

Study of Interaction of Heavy Quarks with Nuclear Matter in CuCu at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Miroslav Krůs for STAR collaboration FNSPE CTU, Prague NPI AS CR Řež

MOTIVATION

→ conical pattern in hadron – hadron correlations in Au+Au collisions at 200 GeV

MOTIVATION

→ conical pattern in hadron – hadron correlations in Au+Au collisions at 200 GeV

Question: Does heavy quark induce similar effect?

 \rightarrow Barrel Electro-Magnetic Calorimeter (BEMC \rightarrow deposited energy)

 \rightarrow Barrel Shower Maximum Detector (BSMD \rightarrow e-m shower area)

11/13/2008

(after QA selection)

PHOTONIC ELECTRON BACKGROUND

need to be subtracted

- \rightarrow photon conversion $\gamma \rightarrow e^+e^-$
- → π^0 Dalitz decay $\pi^0 \longrightarrow \gamma e^+e^-$ → η Dalitz decay η → γe^+e^-
- **>** kaon decay $K \rightarrow \pi^0$ ve
- \rightarrow vector meson decays ρ^0 , ω , $\varphi \longrightarrow e^+e^-$

 \rightarrow photonic reconstruction efficiency: 65%

 \rightarrow determined from embedded π^0 in real data

PHOTONIC ELECTRON BACKGROUND

need to be subtracted

- → photon conversion $\gamma \longrightarrow e^+e^-$ → π^0 Dalitz decay $\pi^0 \longrightarrow \gamma e^+e^-$
- \rightarrow η Dalitz decay $\eta \rightarrow \gamma e^+e^-$
- \rightarrow kaon decay $K \rightarrow \pi^0$ ve
- \rightarrow vector meson decays ρ^0 , ω , $\varphi \longrightarrow e^+e^-$

→ photonic reconstruction efficiency ε : 65% → detemined from embedded π^0 in real data

e⁺e⁺ & e⁻e⁻

NONPHOTONIC ELECTRON-HADRON AZIMUTHAL CORRELATIONS > 3 GeV/c: electron approx

NONPHOTONIC ELECTRON-HADRON AZIMUTHAL CORRELATIONS \overline{v} $p_T > 3$ GeV/c: electron approx in direction of mother D meson \mathbf{D}_{0} accesses accesses Ċ 20000000000

 π^+

Nonphotonic electron-hadron AZIMUTHAL CORRELATIONS e K+ \overline{v} $p_T > 3$ GeV/c: electron approx trigger (p_T : 3 – 6 GeV/c) in direction of mother D meson \mathbf{D}_{0} accesses accesses 20000000000 π^+ iroslav Krůs, PANIC 2008, Eilat, Israel 11/13/2008 6/13

NONPHOTONIC ELECTRON-HADRON AZIMUTHAL CORRELATIONS

NONPHOTONIC ELECTRON-HADRON AZIMUTHAL CORRELATIONS

NONPHOTONIC ELECTRON-HADRON AZIMUTHAL CORRELATIONS

Nonphotonic electron-hadron

CORRELATIONS EXTRACTION PROCEDURE

Nonphotonic electron-hadron

CORRELATIONS EXTRACTION PROCEDURE

Nonphotonic electron-hadron

CORRELATIONS EXTRACTION PROCEDURE

 $\Delta \Phi_{\text{non-photo}} = \Delta \Phi_{\text{semi-incl}} + \Delta \Phi_{\text{Same Sign}} - (1/\epsilon - 1) \times (\Delta \Phi_{\text{Opp Sign}} - \Delta \Phi_{\text{Same Sign}})$

Nonphotonic electron – hadron correlations in CuCu collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

Miroslav Krůs, PANIC 2008, Eilat, Israel

NONPHOTONIC ELECTRON-HADRON

CORRELATIONS EXTRACTION PROCEDURE II

 $\Delta \Phi_{\text{non-photo}} = \Delta \Phi_{\text{incl}} - \frac{1}{\epsilon} \times (\Delta \Phi_{\text{Opp Sign}} - \Delta \Phi_{\text{Same Sign}})$

→ Photonic sample included in Inclusive sample → correlated quantities and errors

Nonphotonic electron – hadron correlations in CuCu collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$

NONPHOTONIC ELECTRON – HADRON CORRELATIONS

SUMMARY & CONCLUSION

→ nonphotonic electron – hadron correlations in Cu+Cu 200 GeV extracted

→ two independent analysis performed

within large statistical uncertainties results suggest possible modification of away- side peak similar to hadron – hadron correlations & electron – hadron correlations in Au+Au

SUMMARY & CONCLUSION

→ nonphotonic electron – hadron correlations in Cu+Cu 200 GeV extracted

→ two independent analysis performed

within large statistical uncertainties results suggest possible modification of away- side peak similar to hadron – hadron correlations & electron – hadron correlations in Au+Au

backup

Z vertex distributions of events

η,φ SMD cluster size - electrons

TPC: all tracks

dE/dx distribution

dE/dx distribution

dE/dx distribution

TPC: all tracks

p > 1,5 GeV/c

primary vertex	-20 cm – + 20 cm
reference multiplicity	> 14 particles
# of fit points in TPC	20 – 50
# of fit points in TPC/max fit pts	> 0,52
pseudorapidity	-0,7 - +0,7
DCA	< 2 cm
momentum	> 1,5 Gev/c
p/E	0 – 2
SMD cluster size	<u>≥</u> 2
dE/dx	3,31 – 4,64 keV/cm

momentum	> 0,1 GeV/c
dE/dx	2,97 – 4,64 keV/cm
DCA	< 2 cm
pair invariant mass	< 150 MeV/c ²