison of the methods

A comprehensive comparison of these methods is difficult if not impossible. Since we are interested
in the differences between the methods, we will focus on their computational complexity and numerical
performance for a particular class of problems from chemical kinetics. We will assume that all of the
derivatives are computed analytically, to simplify the comparison. In all three methods, only first order
derivatives are actually used.

2.1. Computational complexity

We consider the computational complexity of these three methods at each time step. The total number
of time steps these methods take differs from problem to problem; we will discuss this later.

The only differences between these three methods are how the Jacobian matrices are updated and
factored and how the sensitivity equations are obtained. We mainly consider using the seed-matrix option
of ADIFOR2.0. However, the order of the total cost for both the seed-matrix and matrix times vector
methods turns out to be similar as we will see later.

As in [6], we first introduce in Table 1 some notation for costs to facilitate our discussion. We useClin

to denote the cost for solving the linear system of sizeny .
For the simultaneous corrector method, suppose that the Jacobian is evaluated and factored everyNl

steps and the number of Newton iterations for the state variables and sensitivity variables are the same:
Nit0. The natural choice for evaluating the sensitivity equations is the seed-matrix option of ADIFOR. At
each step the cost for this computation is

CSimCor= Ceval+Cfac

Nl
+Nit0(Clin)+Nit0(npClin +Cseed+Cpar). (12)
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Table 1
Notation for costs

Cfun residual evaluation forF

Cpar evaluation of[∂F/∂p1, . . . , ∂F/∂pnp ]
Cfac factorization of Jacobian matrixJ

Ceval evaluation of Jacobian matrixJ

Cmvp matrix times vector ofJ and[s1, . . . , snp ]
Cseed seed-matrix option forJ × [s1, . . . , snp ]
Clin solving the linear system using back-substitution

The matrix times vector method is not a good choice for the simultaneous corrector method because it
requires the matrix evaluation at each Newton iteration.

Since the Jacobian is updated and factored every step and no iteration is used when solving the linear
system, the cost for the staggered direct method is

CStaDir= Ceval+Cfac+Nit1(Clin +Cfun)+ npClin +Cseed+Cpar, (13)

whereNit1 is the number of Newton iteration only for state variables with an updated and factored
Jacobian at every time step. For this method, the matrix–vector product method for evaluating sensitivity
equations makes sense and theCseedterm in the above cost formula can be replaced byCmvp to obtain
the cost using the matrix times vector method, which yields

CStaDir2= Ceval+Cfac+Nit1(Clin +Cfun)+ npClin +Cmvp+Cpar. (14)

Suppose that the frequency of factoring the Jacobian for the staggered corrector method is the same
as for the simultaneous corrector method, and the number of Newton iterations for the state variables
and sensitivity variables areNit2 andNit3, respectively. Since∂F/∂pi is computed only once and will be
saved for later iterations, the cost of the staggered corrector method is

CStaCor1= Ceval+Cfac

Nl
+Nit2(Clin +Cfun)+Nit3(npClin +Cseed)+Cpar. (15)

For this method, if the matrix times vector method is used to evaluate the sensitivity equations, the
Jacobian will be computed at every step and the cost will be

CStaCor2= Ceval+ Cfac

Nl
+Nit2(Clin +Cfun)+Nit3(npClin +Cmvp)+Cpar. (16)

Note that we distinguish the number of Newton iterations for each method with different subscripts.
For a general problem, their relationship usually satisfiesNit1 6max(Nit2,Nit3)6Nit0.

2.2. Efficiency

From the computational complexity of the three methods we can see that the simultaneous corrector
method will be nearly as efficient as the staggered corrector method for problems whereCeval andCfac

dominate the costs, i.e., whenny � np, if the seed matrix option is used. The main extra cost for the
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simultaneous method is that it needs to compute∂F/∂pi at every nonlinear iteration. This extra cost
can be eliminated by using the values obtained at the predictor, which will not affect the accuracy of
the solution. Another consideration is that, as pointed out in [6], when the old Jacobian matrix can not
converge the Newton iteration or the error test is not satisfied with the current step size, only the work
on the state variables is wasted for the staggered corrector method, whereas the simultaneous corrector
method will waste more work on the sensitivity variables.

To compare the costs of (15) and (16), we consider the problem of evaluating the JacobianJ of a
vector functionF with respect to ann vector of variablesy. Suppose that∂F/∂p is also evaluated by
ADIFOR. The cost of evaluatingJ is related toCfun by

Ceval' a · n ·Cfun,

wherea = 3 for the basic forward mode of automatic differentiation. If only a product of the Jacobian
with some vectorp is required, the cost ofJ · p is

COST(J · p)' a ·Cfun.

If the sparse forward mode (with SparsLinC option) is used in automatic differentiation, the cost satisfies

Ceval' a · n′ ·Cfun,

wheren′ is the maximum number of nonzero entries in any row of the Jacobian. Suppose the average
number of nonlinear iterations isni , and the number of sensitivity parameters isnp. Then the cost of
ADIFOR with the seed matrix option includesnp matrix–vector products for each nonlinear iteration.
The total cost can be approximated by

ninp · a1 ·Cfun.

The cost of direct evaluation by the matrix times vector method includes the cost of evaluation of the
Jacobian and the two matrix times vector operations, which is

a2
(
m′ + n′p

) ·Cfun+ ninpm′n,
wherem′ and n′p are the maximum number of nonzero entries in any row of the Jacobian (∂F/∂y,
∂F/∂y′), and (∂F/∂p), respectively. We usea1 anda2 here to distinguish the coefficients for two different
approaches becausea1 is usually much larger thana2. The matrix times vector method is better when(

m′ + n′p
)
a2 ·Cfun+ ninpm′n < ninpa1 ·Cfun,

which results in

np >
(m′ + n′p)a2

nia1
, (17)

and

Cfun>
ninpm

′n
ninpa1− (m′ + n′p)a2

. (18)

Eqs. (17) and (18) imply two conditions for the matrix times vector method to be advantageous over the
seed matrix option. Firstnp must be large enough. For example, ifa1 = a2, n′p = np, andni = 2, then
np >m

′, which means the number of sensitivity parameters must be larger than the maximum number of
nonzero entries in any row of the Jacobian (∂F/∂y, ∂F/∂y′). The second condition is that the evaluation
of the functionF must be costly enough, which is defined by (18).
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Since the Jacobian is updated at each time step for the staggered direct method, the matrix times vector
method should be better than the seed-matrix option in ADIFOR if the function evaluation is expensive.
There is the possibility that the staggered direct method can perform better than the other two methods.
Comparing Eqs. (14) and (16), we find that if

Cfac

(
1− 1

Nl

)
< (Nit3 − 1)(npClin +Cmvp), (19)

then the staggered direct method is better than the staggered corrector method with the matrix times
vector option. Suppose the half bandwidth of the Jacobian isnb,

Cfac' 2nyn
2
b, Clin ' 2nynb, Cmvp' 2npnynb. (20)

After substituting (20) into (19), we obtain

2(Nit3 − 1)np > (1− 1/Nl)nb. (21)

Eq. (21) implies that the number of Newton iterations for the sensitivity variables (Nit3) must be larger
than 1, and the number of parametersnp must be large enough. This situation does occur in a class of
model reduction problems [16] as we will see later.

Our numerical experiments with a class of chemical model reduction problems indicate that the
staggered corrector method has fewer nonlinear iteration failures and more error test failures than the
simultaneous corrector method. The reason for fewer nonlinear iteration failures is that with the staggered
corrector method, when the state variables can be solved without trouble, so can the sensitivity variables:
a Newton iteration failure for the sensitivity variables usually occurs when the Jacobian is out of date and
once an updated factorization of the Jacobian matrix is obtained, there will usually be no Newton iteration
failure for the sensitivity variables. The reason for more error test failures is not fully understood.

3. Numerical experiments

In this section we compare the numerical performance of the three methods using a chemical model
reduction problem [16] as an example. In this problem, an optimization method is used to reduce the
number of reactions in the original chemical mechanism to obtain a reduced mechanism which can
approximate the important features of the original mechanism accurately. This aids in understanding of
the original mechanism; also the reduced mechanism can be used in place of the original one in later
computations to save computational work. A norm, which is chosen according to the future use of the
reduced mechanism, is to be minimized by the optimizer. The gradient information about the norm,
needed in the optimization, is obtained via sensitivity analysis of the differential equations defining the
norm.

The species concentrations and temperature can be described by a system of ordinary differential
equations

y′ =
N∑
r=1

SrFr(y), y(0)= y0, (22)

wherey is the vector of species concentrations and temperature, andSr ∈ Rn is the stoichiometric vector
for reactionr . Heren is the dimension ofy, N is the number of reactions in the original mechanism and
Fr(y) is the reaction rate of reactionr .



170 S. Li et al. / Applied Numerical Mathematics 32 (2000) 161–174

Thus the optimization problem is to find a set of parametersdi = 0 or 1, i = 1, . . . ,N which defines
the approximate system

z′ =
N∑
r=1

SrdrFr(z), z(0)= y0, (23)

and makes the error norm||y− z|| as small as possible. A reaction is kept in the reduced mechanism if its
corresponding parameter is 1 and it is deleted from the original mechanism if the value of the parameter
is 0. To achieve a reduction of the number of reactions, we also require

∑N
r=1dr = k�N .

We can see from the definition of the optimization problem that the number of optimization parameters
is much larger than the number of ODEs. This is due to the fact that the number of reactions in a chemical
mechanism is usually much larger than the number of species.

3.1. Example 1

The first numerical experiments are done on an already reduced chemical mechanism which is obtained
from the Exxon model [14] which contains 116 species and 447 reversible reactions. The reduced
model contains 45 species and 79 reactions. We try to reduce this model further. This is a relatively
small problem. The sensitivity analysis results are listed below. Details about the dynamic system and
parameter values are omitted. The number of state variables in this problem is 46, and the number of
parameters is 54. The residual function is highly nonlinear and very expensive to evaluate.

We first introduce some notation in Table 2 for different methods. In the following tables, the nonlinear
iterations for the simultaneous corrector methods are counted for state variables and sensitivity variables
together, since in this method the Newton iteration is performed on these variables simultaneously. For
the staggered corrector methods, since separate Newton iterations are used for the state and sensitivity
variables, the nonlinear iterations are counted separately (“Non. iter.” is used for state variables and “Non.
iter. SA” is used for sensitivity variables). All of the computations are performed on a Linux86 PC with
450 MHz CPU.

In Table 3, the staggered corrector methods and the simultaneous methods have a few more nonlinear
iteration failures or error test failures than the staggered direct methods. This results in more time steps
for these two methods. However, since the number of parameters is very small, the gain from fewer
Jacobian evaluations and factorizations for these two methods with the seed matrix option is more than
the loss from more time steps. But we will see that this is only the case when the number of parameters
is small compared with the size of the original system.

Table 2
Notation for different methods

SDS Staggered direct method with seed-matrix option

SDM Staggered direct method with matrix–vector product

STCS Staggered corrector method with seed matrix option

STCM Staggered corrector method with matrix–vector product

SICS Simultaneous corrector method with seed-matrix option
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In this example, the staggered corrector and simultaneous corrector methods with the seed-matrix
option are better than the matrix times vector method. This is due to the fact that the number of sensitivity
parameters is just one. Note that the simultaneous corrector method has more convergence test failures
than other methods. These convergence test failures generate more nonlinear iterations. However, it is
comparable in efficiency with the staggered corrector method.

In Table 4, we show the results for a sensitivity analysis with 54 parameters. We can see that the seed-
matrix option is no longer better than the matrix times vector methods. This is because the number of
parameters (54) is larger than the number of equations (46). The staggered direct method is more efficient
than the staggered corrector methods for this example. This is because the cost of function evaluations
dominates that of Jacobian evaluations and factorizations for this example.

Table 3
Example 1. Sensitivity analysis results for one parameter

Methods SDS SDM STCS STCM SICS

Time steps 583 648 982 1006 916

Jac. eva. 592 657 86 85 135

Jac. fac. 592 657 86 1091 135

Err. fail. 9 9 44 39 40

Non. iter. 1181 1310 1397 1392 1572

Non. iter. SA 588 655 1358 1333 1572

Non. it. fail. 0 0 0 0 12

CPU sec. 10.26 9.5 4.4 15.60 4.51

Table 4
Example 1. Sensitivity analysis results for 54 parameters

Methods SDS SDM SDM2∗ STCS STCM SICS

Time steps 984 1020 6549 1641 1665 1713

Jac. eva. 992 1025 9792 105 1770 106

Jac. fac. 992 1025 9792 105 105 106

Err. fail. 8 5 3243 48 46 30

Non. iter. 1611 1653 13900 2011 2032 2532

Non. iter. SA 992 1025 9792 2198 2214 2532

Non. it. fail. 0 0 0 1 1 2

CPU sec. 46.04 29.59 257.41 66.91 52.67 74.33

∗The SDM2 represents the original staggered direct method of [3] with matrix times vector
method. The output time is 0.0093 for SDM2 and 1.0 for the others.
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We should point out that this problem is ill-conditioned. The original implementation (SDM2 in
Table 4) of the staggered direct method [3] took excessively small steps (about 10−6) and we stopped
the integration at time 0.0093. We noticed that SDM2 had a larger number of error test failures and
Jacobian factorizations. We also compared the solutions at this time point and found that the solution
given by SDM2 was similar to those of the other methods but with largest relative error.

3.2. Example 2

A similar experiment on the original Exxon model has also been done. In this example, there are about
117 equations in the original DAE system and about 447 sensitivity parameters.

From Table 5, we can see that the performance of the staggered direct qmethod with two different
options is almost the same. However, for the staggered corrector method, the seed matrix option is much
more efficient than the matrix times vector option, and is even more efficient than the staggered direct
method. This is because we have only one sensitivity parameter. It may not be true after we increase
the number of parameters, as we will see in the next table. We also note that the simultaneous corrector
method is as efficient as the staggered corrector method when the seed matrix option is chosen.

Comparing the results in Table 6, we find that the matrix times vector method is much more efficient
than the seed matrix option, in contrast to the results of Table 5. We note that the test problems here
have the property that the number of differential equations for the state variables is not very large and the
function evaluation is very expensive. Thus the cost of the Jacobian evaluation and matrix factorization
does not dominate. The condition (18) is satisfied. The other reason why the matrix times vector method
is better for this example is that the number of sensitivity parameters (= 447) is much larger than the
number of equations (= 117) and the condition (17) is satisfied. Since both conditions are satisfied, the
matrix times vector method should be more efficient than the seed matrix option according to our analysis
in Section 2.2.

As in example 1, this problem cannot be solved effectively by the original staggered direct method [3].

Table 5
Example 2. Sensitivity analysis results for one parameter

Methods SDS SDM STCS STCM SICS

Time steps 840 879 1306 1611 1079

Jac. eva. 848 889 98 1713 91

Jac. fac. 848 889 98 102 91

Err. fail. 6 8 25 35 24

Non. iter. 1380 1436 1691 2019 1699

Non. iter. SA 846 887 1843 2214 1699

Non. it. fail. 2 2 2 2 2

CPU sec. 176.94 184.81 59.09 333.65 42.46
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Table 6
Example 2. Sensitivity analysis results for 447 parameters

Methods SDS SDM STCS STCM SICS

Time steps 998 997 1692 1594 1581

Jac. eva. 1006 1004 101 1712 77

Jac. fac. 1006 1004 101 118 77

Err. fail. 6 5 33 35 12

Non. iter. 1142 1492 1988 1919 2412

Non. iter. SA 1004 1002 2357 2261 2412

Non. it. fail. 2 2 2 2 2

CPU sec. 3494.69 782.47 7506.32 1502.56 7282.20

4. Conclusion

In this paper, we compared the complexity and efficiency of three sensitivity analysis methods on
a special class of problems. We found that the simultaneous corrector method can be made nearly as
efficient as the staggered corrector method with the seed-matrix option of ADIFOR, provided that the
diagonal approximation of the full Jacobian converges the Newton iteration well, which happens for most
problems.

We found that for problems with an ill-conditioned iteration matrix, the original implementation [3] of
the staggered direct method can be unreliable. However, the modified staggered direct method is efficient
and reliable for problems which have a large number of sensitivity parameters and a very costly function
evaluation that dominates the cost of the Jacobian factorization, or for problems with a rapidly changing
iteration matrix.

For evaluation of the sensitivity equations, the matrix times vector method is more efficient than the
seed matrix option of ADIFOR when the two requirements (17) and (18) we proposed are satisfied.
Roughly speaking, this will be the case for problems with costly function evaluations and a number of
sensitivity parameters which is large relative to the maximum number of nonzero entries in any row of the
Jacobian. Because the relative efficiencies of the sensitivity analysis methods are so problem-dependent,
we have included all of the methods as options in DASPK3.0. Based on our overall experience, here are
our recommendations. For problems with few parameters, use the staggered corrector or simultaneous
corrector method with the seed-matrix option. For problems with many parameters, the staggered direct
or staggered corrector method with the matrix times vector option will often be the best choice.
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