

Gateway Users Guide

Kenneth Evans, Jr.

September 2005

Advanced Photon Source
Argonne National Laboratory

9700 South Cass Avenue
Argonne, IL 60439

Table of Contents
• Introduction

o Overview
o History

• Starting the Gateway
• Using the Gateway
• Error messages
• Building the Gateway
• Access Security
• Reports
• Server Mode
• Gateway Process Variables
• Alarm Handler
• Put Logging
• Beacon Anomalies and Search Requests
• GUI Interface
• Gateway Configurations

o Symmetric Gateways
o Reverse Gateway
o Alias Gateway

• Channel Access
• Acknowledgements
• Copyright

Introduction

Overview

The Gateway is both a Channel Access Server and Channel Access Client that provides a
means for many clients to access a process variable while making only one connection to
the server that owns the process variable. It also provides additional access security
beyond that on the server. It thus protects critical servers while providing possibly
restricted access to needed process variables. The Gateway typically runs on a machine
with multiple network cards, and the clients and the server may be on different subnets.

Previous versions of the Gateway worked with EPICS 3.13 but required a special version
of base to build and work correctly. The required changes were never incorporated into
EPICS base. The latest of these versions is Gateway 1.3. The new version, starting as
Gateway 2.0, only works well with EPICS 3.14.6 or later and does not otherwise require
a special EPICS base. It also has additional features compared to Gateway 1.3. Note that
even if you are using EPICS 3.13 for your other applications, you can still use Gateway
2.x built with EPICS 3.14 as your Gateway.

For this guide we will often refer to the clients as MEDM and the server as an IOC. This
is (1) to avoid confusion with the client and server parts of the Gateway and (2) because
MEDM and IOCs are the most typical and most used client and servers and most people
are familiar with them. Keep in mind, however, that there are many other clients than
MEDM and there are other types of servers than an IOC. The Gateway is, in fact, another
type of server.

The following is a diagram of several MEDMs connected through the Gateway to a
process variable in an IOC. Without the Gateway there would be a connection from each
MEDM to the IOC. This uses up extra resources in the IOC and causes additional traffic.

http://www.aps.anl.gov/epics/extensions/medm/index.php

In addition, these MEDMs can be restricted in their access to the process variable. A
typical scenario is to allow only read access. Note that the MEDMs see the Gateway as
just another server, and the IOCs see the Gateway as just another client. The IOCs could
be on a different subnet from the MEDMs, and in fact, the IOCs might not even be
visible to the MEDMs without the Gateway. In the case where the IOCs and the MEDMs
are on different subnets, the Gateway would be on a machine that has two network
interface cards, one to the MEDM subnet and one to the IOC subnet.

At the APS the main Gateway is for people in the office building to connect to the
machine network with read access only. There can be many users connected to popular
process variables, such as the one for the beam current. There is only the one Gateway
connection, however, to the IOC with that process variable. It is little affected by all these
users and can go about its primary responsibility of helping keep the accelerator running.
This Gateway typically has connections to on the order of 10,000-30,000 process
variables in on the order of 300 IOCs. In addition the APS has one Gateway for each
experimental team. These teams have read access to machine process variables and
read/write access to their own process variables. There are on the order of 60 Gateways
running at the APS.

In addition to connections to process variables in IOCs and other servers, the Gateway, as
a server, provides its own internal process variables. These are used for diagnostic
purposes, to initiate reports, and to control the Gateway.

Internally the Gateway maintains two objects for each process variable. There is a PV
(Process Variable) object that handles the Gateway client connections to the IOC, and
there is a VC (Virtual Connection) object that handles the Gateway server connections.
Each VC has a list of Chan (Channel) connections to the MEDMs. The PV object
implements the client side of the Gateway, and the VC object and its Chans implement
the server side. The following picture shows three typical states for these objects.

In the top state there is no connection to the IOC, either because it is still trying to
connect or because the connection has been lost. In that case there is no VC, and the
MEDMs see the process variable as not existing. In this case the PV object is destroyed
after two minutes unless it connects. The middle state is most typical. There is a
connection to the IOC, and each MEDM is connected through the VC. In the lower state
the PV is connected to the IOC, but there are no MEDMs interested in the process
variable. The PV object and connection to the IOC are maintained for two hours after the
last time they are used in case another MEDM or other client wants to use it again. The
other client could be a command-line program like caget, that requests the value and then
exits. In that case the PV object will still stay around for at least two hours.

When a Channel Access Client wants to connect to a process variable, it send out a series
of search requests, which are UDP packets, on the network. These packets are initially
sent at a very fast rate with the time between them doubling at each try until 100 are sent
or there is an affirmative reply. Each server that gets such a packet is required to
determine if it has the process variable. When the Gateway gets such a request, it creates
an unconnected PV object that itself sends a search request to the IOCs. This PV starts
out as Connecting, and the Gateway responds to the search request as postponed. If it
does not connect in a very short time, it becomes Dead and the Gateway responds to
subsequent search requests as not having it. If it is not found by the Gateway after two
minutes, the PV is destroyed. If it becomes connected to an IOC, its new state depends on
its old state. If it was Disconnected or Dead, then it becomes Inactive and the next Exist
Test will return that it was found. If it was Connecting, postponed Exist Tests are
processed, and if a VC is created because an MEDM is still interested, it becomes Active.
Soon afterward a Chan is created, and the MEDM is connected to the VC and through it
to the PV. Once the PV is Active or Inactive, the Gateway responds to subsequent search
requests as having the process variable. If the connection is then lost, the VC and its
Chans are destroyed, and the PV becomes Disconnected.

Internal process variables in the Gateway give the number of PVs in each state, and can
be used to monitor its behavior. In order to interpret the results, it is necessary to have an
understanding of these states.

PVs are either Connected or Unconnected. Connected consists of either Active or
Inactive. Unconnected consists of Connecting, Dead, or Disconnected. The top state in
the picture above is Unconnected, but it is not clear whether it is Connecting, Dead, or
Disconnected. The middle state is Connected and Active. The bottom state is
Connected and Inactive.

• total = connected + unconnected
• connected = active + inactive
• unconnected = connecting + dead + disconnected

Saying this another way: the PVs for which the Gateway has an established client
connection with an IOC are Connected. Otherwise they are Unconnected. For the
Connected ones, if there is a connection to an MEDM, then they are Active. Otherwise
they are Inactive. If they are Unconnected, it may because they are Disconnected
(meaning formerly connected), Connecting, or Dead.

The Gateway handles most of the information about a process variable that would be
needed by most Channel Access Clients, in particular MEDM. An exception is the RTYP
field for records in an IOC. PvInfo in MEDM shows this field if directly connected to an
IOC, but just shows Not Available if through the Gateway. The field is the record type of
the process variable and is little used. It has not been deemed reasonable to add the
overhead to the Gateway to make it available. See the discussion under Alarm Handler
for more technical information on this issue.

For information on obtaining the Gateway, consult the EPICS Documentation.

History

The Gateway was originally written by Jim Kowalkowski of the APS starting in early
1996. Its basic concept and structure owes to him, but it was never really finished and did
not work well or reliably. Janet Anderson did some work on it after Jim left the APS.
Kenneth Evans took it over in 1999, and made it work in a usable fashion. This required
making several changes to EPICS base, however. These changes were never officially
incorporated into EPICS base, and it hence required a special version of base to build the
Gateway. Ralph Lange of BESSY also worked on the earlier version and took the
Gateway over in 2001, adding regular expressions to the process variable specifications
and making it work with the Alarm Handler. Kenneth Evans converted it to EPICS 3.14
in mid-2002, working with Jeff Hill of LANL, the person in charge of Channel Access.
New features, including many more internal process variables were added, and it was

http://www.aps.anl.gov/epics/index.php

made to run on Linux and WIN32. There were problems with the early 3.14 versions of
Channel Access, and these were slowly resolved over the period from then until late
summer 2003. It now works acceptably with EPICS 3.14.6 or later, uses the standard
version of base, uses appreciably less CPU than Gateway 1.3, and has a number of new
features as well as some bug fixes.

Starting the Gateway
The Gateway is started by typing the following on a command line:

gateway [Options]

The options are:

-debug <value> Enter a value between 0-100. 50 gives lots of information, 1 gives a
small amount. For developers.

-pvlist <filename>

Name of the file with all the allowed PVs in it. There is a sample
file, gateway.pvlist, in the source distribution and reproduced here.
The version in the distribution may be more recent. See Access
Security for more information.

-access <filename>

Name of the file with all the EPICS access security rules in it. The
syntax for this file is the same as that for EPICS access security. See
the Application Developers Guide for more information on this
syntax and EPICS access security in general, and see Access
Security below for more information.. There is a sample file,
gateway.access, in the source distribution and reproduced here. The
version in the distribution may be more recent.

-log <filename>
Name of file where all messages from the Gateway go, including
stderr and stdout. This file will be automatically renamed if the
Gateway is in server mode and it restarts.

-command
<filename>

Name of the file where your customized Gateway command file
goes. The specified commands in this file are executed when a
USR1 signal is sent to the Gateway or the internal process variable,
gateway:commandFlag, is set to 1. Lines in the command file may
be R1, R2, R3, or AS to run reports 1-3 and reread the access
security file, respectively. See Reports below for more information.
There is a sample file, gateway.command, in the source distribution
and reproduced here. The version in the distribution may be more
recent

-putlog <filename>

Name of the file where Gateway put logging goes. Put logging is
specified with TRAPWRITE in the access file. See the Application
Developers Guide under access security as well as Access Security
and Put Logging below for more information. This file will be
automatically renamed if the Gateway is in server mode and it

restarts.

-report <filename>
Name of the file where reports go. The reports are appended if the
file exists when the reports are generated. If not specified, the name
is gateway:report.

-home <directory>

Directory where the Gateway looks for its input files and writes its
output files. Setting this is equivalent to changing to that directory
before starting the Gateway. Setting the environment variable
GATEWAY_HOME also accomplishes the same result.

-sip <ip-address> IP address where the Gateway server listens for process variable
requests. Sets the environment variable EPICS_CAS_INTF_ADDR.

-ignore <ip-
address-list>

List of IP address that the Gateway server ignores. Sets the
environment variable EPICS_CAS_IGNORE_ADDR_LIST.

-cip <ip-address-
list>

List of IP addresses that the Gateway client uses to find the real
process variables. See the Channel Access Reference Manual for
more information. Sets the environment variables
EPICS_CA_AUTO_LIST=NO and EPICS_CA_ADDR_LIST.

-sport <port>
The port which the Gateway server uses to listen for process
variable requests. The default is 5064. Sets the environment variable
EPICS_CAS_SERVER_PORT.

-cport <port>

The port which the Gateway client uses to find the real process
variables. Sets the environment variable
EPICS_CA_SERVER_PORT. Be aware that if you specify -cport
and do not specify -sport, then the server port will also be the same
as what you specify for -cport. This is a Channel Access feature. To
avoid it, specify -sport.

-connect_timeout
<sec>

The amount of time in seconds that the Gateway will allow a
process variable search to continue before marking the process
variable as being Dead. The default is 1.

-inactive_timeout
<sec>

The amount of time in seconds that the Gateway will hold the real
connection to an Inactive process variable. The default is 7200 (2
hours).

-dead_timeout
<sec>

The amount of time in seconds that the Gateway will continue to
look for process variables that are Connecting to the IOCs that the
Gateway is using. The default is 120 (2 min).

-
disconnect_timeout
<sec>

The amount of time in seconds that the Gateway will hold
Disconnected process variables (those that were connected but have
been disconnected). The default is 7200 (2 hours).

-reconnect_inhibit
<sec>

The minimum amount of time in seconds after the last beacon
anomaly sequence before generating a new one. The Gateway
generates a beacon anomaly sequence when process variables from
the IOCs reconnect and when it rereads access security. Thus causes
MEDMs to reissue search requests for unconnected PVs. Used to

limit the beacon sequences, and hence the search requests. Search
requests last for about 8 min., so it is not necessary to reissue
beacon anomalies much more frequently than 8 min. The default is
300 (5 minutes).

-server
Start in server mode. Start a daemon that watches the Gateway and
automatically restarts it if it dies. Not available on WIN32. See
Server Mode.

-mask <string>
Event mask that is used for connections to the IOCs. Use any
combination of v (value), a (alarm), l (log). The default is va
(forward value and alarm change events).

-prefix <string> Set the prefix for the Gateway internal process variables. Defaults to
the hostname on which the Gateway is running.

-uid <integer> Run the Gateway server as this user id number. The Gateway does a
setuid(2) to this uid. Not available on WIN32.

-gid <integer> Run the Gateway server as this group id number. The Gateway does
a setgid(2) to this uid. Not available on WIN32.

A typical command line is:

% gateway -log gateway.log -cip 164.54.3.255 -sip 164.54.188.65 -server

For the command-line options that set environment variables, an alternative would be to
set them yourself before starting the Gateway instead of using the option.

With EPICS 3.13, there should be no more than one portable server, such as a Gateway,
running on a workstation. The reason is that there is not sufficient information in the
beacons to distinguish among servers on the same host. Clients such as MEDM must treat
their beacons as one set of beacon signals and will see sum and difference frequencies.
They will likely interpret this as an IOC coming up and will continuously reissue their
outstanding search requests. As a result, if the Gateway is one of two portable servers on
the same host, it will be causing a problem. Two servers on the same host should not be a
problem with 3.14 servers. It is not clear what will happen with a mixture of 3.13 and
3.14 servers on the same workstation. That situation should be avoided.

The Gateway makes two files, gateway.killer and gateway.restart, when it starts. The
file gateway.killer contains a summary of the settings used, as well as commands to kill
the current Gateway, kill the server if in server mode, execute the commands file, and
execute the Process Variable Report. It is a valid shell script, and the only line not
commented is the one which kills the server in server mode or the current Gateway
otherwise. Consequently, it can be run to kill the server in server mode or the current
Gateway otherwise. The other command lines can be pasted to a shell to do the other
actions. The file gateway.restart can be used to kill the current Gateway, whether in
server mode or not. These files and features are not available on WIN32.

The Gateway can also create a file named gateway.reserve. It does this to get around a
problem that a process can only open files with file descriptors (FDs) below a certain
limit (256 on Solaris). If there are connections to more than roughly this number of IOCs,
not uncommon in a production environment, there is no FD available to reread the access
security and command files. The Gateway gets around this by reserving a FD pointing to
gateway.reserve. Do not delete gateway.reserve. Also note that if reading the access
security fails for this or any other reason, the access security will go to the default, not
what it was before the failure.

The number of threads on Linux is determined by the maximum user space, about half of
the 32-bit address space or about 2 GB. The maximum number of threads is thus 2 GB
divided by the stacksize (typically 10240 KB) giving about 204 threads in the typical
case. Channel Access uses two threads for each IOC connection, one for receive and one
for send. This limits the Gateway from connecting to more than about 100 IOCs. If the
stacksize were decreased to say, 4096 KB (ulimit -s 4096), then about 256 IOCs would
be allowed. The APS Linux Gateway currently uses this number. Starting with Base
3.14.7, EPICS allocates memory for threads more efficiently, and you should not have to
change the stacksize.

Using the Gateway
To use the Gateway as your process variable server, it is usually only necessary to set
your EPICS_CA_ADDR_LIST environment variable to the address used for the -sip
command-line option when the Gateway was started. If want to use more than one server,
add them all to the list for EPICS_CA_ADDR_LIST, separated by spaces. You probably
also want to set EPICS_CA_AUTO_ADDR_LIST to NO to prevent also searching the
local network for servers. You would certainly do this if there are IOCs on the local
network that might have process variables with the same names as ones the Gateway
would find. They would then be found from two servers, and your EPICS application
would likely complain. If the Gateway is using a non-standard port, you need to set
EPICS_CA_SERVER_PORT to the number used with -sport when the Gateway was
started. Then just run your EPICS application, for example, MEDM.

To stop the Gateway, use the gateway.killer file (described under Starting the Gateway),
set the gateway.quitFlag or gateway.quitServer flag (described under Gateway Process
Variables), or kill it in the usual way for your operating system. It may take a while to
completely shut down. This is owing to EPICS cleanup processes that run after the
program has officially exited. These processes may also print error messages after the
Gateway prints its termination message just before calling exit. It is a good idea to check
that the Gateway has truly shut down. This behavior may be corrected in future releases
of base.

Error messages

The Gateway gets error messages from several places, including internally, the Channel
Access Server library, and the Channel Access Client library. These errors typically
appear in the log. The Gateway internal messages usually have a timestamp. Messages
from the Channel Access Server library are typically sent to the EPICS Errlog facility and
are received by the Gateway, often with different lines of the message being received
separately. These messages typically do not have a timestamp, and the Gateway puts a
line in the log with a timestamp when it thinks the message is complete. This line will say
"!!! Errlog message received (message is above)". You must try to decide what lines
above this line comprise the message. The problem is compounded by the fact that other
kinds of messages may be interspersed between the lines for the Errlog message. The
Channel Access Server library can also write messages directly. The Channel Access
Client library can use the Errlog facility or send exception messages to the Gateway. The
Errlog messages are handled as described. The exception messages are printed with as
much additional information as is available and will start with a line with a timestamp
saying "gateServer::exCB: Channel Access Exception:". Common exception messages,
such as "Virtual circuit unresponsive" and "Virtual circuit disconnect" only print a single,
timestamped line without the additional information. In most cases the Gateway prints a
line with a timestamp saying how it was terminated. If the process is killed with
SIGKILL (-9) or the machine is rebooted, this line has no chance to appear. In all cases
the Gateway attempts to timestamp messages as timing is often important in diagnosing
problems.

Building the Gateway
The Gateway uses 3.14 makefiles as it can only be built with 3.14. To build it you need
to:

1. Obtain base and put it at the same directory level as extensions. Use at least base
3.14.

2. Do a make in base to build base.
3. Obtain extensions/configure.
4. Change extensions/configure/RELEASE so EPICS_BASE points to your base.
5. Do a make in extensions/config.
6. Obtain the GNU Regex extension and put it under extensions/src/gnuregex. (Or

provide the GNU Regex routines another way.)
7. Do a make in extensions/src/gnuregex.
8. Obtain the Gateway directory and put it under extensions/src/gateway.
9. Do a make in extensions/src/gateway.

See your version of base for more information on the EPICS build system. The Gateway
can also be built with 3.13 makefiles, but you would have to create Makefile and
Makefile.Host yourself to do that.

Access Security

The Gateway applies access security in addition to any access security that may be
implemented in the IOCs or other servers to which it connects. It supplements but cannot
override IOC access security. The access security is specified in two files, gateway.pvlist
and gateway.access, by default. See -pvlist and -access on the command line. The first
file, gateway.pvlist, specifies what process variable name patterns are allowed and
denied, and is described in more detail below. The second, gateway.access, specifies the
access security rules. These two files are read at startup.

The access security can be changed on demand by setting the internal process variable
gateway:newAsFlag (see Gateway Process Variables) or by using the command file (see
Reports). This causes the two files to be reread and the access security to be changed
accordingly. After rereading access security, the Gateway generates a beacon anomaly,
which will cause MEDMs to reissue search requests for unfound PVs.

Note that if reading the access security fails, the access security will go to the default, not
what it was before the failure.

The access security rules specified in gateway.access are the same as used for access
security in IOCs. In fact, both IOCs and the Gateway use much of the same access-
security code. These rules and the concepts can be complicated and will not be
reproduced in this document. See the Application Developers Guide for more
information. It can be noted that user names are case sensitive and host names are not.
WIN32 may use a different case than UNIX for the same account. In this case user names
must be entered with both versions. There is a sample file, gateway.access, in the source
distribution and reproduced here to get you started. The version in the distribution may be
more recent.

The pvlist file is specific to the Gateway. Its function is to specify what process variable
name patterns are allowed or denied and to optionally associate patterns with access
security groups and security levels in the access file. The patterns are GNU-style regular
expressions. (See a UNIX book for more information about regular expressions.) There is
a sample file, gateway.pvlist, in the source distribution and reproduced here to get you
started. The version in the distribution may be more recent. Directions for this file are in
the sample pvlist file as well as here.

The lines in the pvlist file are of the following four forms:

1. EVALUATION ORDER <eval-order>
2. <pv-name-pattern> DENY [FROM] [<host> ...]
3. <pv-name-pattern> ALIAS <real-pv-name> [<asg> [<asl>]]
4. <pv-name-pattern> ALLOW [<asg> [<asl>]]

where:

• <eval-order> is DENY, ALLOW or ALLOW, DENY
• <pv-name-pattern> is a regular expression that matches process variable names.

• <host> is an unqualified host name, e.g. hydra.
• <real-pv-name> is a substitution pattern that specifies the real process variable

name. Occurrences of \1 ... \9 in <real-pv-name> are replaced by matched sub-
expressions in the <pv-name-pattern>.

• <asg> is an access security group as specified in the access file. [The default
group is DEFAULT.]

• <asl> is the access security level (0 or 1). These numbers pertain to the settings
for particular fields in a record in an IOC. Permission for level 1 implies
permission for level 0. See the Application Developers Guide for more
information on access security group and access security level.

DENY FROM is not implemented by default when the Gateway is built. It requires a
special switch to be set for the build. It should not be necessary. Use -ignore instead.

EVALUATION ORDER

This will set the evaluation order that is used when a client requests a process variable.
Setting this to "DENY, ALLOW" will allow access to a process variable name that
matches both a DENY and an ALLOW pattern. "ALLOW, DENY" will make a DENY
override an ALLOW for the same variable. (This is the default.)

If DENY FROM is enabled, then matching DENY FROM host-name patterns will
always override matching ALLOW process-variable-name patterns.

Stated another way, the Gateway keeps three lists for: DENY FROM (if enabled),
DENY, and ALLOW. The DENY FROM list is searched first, and if the host name is
found, access is disallowed. If the order is ALLOW, DENY, the DENY list is searched,
and if the process variable name is found, access is disallowed. Then the ALLOW list is
searched, and if the name is found, access is allowed, otherwise it is disallowed.
Disallowed means the Gateway returns that it does not have the process variable when
the Exist Test is called. In addition, for safety, it will not create a connection to an
MEDM.

The lines in the pvlist file are read from bottom to top. The first rule in each list that
matches is used, so the most general rules should be placed first.

DENY / DENY FROM

The Gateway will ignore requests for any process variable that matches the DENY
pattern, depending on the EVALUATION ORDER and whether there is also an ALLOW
rule that matches. This can be used to block the Gateway from responding to groups of
process variables. DENY FROM will block the process variables only for the given
hosts. This can be useful to prevent loops caused by forwarding to other Gateways.
However, the host name lookup for each Exist Test can take considerable time.
Moreover, the same result can be accomplished via the -ignore command-line option. See
the symmetric Gateway configuration below for an example.

ALIAS

This defines a process variable alias and allows it as a pattern for names which the
Gateway should serve. For process variable names that match <pv-name-pattern>, the
Gateway translates the name into a real process variable name and uses the real name as
if it had been the one specified. The <real-pv-name> may contain the special escape
sequences \1 ... \9 which will be replaced by the nth subexpression matched. See a UNIX
book on regular expressions for more information. There is an example in the sample
pvlist file. Access security rules to be used for process variables matched by this pattern
may be specified. If not specified, the defaults are the DEFAULT group and level 1.
Apart from specifying an alias, this rule is functionally the same as ALLOW. Note that a
PV can only belong to one access group and access level. If you specify access to a real
PV via several different ALIAS or ALLOW rules that assign different groups or levels to
the PV, then which of these groups and levels is used is undefined.

ALLOW

This is used to declare process variable names which the Gateway should serve. Access
security rules to be used for process variables matched by this pattern may be specified. If
not specified, the defaults are the DEFAULT group and level 1.

Note

1. Commands are not case sensitive.
2. Patterns use GNU-style regular expressions. (See a UNIX book for information

on regular expressions.)
3. Any process variable not included in an ALLOW command is not allowed access.
4. If no pvlist file is specified on the command line, a default rule ".* ALLOW" will

be created to handle all process variables.
5. The patterns are matched in reverse order; that is, you should always specify

general rules before specific rules.

Put Logging
It is possible to log whenever someone writes to a process variable. (A write is sometimes
called a "put" and a read is called a "get".) To do this you need to specify -putlog on the
command line when the Gateway is started and specify a filename for the put logging.
There needs to be an access security group in the gateway.access file that has a rule with
WRITE and TRAPWRITE specified, for example, "RULE(1,WRITE,TRAPWRITE)".
(The security level could also be 0.) Then whenever there is a write (or put) to any
process variable in that group, it will be logged in the specified putlog file. As with the
log file, this file will be automatically renamed whenever the Gateway restarts. An
example may be found in the sample access file, where writes are logged for process
variables that belong to the GatewayAdmin group. Using the sample pvlist file, these
would be those that fit the pattern "gateway:*Flag".

Beacon Anomalies and Search Requests
A server sends beacons, which are broadcast UDP packets, at regular intervals,
EPICS_CA_BEACON_PERIOD, 15 s by default. The clients, such as MEDM, monitor
these heartbeats. When there is a beacon anomaly, defined as anything that is different
from this regular pattern, the clients reissue search requests for their unconnected PVs.

A client sends search requests when it wants to connect to a process variable. A search
request is a series of 100 UDP packets sent at increasingly longer intervals. It takes
approximately 8 min. to complete the sequence. In most cases a server responds on the
first or second packet; the connection process between the server and the client begins;
and the search sequence ends. However for those PVs that are not found, the potential for
a connection to happen exists for approximately 8 min., as long as the packets are still
going out.

When client gets a hangup message from the server, it closes the TCP connection, the
process variable is marked as disconnected (MEDM screens turn white), and search
requests are reissued. In 3.13 when a client has no communication from the server for
EPICS_CA_CONN_TMO seconds (15 s by default), it sends an "are you there" message
to the server. If there is no reply in 5 sec, it closes the TCP connection, the process
variable is marked as disconnected, and search requests are reissued, the same as for a
hangup. In 3.14, it marks the connection as disconnected, but does not close the TCP
connection nor reissue beacons. The client may get a "Virtual circuit unresponsive"
message. This is in part to prevent search-request storms under bad network conditions.

When a server, including the Gateway comes up, it intentionally broadcasts an irregular
pattern for a short time (a particular form of beacon anomaly) so the clients will know a
new server is online and reissue their outstanding search requests in case it might have
those PVs. The Gateway also broadcasts this irregular pattern when a PV beomes
connected again after having been disconnected and also when access security is reread.
This is so the MEDMs will know to try to reconnect.

For security reasons some network administrators will not allow UDP broadcasts to cross
subnet boundaries. If this is the case, then when the MEDM is on a different subnet than
the Gateway, it will not see beacons at all and will not be able to tell if the Gateway has
come up, This is a common case in large installations. Owing to the length of the search
request sequence, if a server such as the Gateway goes down and comes back up within
approximately 8 min,. the MEDM will reconnect. Otherwise, it will not, unless
something else happens to make it reissue its searches. One such thing is to try to connect
to a new PV. This causes a client to reissue outstanding searches along with the search
for the new one. The latest versions of MEDM and StripTool have a button to try to
reconnect. In any event, Gateway administrators should be careful to not have a long
delay between killing and restarting a Gateway if possible.

Reports

http://www.aps.anl.gov/epics/extensions/medm/index.php
http://www.aps.anl.gov/epics/extensions/StripTool/index.php

The Gateway prints three kinds of reports: (1) the Virtual Connection Report, which
includes all MEDM or other client connections to all process variables; (2) the Process
Variable Report, which includes all process variables grouped by state; and (3) the
Access Security Report, which includes the allowed and denied process-variable patterns
from the pvlist file, gateway.pvlist, by default. The Gateway prints its reports to the
report file, gateway.report, by default, appending them if the file already exists. These
reports can be long.

The reports can be initiated by setting the associated internal process variable, for
example, gateway:report1Flag, to 1. They can also be initiated by sending a USR1
signal to the Gateway. (Use "kill -USR1 <gateway-pid>".). This causes the command
file, gateway.command, by default, to be read and the specified reports executed. The
command file can be modified to do any combination of the three reports, as well as to
reread the access security files. See the -command command-line option for more details
and an example. The Process Variable Report can be executed by sending a USR2 signal.
(Use "kill -USR2 <gateway-pid>".) The Gateway makes a file, gateway.killer, when it
starts. The commands and the correct pids are printed in that file, so you can look at it to
get the appropriate command lines. Signals and the gateway.killer file are not available
on WIN32.

Server Mode
The Gateway can be operated in server mode by specifying -server on the command line.
In this mode a server process is started that in turn starts the regular Gateway process and
then watches it and automatically restarts it if it dies. Using this mode the Gateway can
recover from crashes. The running Gateway can effectively be reset by killing it via the
gateway:quitFlag process variable, by running gateway.restart, or by killing the
process in some other way. When any of these methods is used or the Gateway crashes, a
new instance of the Gateway is started. The server process itself can be killed by setting
the gateway:quitServerFlag, by running gateway.killer, or by otherwise killing the
server process. Then no more regular Gateway processes will be automatically started.

In order to avoid runaway creation of processes, there can only be ten restarts in any ten-
minute interval. If the number of restarts in this interval exceeds this limit, the server will
be stopped and no more processes will be created.

This feature is not available on WIN32.

Gateway Process Variables
The Gateway publishes several process variables, allowing you to control it and monitor
it. By default these have a prefix, which is the name of the host machine, but this can be
changed by -prefix in the command-line options. Here, we will use the prefix "gateway".
See the Introduction for a more detailed description of the states and concepts.

The Gateway internal process variables are not record based as in an IOC. They do have
a DESC field, however. This avoids delays when using PvInfo in MEDM and allows
StripTool to put a description in the legend. In older versions of the Gateway, the internal
process variables used a dot as a separater rather than a colon. When the DESC field was
added, they were changed to use a colon. This makes them more consistent with records
in IOCs, and allows MEDM and StripTool to properly determine the name for the DESC
field. The sample GATEWAY.pvlist file shows how to set aliases if you want to use the
old names. The old names will cause MEDM and StripTool to not correctly form the
name for the DESC field, however. This will cause delays for PvInfo in MEDM, and
StripTool will not display the descriptions in the legend.

gateway:vctotal

This is the total number of VC objects and should be the same as gateway:active, except
for short, transient situations.

gateway:pvtotal

This is the number of PV objects.

gateway:connected

This is the number of connected PV objects, that is, process variables for which the
Gateway has a working connection to the IOC. The connections may be Active or
Inactive. In earlier versions of the Gateway, this was named gateway:alive.

gateway:active

This is the number of Active connections. The connection is Active if an MEDM is
attached to the Gateway and using the process variable

gateway:inactive

This is the number of Inactive connections. The connection is Inactive if no MEDM
connected to the Gateway is using it.

gateway:unconnected

This is the number of PV objects which are Connecting, Dead, or Disconnected. There
is no working connection to an IOC but the PV object is still around. There is no VC
object.

gateway:connecting

This is the number of PV objects which are Connnecting, that is, which have just been
created and are trying to connect to an IOC.

http://www.aps.anl.gov/epics/extensions/medm/index.php
http://www.aps.anl.gov/epics/extensions/StripTool/index.php

gateway:disconnected

This is the number of PV objects which are Disconnected, that is, which were formerly
connected but have lost the connection.

gateway:dead

This is the number of PV objects which are Dead, that is, which did not connect and are
scheduled for removal.

gateway:fd

This is the number of file descriptors in use by the gateway. This process variable will
only be available if registering file descriptors is enabled in the Gateway when it is built.
Not registering them appears to significantly decrease the CPU usage, so this process
variable will probably not be available. It requires a special switch to be set when the
Gateway is built.

gateway:clientEventRate

This is the rate in Hz at which client events are happening. Client events include such
things as attempted read and writes, connection changes, value changes, and access rights
changes. They relate to communication from the IOC.

gateway:clientPostRate

This is the rate in Hz at which events are posted from the VC object to CAS and hence to
the MEDMs. It is independent of the number of MEDMs (providing there is at least one).
It tends to be similar to the clientEventRate; but only value changes cause post events.
The other events do not contribute.

In earlier versions of the Gateway this was named gateway:postEventRate.

gateway:existTestRate

This is the rate in Hz at which the Gateway receives search requests. For each search
request, it has to do an Exist Test to see if it has the process variable or not. If it is not
already connected to the process variable, it creates a PV object which itself initiates a
series of search requests to the IOCs. See the Introduction for more information on search
requests. Exist Tests put a load on the Gateway. For process variables that do not exist,
there can be many unsuccessful Exist Tests. See CaSnooper for a tool to monitor Exist
Tests.

gateway:loopRate

http://www.aps.anl.gov/epics/extensions/caSnooper/index.php

This is the rate in Hz at which the Gateway executes its main loop. The main loop
consists of a call to CAS followed by a call to CAC followed by Gateway housekeeping
routines. The call to CAS lasts for 10 ms unless there is activity on a file descriptor (in
which case it returns early) or if it takes longer than that to process its callbacks (in which
case it returns late). The call to CAC takes as long as it takes to do the work required. The
Gateway housekeeping typically uses comparatively little time. As the Gateway becomes
loaded down, the calls to CAS take longer and so do the calls to CAC until eventually all
the available CPU time is used. As the load increases, the loopRate tends to decrease.
However, no load can have a lower loop rate than with some load because the call to
CAS waits the whole 10 ms. It is a rule of thumb that CAC should be called at least every
100 ms. By examining the loopRate you can tell if this is happening. That is, it should
remain above 10 Hz.

gateway:cpuFract

This is the fraction of the available CPU time that is being used by the Gateway; that is,
the CPU time divided by the elapsed time. It is a good monitor of the load on the
Gateway. On WIN32 the cpuFract is always 1 and not useful. This is owing to their
implementation of the clock() function. On Linux, threads are separate processes, and the
CPU time for them is not included, only that for the main process. This is because clock()
on Linux returns only the CPU time for the process that called it. If there is more than
one processor, the cpuFract could exceed unity. Note that Top on Linux shows the CPU
time divided by the number of processors and optionally lists all threads separately. Thus,
on Linux, the Gateway cpuFract should agree with the Top value for the main Gateway
process multiplied by the number of processors. You can use Top to monitor the CPU
time for all the Gateway processes if you need that.

gateway:load

This is the load average for the machine on which the Gateway is running. The load
average is the number of processes in the system run queue averaged over one minute. It
is implemented by the getloadavg() function, and you can look at the man page for more
information. It is the same as the process variable with the same name in IOCs. It is
another way to monitor the load. On WIN32 it is always zero and not useful.

gateway:serverEventRate

This is the rate in Hz at which CAS processes events. It tends to be the clientEventRate
multiplied by the number of MEDMs looking at the process variable.

gateway:serverPostRate

This is the rate in Hz at which events are posted to CAS. If the Gateway is keeping up,
this will be very close to the serverEventRate. If not, it will be higher and all posted
events will not have been processed.

gateway:commandFlag

Writing a 1 to this process variable causes the command file to be processed. The process
variable is reset to 0 after the Command File is processed. See the description of
command-line arguments and the Reports section for a description of the command file.

gateway:report1Flag

Writing a 1 to this process variable causes Report 1 to be appended to the report file.
Report 1 is the VC Report.The process variable is reset to 0 afterward.

gateway:report2Flag

Writing a 1 to this process variable causes Report 2 to be appended to the report file.
Report 2 is the PV Report.The process variable is reset to 0 afterward.

gateway:report3Flag

Writing a 1 to this process variable causes Report 3 to be appended to the report file.
Report 3 is the Access Security Report. The process variable is reset to 0 afterward.

gateway:newAsFlag

Writing a 1 to this process variable causes the access security files, by default
gateway.access and gateway.pvlist, to be reread. The process variable is reset to 0
afterward. There is currently a problem on some platforms that files can only be opened
using file descriptors 0 to 255. If there are many CA socket connections, there may not be
a file descriptor in this range available. In that case the access security file will not be
read and an error will appear in the log. There is a workaround in the Gateway for this
problem for Solaris.

gateway:quitFlag

Writing a 1 to this process variable causes the Gateway process to exit. If the Gateway is
in server mode, it will be restarted as a new process. In that case it functions more as a
reset.

gateway:quitServerFlag

Writing a 1 to this process variable causes the Gateway server process to end, also ending
the current gateway. No more Gateways will be started by the current server. If the
Gateway is not in server mode, it has the same effect as gateway:quitFlag.

Alarm Handler

The Alarm Handler works through the Gateway. The following discussion is for those
who understand Channel Access in more depth: For most process variables the Gateway
can get all of its information in a single DBR_TIME_xxx structure, for example,
DBR_TIME_DOUBLE, where xxx is the native type of the process variable. These
structures are defined in db_access.h. The Gateway establishes an event handler for this
structure and gets notified when it changes and modifies it when it needs to be changed.
There is only one structure per process variable. This structure does not contain all the
information needed by the Alarm Handler, so the Gateway need to keep track of another
structure, DBR_STSACK_STRING. This is only done when needed. A related issue is
that the Gateway does not handle the RTYP field in a process variable from an IOC. To
do this it would have to handle DBR_CLASS_NAME. Each structure the Gateway needs
to handle adds to its overhead.

GUI Interface
Owing to its published internal process variables, you can monitor and control the
Gateway via MEDM or another tool. You can set the writable internal process variables
(if you have access) and cause the Gateway to print reports, reread the access security
file, or quit. This is an example MEDM screen:

You could also add a Shell Command button to run a script to start the Gateway. The
MEDM ADL file for this screen is included in the Gateway distribution as hydraStats.adl.
Typically the Exec buttons operate so fast that you will not see the value change from 0,
and the Cancel button is of little use. However, the chain of events is that the Exec button
sets the process variable to 1, the Gateway notices this during the cleanup phase of the
main loop, the appropriate action is executed, and the process variable is reset to zero.

It is convenient to monitor and possibly record the state of the Gateway using StripTool.
You could, of course, use any other EPICS monitoring tool of your choice. This is an
example of using StripTool:

The StripTool configuration file for this image is included in the Gateway distribution as
hydra.rate.stp. Note that for the example shown, the cpuFract is low, the loop rate is high,
and the postRate's and eventRate's are nearly equal, indicating the Gateway is healthy.

This is a screen that shows the status of all of the APS Gateways:

http://www.aps.anl.gov/epics/extensions/StripTool/index.php

(Click here for full-size image)

The values for inactive and dead are not being used because these Gateways are mostly
using Gateway 1.3, and those process variables did not exist for Gateway 1.3. This
Gateway is running on the machine Hydra. The values for Hydra84 and Rhea are white
because these Gateways are not visible from Hydra. Similarly, the Gateways running on
Rhea and Hydra84 do not see the other two. The Gateways labeled r431 through r438 are
reverse Gateways that allow the internal process variables for all the Gateways 1-34 to be
seen on one MEDM screen. See below for a discussion of Reverse Gateways.

The existTestRate for the reverse Gateways, whose server side is on the machine
network, is similar to that seen by all IOCs and servers on the machine network and is
used for monitoring channel access activity on that network.

Gateway Configurations

Symmetric Gateways

The following shows a configuration in which each of three networks has a Gateway that
finds process variables in IOCs on the other two networks. This is a configuration used at
BESSY.

However, note that if you are on say, Net A, and using the Gateway whose server is on
Net A, then the client side of this Gateway sees the server side of the other two
Gateways. However, these Gateways each see servers on Net A and consequently see the
Net A Gateway. Therefore, the Net A Gateway can see process variables on IOCs on Net
B and Net C directly and also through the other two servers. To prevent this loop, each
Gateway must be configured to not allow process variables from the other two Gateways.
This can be done through the -ignore command-line option.

Reverse Gateway

The following configuration shows a reverse Gateway. In this configuration the four
networks, Net A, Net B, Net C, and Net D, each has a Gateway that gets process
variables from Net Z. This is a configuration used at Argonne. Net Z is the machine
network, and the other networks belong to individual experimental teams. These teams
have read access to the machine network and whatever access they want to the IOCs on
their own network. Argonne at present has eight of these configurations, most with four
Gateways plus a reverse Gateway. Owing to the reverse Gateways, the internal process
variables for all these Gateways can be seen on one MEDM screen, as in the example
above, through a Gateway that sees process variables on the machine network. One does
not need (and typically does not have) access to each of these private networks.

To prevent looping, the reverse Gateway only allows the internal process variables from
the other four Gateways and itself, and each of the other Gateways denies the internal
process variables from the other three. As a result these four Gateways do not see internal
process variables from the other three. They do see the ones from other configurations of
four. This limitation could be overcome by using one reverse Gateway for every regular
Gateway. Note that another Gateway that is not on a network with the client side of any
of the reverse Gateways does not need to deny anything and can see all the internal
process variables from any of the Gateways in any of these configurations (as in the
example above).

Alias Gateway
It is possible to use the Gateway just to provide aliases for process variables, and the
following configuration shows an alias Gateway. Only one subnet is needed. If an
MEDM asks for the alias name, it is found through the Gateway. If it uses the real name,
it is found through the IOC. The two names must be different to avoid finding the same
process variable in two different servers.

Channel Access
Channel Access [CA] is the part of EPICS that governs communication between servers
and clients. The two major parts are the Channel Access Server [CAS] and Channel
Access Client [CAC, sometimes also just CA since there was originally no CAS]. A
CAC, such as MEDM, uses functions in the CAC library for communication with EPICS
and provides its own specific functionality on top of that. A server uses the CAS library
for communication with EPICS and also provides its own specific functionality. A
program that uses CAS is called a Server Tool to distinguish it from the CAS library
itself. Servers that use CAS are called Portable Servers. The Gateway is a ServerTool, a
Portable Server, a Channel Access Server, and also a Channel Access Client. There are
also Soft IOCs, which, like Portable Servers, run on platforms such as Solaris, WIN32,
and Linux. These do not currently use CAS and are not Portable Servers.

You can find out more information by looking at the EPICS Channel Access Reference
Manual and the Application Developers Guide. There is a version included with each
EPICS release. They can be found by starting at IOC Software in the EPICS
Documentation and following links to the release and point release of the desired EPICS
base.

Acknowledgements

http://www.aps.anl.gov/epics/modules/index.php
http://www.aps.anl.gov/epics/docs
http://www.aps.anl.gov/epics/docs

Jeff Hill of Los Alamos National Laboratory, the person responsible for Channel Access,
was of great help in developing the Gateway throughout its entire development.

Copyright
The Gateway is governed by the EPICS Open License.

http://validator.w3.org/check/referer
http://validator.w3.org/check/referer
http://www.aps.anl.gov/epics/license/index.php
http://validator.w3.org/check/referer

	Gateway Users Guide
	Kenneth Evans, Jr.
	September 2005
	Table of Contents
	Introduction
	Overview
	History

	Starting the Gateway
	Using the Gateway
	Error messages
	Building the Gateway
	Access Security
	Put Logging
	Beacon Anomalies and Search Requests
	Reports
	Server Mode
	Gateway Process Variables
	Alarm Handler
	GUI Interface
	Gateway Configurations
	Symmetric Gateways
	Reverse Gateway

	Alias Gateway
	Channel Access
	Acknowledgements
	Copyright

