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Abstract

We propose a new infinite family of cryptographic
hash functions, Edon–R, based on a recently defined
candidate one-way function. Edon–R is a class of
hash functions with variable output lengths. It is de-
fined using quasigroups and quasigroup string trans-
formations.
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1 Introduction

Cryptographic hash functions are used in a wide
range of applications including message integrity, au-
thentication, digital signature and public key encryp-
tion. A cryptographic hash function takes an input of
arbitrary size and produces an output, also called the
hash value, of a fixed, predetermined size. The impor-
tant properties of a cryptographic hash function are
the collision-resistance and the preimage-resistance.
Most hash functions are iterative and are built using
the Merkle-Damg̊ard design of hash functions [20, 5].
Although the mathematical knowledge about practi-
cal construction of cryptographic hash functions was
increasing with slow rate during the last 15–20 years,
we can locate at least four breakthroughs in their

∗Corresponding author

theoretical understanding. Those are given in the
following list:

1. The first result from 1989 is that of Merkle [20]
and Damg̊ard [5] where they proved that for the
iterated hash function h to be collision resistant
it is sufficient that its compression function f is
a collision resistant function.

2. The second theoretical result from 1992 is due to
Lai and Massey in [14] where they proved that
finding second preimages of some iterated hash
function h (having a compression function f in
its design) and by fixed initial IV in less than 2n

operations is equivalent of finding second preim-
ages of the compression function f with arbitrary
IV in less than 2n operations.

3. The third important theoretical result is that of
Joux [12] in 2004 were he showed that the work-
load for finding second-preimage collisions with
equal length for iterated one-way hash functions
is about log(k)× 2n/2, where k is the number of
computed hash values.

4. The fourth theoretical result from 2005 is that
of Kelsy and Schneier in [13] where they showed
that the workload for finding second-preimages
that are expandable messages with different
length is about k × 2n/2+1.

Concerning the Merkle-Damg̊ard design, Coron at
al. in [3] and Lucks in [15] made several suggestions
how to strengthen that design while Gauravaram,
Millan and Neito in a recent ePrint paper [6] gave an
interesting discussion on the possibilities that Merkle-
Damg̊ard design for MDx family was, in fact, not
properly implemented.

Although general in their approach, the above
mentioned breakthroughs in the analysis of iterated
hash functions are connected with the latest successes
in the cryptanalysis of MD4 family of hash func-
tions [28]. This family of hash functions was being
in use around 15 years and it is one of the most used



cryptographic primitives. Recently, Wang at al. [32]
pointed out some weaknesses of SHA-1 hash function.
Many researchers immediately proposed SHA-1 to be
replaced by SHA-256 (which outputs 256 bits instead
of 160 bits of SHA-1). Other candidates from SHA
family include SHA-n, where n ∈ 224, 256, 384, 512.
We can mention here several other members of MDx
family: RIPEMD-160 [26], as well as RIPEMD-256
and RIPEMD-320 [27].

To have in a reserve hash functions with bigger
output was a strategy that was adopted from several
international standardization organizations (includ-
ing NIST and ISO). However, the costs of transition
from one function to another are enormous, and the
time for introducing a new hash function is estimated
from 5 to 10 years.

In this paper we support the concept of designing
cryptographic hash functions with variable output
lengths. One such hash function with variable hash
lengths, but restricted to 128, 160, 192, 224 or 256
output bits is HAVAL, proposed in 1993 by Zheng,
Pieprzyk and Seberry [33]. However, the principles
of the design of HAVAL are similar to those of MDx
family of hash functions and collisions were found for
128 bit version of the function by Wang at al. in [31].

Another issue that have to be addressed about
cryptographic hash function is their design in the
light of ever increasing computing power. Attacks
with complexity 264 are already accessible using dis-
tributed internet computing, while attacks with com-
plexity 280 may also be feasible after 5–10 years.
Therefore, hash functions with output size less than
160 bits are not a good choice for long term security.
The ever-growing computing power is forcing design-
ers to redesign secure hash functions, which is not at
all trivial designing process. Instead of redesigning
and creating new secure hash functions with larger
(but still fix) digest size, it would be much simple
to design one or several hash functions with variable
length of output. As an additional argument for our
standing we can mention the analogy with RSA al-
gorithm [29] and its usage during the last 20 years.
As the computing power was increasing, the length of
prime numbers used in RSA was increasing, but the
basic algorithm is still unchanged.

The design of a cryptographically secure hash func-
tion is a sufficient motivation and challenging prob-
lem by itself, but we had additional motive in the
light of the last visions and revisions on Merkle-
Damg̊ard design. Actually, the number of crypto-
graphically secure hash functions is not very large –
see for example the excellent review of Preneel [24]
or visit the web page [25] where you can find a good
and updated review of almost all known secure hash

functions.
From the point of view of used mathematical tech-

niques, our design can be treated as one of those
designs which does not rely on ad-hock techniques
using XOR-ing and rotating, but tries to relate the
claims of their security on some mathematically hard
problem. Our design is based on theory of quasi-
groups and quasigroup string transformations [16, 9]
and recently introduced one-way candidate functions
[8]. The main point is the hardness of solving non-
linear systems of quasigroup equations, since quasi-
groups are algebraic structures with one binary op-
eration, which do not satisfy the usual algebraic laws
used in solving equations (the commutative law, the
associative law, the idempotent law, having zeros or
units, and so on).

A similar approach have been taken by Damg̊ard
in 1988 [4] and Gibson in 1991 [7], who designed hash
functions based on intractability of discrete log prob-
lem, as well as recently by Contini, Lenstra and Stein-
feld in 2005 [2], who proposed a hash function which
cryptographic strength relies on the hardness of the
number factorization problem.

The organization of the paper is as follows: In Sec-
tion 2 we give some basic mathematical definitions
and a definition of a one-way function, in Section 3
we define the hash function Edon–R, in Section 4
we analyze the cryptographic properties of the pro-
posed hash function, and we conclude the paper by
Section 5.

2 Definition of a one-way func-
tion R1 : Qr → Qr

In this section we need to repeat some parts of the
definition of the class of one-way candidate functions
R1 recently defined in [8] as well as the parts of
the conjectured computational difficulties for their
inversion. For that purpose we will need also sev-
eral brief definitions for quasigroups and quasigroup
string transformations.

A quasigroup (Q, ∗) is an algebraic structure con-
sisting of a nonempty set Q and a binary operation
∗ : Q2 → Q with the property each of the equa-
tions a ∗ x = b and y ∗ a = b to have unique so-
lutions x and y in Q. We deal with finite quasi-
groups only. Closely related combinatorial structures
to finite quasigroups are the Latin squares, since the
main body of the multiplication table of a quasigroup
is just a Latin square. More detailed information
about theory of quasigroups, quasigroup string pro-
cessing, Latin squares and hash functions you can
find in [1, 17, 18, 19].



In our design we are using finite quasigroups (Q, ∗)
of order |Q| = n, where n ≥ 2 and n = 2w. That
means that the hash functions use |Q|2 = n2, w-bit
words of internal memory for storing the quasigroup.
For example if we take w = 8 then n = 2w = 256 and
we will work with a set of 256 8-bit words (bytes), i.e.,
we will work with the set Q = {0, 1, . . . , 255} which in
fact is representing the ASCII set. In such a way, we
will need 2562 = 65536 bytes, i.e., 65Kb of internal
memory for storing the quasigroup, which is not small
amount if we want to implement it in some embedded
microprocessor. However, the design allows us to use
quasigroups of any order which is a power of 2, i.e.
8, 16, 32, 64, ..., but the corresponding operations
inside the hash functions will not be on bytes (8-bit
words) but on different w-bit words. Then the needed
internal memory for storing the quasigroup would be
24 bytes, 128 bytes, 640 bytes, 3 Kb, and so on.

For the description of the algorithm we will use the
following definitions:

Definition 1 ([8] Quasigroup reverse string
transformation R1 : Qr → Qr)

Let r be a positive integer, let (Q, ∗) be a quasi-
group and aj , bj ∈ Q. For each fixed m ∈ Q define
first the transformation Qm : Qr → Qr by

Qm(a0, a1, . . . , ar−1) = (b0, b1, . . . , br−1)

⇐⇒ bi :=
{

m ∗ a0, i = 0
bi−1 ∗ ai, 1 ≤ i ≤ r − 1.

Then define R1 as composition of transformations
of kind Qm, for suitable choices of the indexes m, as
follows.

R1(a0, a1, . . . , ar−1) :=
Qa0(Qa1 . . . (Qar−1(a0, a1, . . . , ar−1))).

Definition 2 (Shapeless quasigroup) A quasi-
group (Q, ∗) of order n is said to be shapeless if it is
non-commutative, non-associative, it does not have
neither left nor right unit, it does not contain proper
sub-quasigroups, and there is no k < 2n for which are
satisfied the identities of the kinds:

x ∗ (· · · ∗ (x︸ ︷︷ ︸
k

∗y)) = y, y = ((y ∗ x) ∗ . . . ) ∗ x︸ ︷︷ ︸
k

. (1)

Shapeless quasigroups can be effectively con-
structed by using, for example, the Hall’s algorithm
[11] for construction of systems of different represen-
tatives of a family of finite sets. The reason why it
is possible to construct shapeless quasigroups is the
huge number of quasigroups (for example, there are
around 2430 quasigroups of order 16 and much more

than 2192672 quasigroups of order 256). Basically, our
claims that the family of hash functions Edon–R that
we will define in the next section is infinite relies upon
the fact that the number of finite quasigroups (and
shapeless quasigroups) is infinite and it grows with
double exponential rate with the order of the quasi-
group (see for example [19]).

We want to note that linear quasigroups that are
mentioned in [8] and that are not suitable for design
of quasigroup one-way functionsR1 actually does not
satisfy the criterion of being shapeless, concretely the
criterion described by the equation (1).

Our statement that R1 is one-way function, i.e.,
for a given string A ∈ Qr it is easy to compute
R1(A) and it is computationally infeasible, for
a given B ∈ Qr, to find an A ∈ Qr such that
B = R1(A), is based on the following hypothesis:

Hypothesis There is no effective algorithm for
solving a system of non-linear quasigroup equations
in a shapeless quasigroup.

In this moment there is not enough mathematical
knowledge for solving systems of quasigroup equa-
tions in order to prove or disprove the above hy-
pothesis. However, our quasigroup string transfor-
mations can be seen as a special type of cellular au-
tomata operations. The predictability of cellular au-
tomata was investigated by Moore at al. in [21, 22]
in cases when the obtained quasigroups have some
of the properties that shapeless quasigroups don’t.
Moreover Goldmann and Russell [10] have shown that
solving system of equations in non-abelian groups is
NP-complete and Moore, Tesson and Thérien in [23]
have shown NP-completeness for even more general
algebraic structures, i.e., monoids that are not prod-
uct of Abelian group and commutative idempotent
monoid. Based on all this discussion we state the
following conjecture:

Conjecture 1 In a shapeless quasigroup (Q, ∗), the
function R1 : Qr → Qr is one-way function.

From the previous discussion we can say that hav-
ing a shapeless quasigroup, i.e., a quasigroup that
does not have any mathematical property that will
help us to reduce the complexity of the equations that
have to be solved, it seems that only method for solv-
ing systems of quasigroup equations is by combina-
torial exhaustive search and reading from the lookup
table that defines the quasigroup. Next, we give argu-
ments that support the Conjecture 1 from the lookup
table point of view, by the following Theorem (similar
but slightly more concise then it is in [8]):



Theorem 1 If the quasigroup (Q, ∗) of order n is
shapeless, then the number of computations based
only on the lookup table that defines the quasigroup
(Q, ∗) for finding a preimage of the function R1 :
Qr → Qr is O(nb r

3c).
Proof It is clear that R1(A) can be effectively com-
puted for any string A = (a0, a1, . . . , ar−1) ∈ Qr in
O(r2) operations. For the inverse task, given a string
B = (b0, b1, . . . , br−1) ∈ Qr, we have to find a string
A = (x0, x1, . . . , xr−1) such that

B = R1(A) = Qx0(Qx1 . . . (Qxr−1(x0, x1, . . . , xr−1)))).

Further on, let denote Qxr−1(x0, x1, . . . , xr−1) =
(x(1)

0 , x
(1)
1 , . . . , x

(1)
r−1) and

Qxr−i
(x(i−1)

0 , x
(i−1)
1 , . . . , x

(i−1)
r−1 ) = (x(i)

0 , x
(i)
1 , . . . , x

(i)
r−1)

for i = 2, 3, . . . r. Then

B = Qx0(x
(r−1)
0 , . . . , x

(r−1)
r−1 ) = (x(r)

0 , . . . , x
(r)
r−1),

i.e., bj = x
(r)
j for j = 0, 1, . . . , r − 1. In order for

clearer presentation of these computations, we use the
Table 1a, where x

(1)
0 = xr−1∗x0, x

(i+1)
0 = xr−i−1∗x(i)

0

for i = 2, . . . , r, x
(1)
j = x

(1)
j−1 ∗ xj for j = 1, . . . , r − 1,

x
(i)
j+1 = x

(i)
j ∗ x

(i−1)
j+1 for i = 2, . . . , r, j = 0, . . . , r − 2.

It can be seen from Table 1a and from the defini-

x0 x1 x2 . . . xr−2 xr−1

xr−1 x
(1)
0 x

(1)
1 x

(1)
2 . . . x

(1)
r−2 x

(1)
r−1

xr−2 x
(2)
0 x

(2)
1 x

(2)
2 . . . x

(2)
r−2 x

(2)
r−1

..

.
..
.

..

.
..
.

..

.
..
.

..

.

x2 x
(r−2)
0 x

(r−2)
1 x

(r−2)
2 . . . x

(r−2)
r−2 x

(r−2)
r−1

x1 x
(r−1)
0 x

(r−1)
1 x

(r−1)
2 . . . x

(r−1)
r−2 x

(r−1)
r−1

x0 b0 b1 b2 . . . br−2 br−1

Table 1a.

tion of the transformations Qm that we can find the
solutions of the equations bi ∗ x

(r−1)
i+1 = bi+1 in in-

determinate x
(r−1)
i+1 , i = 0, . . . , r − 2, and let denote

them by b
(r−1)
i+1 . After that we can find the solutions

b
(r−2)
i+1 of the equations b

(r−1)
i ∗ x

(r−2)
i+1 = b

(r−1)
i+1 in in-

determinate x
(r−2)
i+1 for i = 1, . . . , r − 2, and so on.

After r − 2 steps we have the solution b
(1)
r−1 of the

equation b
(2)
r−2 ∗ x

(1)
r−1 = b

(2)
r−1. Then Table 1a trans-

forms to Table 1b. We can see that no value for the
indeterminate x0, . . . , xr−1 can be obtained.

Let choose a value a0 for x0. Then, as we explained
above, we can determine from Table 1b the values
for x

(r−1)
0 , x

(r−2)
1 , . . . , x

(1)
r−2 and xr−1 and let denote

them as a
(r−1)
0 , a

(r−2)
1 , . . . , a

(1)
r−2 and ar−1. Then we

can also compute the value x
(1)
0 = ar−1 ∗ a0 and let

denote it by c
(1)
0 . After that we can choose a value a1

for x1 and we can transform the Table 1b with new
known values as it is shown in Table 1c.

After s = b r
3c chooses of the values for the inde-

terminate x0, x1, . . . , xs we have to check if several
equalities of kind c

(s)
s ∗ c

(s−1)
s+1 = a

(s)
s+1, c

(s+1)
s−1 ∗ c

(s)
s =

a
(s+1)
s , c

(s−1)
s+1 ∗c(s−2)

s+2 = a
(s−1)
s+2 , . . . are satisfied. It fol-

lows that we have to make |Q|br/3c = nbr/3c guesses
for exact completing of the Table 1a, i.e, for finding
a pre-image A = (a0, a1, . . . , ar−1) of the given string
B = (b0, b1, . . . , br−1) such that B = R(A).

x0 x1 x2 . . . xr−2 xr−1

xr−1 x
(1)
0 x

(1)
1 x

(1)
2 . . . x

(1)
r−2 b

(1)
r−1

xr−2 x
(2)
0 x

(2)
1 x

(2)
2 . . . b

(2)
r−2 b

(2)
r−1

..

.
..
.

..

.
..
.

..

.
..
.

..

.

x2 x
(r−2)
0 x

(r−2)
1 b

(r−2)
2 . . . b

(r−2)
r−2 b

(r−2)
r−1

x1 x
(r−1)
0 b

(r−1)
1 b

(r−1)
2 . . . b

(r−1)
r−2 b

(r−1)
r−1

x0 b0 b1 b2 . . . br−2 br−1

Table 1b.

a0 a1 x2 . . . xr−4 xr−3 ar−2 ar−1

ar−1 c
(1)
0 c

(1)
1 x

(1)
2 . . . x

(1)
r−4 a

(1)
r−3 a

(1)
r−2 b

(1)
r−1

ar−2 c
(2)
0 c

(2)
1 x

(2)
2 . . . a

(2)
r−4 a

(2)
r−3 b

(2)
r−2 b

(2)
r−1

xr−3 x
(3)
0 x

(3)
1 x

(3)
2 . . . a

(3)
r−4 b

(3)
r−3 b

(3)
r−2 b

(3)
r−1

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

x3 x
(r−3)
0 a

(r−3)
1 a

(r−3)
2 . . . b

(r−3)
r−4 b

(r−3)
r−3 b

(r−3)
r−2 b

(r−3)
r−1

x2 a
(r−2)
0 a

(r−2)
1 b

(r−2)
2 . . . b

(r−2)
r−4 b

(r−2)
r−3 b

(r−2)
r−2 b

(r−2)
r−1

a1 a
(r−1)
0 b

(r−1)
1 b

(r−1)
2 . . . b

(r−1)
r−4 b

(r−1)
r−3 b

(r−1)
r−2 b

(r−1)
r−1

a0 b0 b1 b2 . . . br−3 br−4 br−2 br−1

Table 1c.

¤
We can derive r quasigroup equations from Table

1a with indeterminate x0, x1, . . . , xr−1, but the form
of those equations is quite complicated. Example 1



shows how the system of equations looks like for a
simple case when r = 3.

Example 1 Let r = 3. Then at first we have the
following equalities from Table 1a:
x

(1)
0 = x2 ∗ x0; x

(1)
1 = (x2 ∗ x0) ∗ x1; x

(1)
2 =

((x2 ∗ x0) ∗ x1) ∗ x2; x
(2)
0 = x1 ∗ (x2 ∗ x0); x

(2)
1 =

(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1); x
(2)
2 =(

(x1∗(x2∗x0))∗((x2∗x0)∗x1)
)∗(((x2∗x0)∗x1)∗x2

)
.

From them, we obtain the following system of quasi-
group equations with indeterminate x0, x1, x2:




b0 = x0 ∗ (x1 ∗ (x2 ∗ x0))
b1 = b0 ∗

(
(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)

)

b2 = b1 ∗
((

(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)
)∗

∗(((x2 ∗ x0) ∗ x1) ∗ x2

))
.

Since the above system is enough simple, one can
show that for any given x0 ∈ Q there are uniquely
determined values of x1 and x2. Thus, the system
has |Q| = n = nb3/3c different solutions (x0, x1, x2).
After that we have to check which one of the solutions
is a preimage of (b0, b1, b2).

We notice here that the expressions x
(j)
i are quite

complicated when i ≈ j, and in this case they con-
tain exponential number of terms. Hence, solving a
system of equations for not so large values of r is not
effective.

3 Edon–R hash algorithm

Having one-way quasigroup function R1, we now de-
fine a hash algorithm named “Edon–R” that map
a message M of arbitrary length of l ≤ 264 words
(where by word we mean a w-bit word) into a hash
value of N words. The number N is the input pa-
rameter as it is the message M as well.

The definition of Edon–R hash function includes
one string of length 2N and one string of length N ,
where N is the desired hash digest size in w-bit words.
Those strings are the following:

1. String H = (h0, h1, . . . . . . , h2N−1) of length 2N
that holds intermediate values of hashing Hi.
The initial value H0 is

H0 = (h0, h1, . . . , h2N−1) =

(0 mod 2w, 1 mod 2w, . . . , 2N − 1 mod 2w).

2. The string Mi = (m0,m1, . . . , mN−1) which
holds the i-th part of the padded message
M ′. More concretely, having a message
M = b1||b2|| . . . ||bj || . . . ||bl that has length

of l w-bit words, (we use the symbol || for
operation of concatenation) by padding the
message we will produce a new message M ′ =
b1||b2|| . . . ||bj || . . . ||bl||l1||l2|| . . . ||lt||b1|| . . . ||bj ,
where l1||l2|| . . . ||lt is the w-bit conjugate of
the number l (l is considered as 64 bit number,
t = b 64

w c + 1), and j ≥ 0 is the smallest non-
negative integer such that l + t + j ≡ 0 mod N .
Then, we will denote the parts of N consecutive
w-bit words as

M ′ ≡ M1||M2|| . . . ||Mk

where k = l+t+j
N , and the length of every Mi is

N w-bit words.

Note that our padding is very similar with popu-
lar Merkle-Damg̊ard strengthening, but still it differs
from it by the usage of message bits from its begin-
ning.

Edon–R algorithm

Input: (Q, ∗), N and M , where:
(Q, ∗) is a shapeless quasigroup of order 2w, w ≥
4,
the number N is such that the length of the hash
output is w ×N bits and
M is the message to be hashed.

Output: A hash of length w ×N bits.

1. Pad the message M , so the length of the padded
message M ′ is multiple of N w-bit words i.e.
|M ′| = k ×N .

2. Initialize H0 = (0 mod 2w, 1 mod 2w, . . . , 2N −
1 mod 2w).

3. Compute the hash with the following iterative
procedure:

For i = 1 to k do
Hi = R1(Hi−1||Mi) mod 22wN ;

Output:

Edon-R(M) = Hk mod 2wN

The one-way function R1 in this concrete realiza-
tion is considered as transformation Q3N → Q3N

(i.e., we take r = 3N) and then, for obtaining the
intermediate value Hi, we just apply the operation
mod 22wN that takes the last 2N w-bit words from

the result of R1. Finally, since the requested output
from the hash function is N w-bit words, we take
just the last N w-bit words from the Hk and that is
denoted as the operation mod 2wN .



4 Analysis of the algorithm

In this section and in the following subsections we will
discuss Edon–R security properties such as being col-
lision resistant, being preimage and second-preimage
resistant hash function.

4.1 Collision resistance of Edon–R
A cryptographic hash function that produces n-bit
outputs is collision resistant if the birthday attack is
the most effective attack for finding collisions. By
the properties of the birthday attack (see for exam-
ple [30] Chapter 18) if the hash output consists of
n bits, then finding a collision should happen after
examining approximately 2n/2 input messages.

Showing the collision resistance property of a fam-
ily of hash functions is much harder task than show-
ing the collision resistance of a specifically defined
hash function. That is because of the additional free-
dom of choice that attacker has for choosing a func-
tion from a family of hash functions. In the case of
Edon–R that freedom of choice consists of choosing
different shapeless quasigroups. It follows from the
definition of Edon–R that in every iterative step of
its compression function R1, strings of length 3N are
mapped to strings of length 3N . Additionally, it fol-
lows from Theorem 1 that the minimum number of
referencing the lookup table of the shapeless quasi-
group, no matter what are the relations in the used
quasigroup, is 2

3N
3 = 2N operations.

From Conjecture 1 we can state that the secu-
rity of Edon–R is based on the computational infea-
sibility to find a solution of systems of quasigroup
equations. Of course, if the quasigroup have some
structural property, such as being a group, loop or
having unit elements, then instead of having N equa-
tions to solve, we could define additional equations,
reducing the possibilities for choosing elements and so
reducing the number of guesses for finding collisions.

Basically, those are the arguments for our claims
that every hash function from the family Edon–R is
collision resistant.

4.2 Preimage resistance of Edon–R
In this subsection we will discuss Edon–R property
to be preimage and second-preimage resistant. Being
preimage resistant means that it is computationally
infeasibile to find the original message X if its hash
Y = Edon-R(X) is given. On the other hand, being
second-preimage resistant means that it is compu-
tationally infeasible to find second message X ′ such
that Y = Edon-R(X) = Edon-R(X ′)

n T = 2
n
2 Edon-R

24 212 = 4, 096 6,258
32 216 = 65, 536 50,681
40 220 = 1, 048, 576 1,023,436
48 224 = 16, 777, 216 19,280,524

Table 2. Experimental testing of the Birthday
attack on Edon-R with differen number of n bits of

the hash output. The column T = 2
n
2 is the

theoretically expected number of messages before
finding a collision and the column Edon-R shows
the actual number of random messages that we

examined before finding a collision.

The design of Edon–R is based on Merkle-
Damg̊ard iterating principles. In the light of latest
attacks with multi-collisions, we adopted the sugges-
tions of Lucks [15] and Coron at al. [3]. Namely,
by setting the internal memory of the iterated com-
pression function to be double of the output length,
we eliminate the possible weaknesses against generic
attacks of Joux, Kelsy and Schneier.

n Edon-R

40 H̄ = 20.00, σ = 3.16
64 H̄ = 32.00, σ = 4.00
80 H̄ = 40.00, σ = 4.47
128 H̄ = 64.00, σ = 5.66
160 H̄ = 79.89, σ = 7.03
256 H̄ = 128.00, σ = 8.01
320 H̄ = 159.39, σ = 13.27
384 H̄ = 191.43, σ = 14.34
512 H̄ = 255.97, σ = 11.31
1024 H̄ = 512.00, σ = 16.01

Table 3. Experimental examination of the avalanche
criterion. The first column labelled as n is the
number of bits of the hash output. The column
Edon-R has the calculated average Hamming

distance H̄ and standard deviation σ.

The doubling of the internal memory in our design
is done by the fact that in every iterative step of its
compression function, the strings of length 3N are
mapped to strings of length 3N and then only the
last significant 2N letters are kept for the next iter-
ative step. Thus, by similar discussion as in the pre-
vious subsection (on the infeasibility of solving non-
linear quasigroup equations in shapeless quasigroups)
we can claim that the workload for finding preimages



and second-preimages for any hash function of the
family Edon–R is 2N hash computations.

4.3 Some initial experimental tests of
Edon–R

The Edon–R’s property to give hash outputs with
variable lengths can be used to test Edon–R algo-
rithms for collisions and resistance on “Birthday at-
tack”. With the C reference implementation of Edon-
R we have chosen the number of output bits to be rel-
atively small (24, 32, 40 and 48 bits), since for those
cases we could examine all possibilities with modern
PC computer in reasonable time. The number of ex-
amined input messages before finding a collision is
shown in Table 2 and it is in compliance with the
“Birthday attack” level of 2

n
2 , where n is the number

of bits in the hash output.
We have also examined the avalanche property of

Edon–R family of hash functions. Namely, we have
made experiments measuring Hamming distance of
the hash outputs when original messages differ in 1
bit. For that purpose for every n bits (n ∈ {40, 64,
80, 128, 160, 256, 320, 384, 512, 1024}) we generated
1,000,000 pairs of messages (M1, M2) with random
length from 100 to 1100 bytes and the difference be-
tween M1 and M2 was 1 bit (the position of that
one bit was also randomly chosen). The summary
of the experiments is presented in Table 3. As it
is shown on Table 3, Edon–R hash functions posses
expected avalanche property, i.e., when two messages
differ only in one bit, the expected Hamming distance
between their n-bit hashes should be approximately
n
2 .

4.4 Speed analysis of the algorithm

If we look at the definition of Edon–R, we will notice
that the operations are mostly operations to deter-
mine memory location and the value in that loca-
tion, (i.e., references to one dimensional or two di-
mensional arrays). So, from the perspective of the
design of other hash functions (that are using mostly
bit operations in registers, but also have references to
one dimensional arrays) we can say that Edon–R is
using slower approach, because operations with mem-
ory are several times slower then operations with reg-
isters. Nevertheless, we think that the properties to
have variable lengths of hash output, to have stronger
mathematical indications about function’s strong col-
lision resistance, as well as the fact that we have in-
finite number of cryptographically strong hash func-
tions, is worthwhile. Moreover, modern microproces-
sors have enough cash memory of Level 1, working

with the speed of the microprocessor, for storing the
whole quasigroup (of order 64 × 64, or 256 × 256)
and other one-dimensional strings of Edon–R, so the
operations can be executed inside the microprocessor
and its Level 1 cash memory.

Another approach that can further increase the
speed of execution of Edon–R can be in design of
hardware implementation in a special microproces-
sor that will execute its compression function R1 in
parallel, reducing the execution time to O(N) micro-
processor cycles.

5 Conclusions

We have defined an infinite class of one-way hash
functions Edon–R with variable length of output.
The cryptographic strength of Edon–R hash func-
tions relies on conjectured computational infeasibility
to solve system of quasigroup equations in shapeless
quasigroups.

The property of having possibility to choose the
length of hash output can be used in implementa-
tion of the applications that require hashes that have
lengths different then 128, 160, 256, 384 or 512 bits.
With Edon–R you can produce hash outputs that are
11 or 10111 bytes long. If some day, the computing
power of the computers would allow to find collisions
of 20 bytes long hashes by brute force, then the de-
sign of Edon-R will not change. Only the output of
the hash functions will be increased.

Edon–R is not a single cryptographic hash func-
tion but a huge (infinite) class of cryptographic hash
functions, and that fact can be effectively used in the
design of different cryptographic protocols.

The compression function R1 of Edon–R can be
implemented in hardware in parallel manner and then
its execution time can be reduced only to O(N) mi-
croprocessor cycles.
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