A Product Life Cycle Information Management System Infrastructure with CAD/CAE/CAM, Task Automation, and Intelligent Support Capabilities

Harold P. Frisch

NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract. NASA is not unique in its quest for a product development cycle that is better, faster, and cheaper. Major advances in technical information management will be required to achieve significant and obvious process improvement goals. A vision of order for the associated systems of unstructured and unconnected files and databases is the first step towards organization. This is provided by examining the basic nature of technical information, item relationships, change and knowledge processing demands to be placed on any management system that supports all aspects of data representation and exchange during the product's full propose, design, develop and deploy life cycle. An infrastructure that partitions product technical information relative to the perspectives of creation time phase, type and the cause of change provides sufficient structure. This enables maximal use of existing CAD/CAE/CAM/… software tool systems and digital library data mining capabilities. Introducing the concept of packaging technical information in a machine interpretable manner, at key life cycle deliverable and product review milestone points, provides the fastener needed for the attachment of the relevant soft computing and intelligent support capabilities discussed at the NATO Advanced Study Institute on Soft Computing and reported elsewhere within this volume. It also provides the basis upon which task automation capabilities can evolve.

1. Partitioning Technical Information

Technical information evolves in 3 stages:

· Computation with metaphors: This is the product creation process. Within an organization it takes place within the domain of social communication. In reference (1(evidence is presented to suggest that both communication and understanding in a social environment is carried out via metaphors. If these arguments are accepted it follows that the project creation process is effectively a metaphorical feedback process that stabilizes around a fuzzy, word, definition of the product.

· Computation with words: This is rarely done, in a strict mathematical sense. However, it is argued within the conclusions of Zadeh's 1996 paper, reference [9], that “computing with words is likely to emerge as a major field in its own right. …there is much to be gained by exploiting the tolerance for imprecision.” To compute with words, selected design parameters are assigned linguistic rather than numeric measures. These fuzzy word descriptors form the natural connective linkage between metaphoric and numeric product data representations. Computing with words within this interface domain enables imprecision and the tolerance for imprecision to be exploited. The associated first order sensitivity and design trade-off studies accomplished with fuzzy words provides deep design insight and has the potential of providing early design value checks.

· Computation with numbers: This spans the complete, business as usual, womb-to-tomb spectrum of CAx
 software tool capabilities.

A vision of order within the complexity of a universe of discourse is the essential first step toward the development of an infrastructure. The most natural approach to ordering life cycle technical information is to partition it relative to the perspectives of time and type.

· Reference [5] details the NASA spacecraft system engineering process. By placing this work in a more generic setting, it is reasonable to suggest that a product's life cycle can be partitioned into 4 time phases:

1. Propose the product: Develop a product proposal which maximizes the ability to satisfy a set of broadly stated mission goals while minimizing life cycle system costs.

2. Design the product: Define product's mission, its operational support system, establish and refine a baseline design,

3. Develop the product: Establish final design, fabricate subsystems, integrate them into the system, test, validate, verify and establish mission support infrastructure.

4. Deploy the product: Prepare and deploy the product, verify its operation, carry out mission objectives and dispose of product at mission end of life.

· Technical information may be partitioned into 4 type categories:

1. Unstructured collections of reports. These may be formal or informal. They are essentially text but contain a generous mix of graphics, tables, figures and equations.

2. Drawings and schematics from many CAD software systems.

3. Input/output data files from many CAE and CAM software system.

4. Technical data packages: These are focused collections of structured technical information. For example:

· Specifications & requirements for product and subsystems,

· Plans & procedures for product and subsystems,

· Baseline system & subsystem descriptions,

· System \& subsystem reviews,

· Test plans, procedures and results,

· Subsystem interface integration standards,

· Interface control documents,

· Subsystem function modeling reports.

Unstructured reports are best collected within digital libraries which have extensive data mining capability, see reference [4] These enable complex queries to be launched with query results returned to the user as images of the identified pages on their desktop computer screen. Cut and paste tools enable timely information reuse, without transcription error. Query tools which simply do key word searches and return a list of reports that contain the key words are totally inadequate; this is not data mining.

CAx drawings, schematics, and input/output data files come from many different software systems. These systems usually provide an extensive range of options for viewing and databasing. Furthermore, user groups usually have a full range of legacy and proprietary post processing, viewing, databasing and data reformating tools for moving detailed modeling data between major CAx software systems
,
 Supporting the full range of associated data representation and exchange problems are several STEP
 standard projects in America, Europe and Asia
,
,
,
,
 .

The author strongly supports these efforts to enhance data communication between software systems, at the detailed modeling level. However, it is the author's opinion that managing the contents of technical data packages, with their formally defined views of system, subsystem, interface and function is the true door to major life cycle cost saving potential. Task automation, software reuse, shortening and focusing review meetings, corporate knowledge capture, infusion and reuse are all possible with today's state of the art in computational science and soft computing
,
.

1.1 Accommodating Information Relationships

Technical information accumulated over a product's life cycle can be viewed as an aggregation of information items linked together through a complex network of soft, fuzzy and crisp relationships.

The organizational group with the best knowledge of these relationships, the ability to avoid their rediscovery, to innovatively use them for system analysis and process automation will successfully meet the significant and obvious process improvement goals of “better, faster, cheaper.”

It is easy to get lost within the microscopic views of subsystems and the details of their associated theory, modeling data and computational support systems. It is therefore important to view relationships from the macroscopic perspective that is captured within the technical data packages associated with reviews and summary reports.

Relationships between items of information within and across technical data packages can be categorized as:

· First principle relations. These are dictated by the product's configuration and the laws of nature. These cannot be violated under any circumstances. These range from trivial; e.g., product mass shall be a positive real number, to exceedingly complex dynamic cross coupling relations within a multidisciplinary system model.

· Standards. These are dictated by international, national and corporate standards setting organizations. They are crisp and their violation normally requires detail support analysis and an extensive approval cycle.

· Best practices, corporate knowledge and lessons learned. These relationships are inherently fuzzy. The machine interpretable representation of this knowledge and its utilization requires the instantiation of knowledge expressions with linguistic measures and evaluation via computation with words, see reference [9].

· Design tradeoffs. These attempt to minimize cost while maximizing performance. They are a mix of crisp, fuzzy, probabilistic, random, etc. relationships that are difficult to define and computationally evaluate.

1.2 Accommodating Information Change

Product technical information is dynamic. Fundamental to its life cycle accumulation is “change”. If knowledge is to be linked with information then change too must be categorized. This can be done relative to the perspective of its “cause”. The following 4 causes of change are considered:

· Evolutionary change: This is associated with the normal course of events during the product's propose, design, develop and deploy life cycle process. Evolutionary changes are discontinuous and distributed across the system. Normally these are collected at irregular time intervals and released as a configuration data update. The update is effectively time tagged by version number. Versioning tracks change while allowing users to have a fixed baseline reference model over programmatically convenient time periods. To support the “version release” process, an intelligent support system can be used to check for relationship violations between design parameters.

· Design change: This is introduced to improve product performance or to solve a problem uncovered during design analysis, testing or operation. There are lessons learned, design change rationale and other items of information important to manage for future reference and reuse.

· Dependency change: Design parameter dependencies transition from a state of softness, during initial trade studies, to a state of crispness as the life cycle matures. If one attempts to model this change as a continuous process one loses the ability to associate dependency change with an associated life cycle time phase and technical data package contents.

Dependency within and across data packages evolves as follows:

1. Design parameters start from a single point expert's best estimate and end as the output of a complex sequence of computational, logical and fuzzy reasoning procedures. From this perspective, definitions of design parameter attributes remain fixed but their instantiation source changes.

2. Attempts to minimize cost while maximizing function involve a complex intertwined mix of physics, mission viability and performance tradeoff considerations. From this perspective, design parameter dependencies transition from a mix of soft and crisp dependencies during product proposal preparation and design, to a set of crisp dependencies during product development and deployment.

· Knowledge change: Design rules, best practices, corporate knowledge and other items of knowledge base type information are usually linked to phases in the life cycle process. As the process matures higher fidelity knowledge constructs become relevant and must be introduced into the intelligent support system. Once articulated in clear text and translated into a machine readable format computational intelligence can be used to initiate the actions which provide intelligent support. This is not an easy task, since knowledge is usually derived from an expert. While the expert instinctively provides accurate and timely evaluations via mental computation with metaphors; they find that the articulation of these metaphors into fuzzy words, relations, constraints and numerics is extremely difficult.

1.3 Using STEP To Model Information

The ability to model information in a machine parsable format provides the fastener necessary to attach intelligent support and a variety of soft computing capabilities to a technical information management system. The EXPRESS information modeling language provides the bridge between the clear text representation of information and its machine interpretable representation. The EXPRESS language is an international standard and it is a Part of the ISO 10303 STEP standards for Product Data Representation and Exchange

It is assumed that a clear text definition of information to be collected within technical data packages can be developed. If this can be obtained then the associated information can be modeled via EXPRESS and presented as a “technical data package” in a STEP compatible manner
. The technical information component associated with change can also be presented in a STEP compatible manner
.

The most difficult aspect of the technical data packaging problem is to develop a textural definition which is clear, unambiguous, complete and nonredundant. Unaided, this is a near impossible task. The language EXPRESS was specifically designed to aid this task. Once information is translated from a clear text definition into the machine readable language EXPRESS, the EXPRESS source code is compiled. The compiler returns an error list of ambiguities, incompleteness and redundancies. This list is then used to both adjust the textural definition and the EXPRESS source code. This feedback process implies that clear text development and its EXPRESS translation is an interactive process.

2. Information Modeling

The ISO 10303 STEP standards provide the enabling technology needed for product data representation and exchange. While IGES, the Initial Graphics Exchange Specification, was developed with the direct need for human intervention to assure correct translations, STEP is being developed to be machine to machine processable with no human intervention. See references [3] and [6].

STEP provides a representation of product information along with the necessary mechanisms and definitions to enable product data to be exchanged among different computer systems and environments associated with the complete product life cycle process.

STEP uses the formal information modeling language EXPRESS to specify product information in a computer readable manner. This formal language enables precision and consistency of representation and facilitates the development of applications. STEP also uses application protocols (APs) to represent generic classes of information relevant to broad application areas.

The overall objective of STEP is to provide a mechanism that is capable of describing product data throughout the life cycle, independent from any particular system. The nature of this description makes it suitable not only for neutral file exchange, but also as a basis for implementing and sharing product data bases and archiving. The ultimate goal is an integrated product information database that is accessible and useful to all the resources necessary to support a product over its life cycle.

2.1 EXPRESS – Language for Information Modeling

The language EXPRESS (ISO 10303 Part 11) is the international standard language for information modeling. EXPRESS is a data-specification language as defined in ISO 10303 Part 1: Overview and Fundamental Principles. It consists of language elements which allow an unambiguous-object definition and specification of constraints on the objects defined
. Reference [7] provides an excellent introduction to the language with illustrative examples.

Within this language the schema contains the information model relative to a focused universe of discourse. The entity defines some atomic level of information associated with the product within the universe of discourse and attributes provide the properties of the entity relative to all relevant product views. Context, rules, relationships, functions and constraints between entities and their attributes can be defined within and across schemas.

The following is an example of information modeling with EXPRESS:

SCHEMA car_trace;

ENTITY history;

item
: car;

transfers
: LIST [0:?] OF transfer;

END_ENTITY;

ENTITY transfer;

item
: car;

prior
: owner;

new
: owner;

on
: date;

INVERSE

must_be_in_history : history FOR transfers;

END_ENTITY;

ENTITY car;

model_type
: car_model

made_by
: manufacture;

mnfg_no
: STRING;

registration_no
: STRING;

production_year
: date;

UNIQUE

joint
: made_by, mfg_no;

single
: registration_no;

END_ENTITY;

ENTITY car_model;

name
: STRING;

made_by
: manufacture;

consumption
: REAL;

END_ENTITY;

ENTITY date;

day
: INTEGER;

month
: INTEGER;

year
: INTEGER;

WHERE

days_ok
:

{1 <= day <= 31};

months_ok
:

{1 <= month <= 12};

year_ok
:

year > 0;

date_ok
:

valid_date(SELF);

END_SCHEMA;

The above example illustrates the definition of entities, attributes and associated constraints. It is part of a model for the process of tracking automobile registration. The entity history provides the arbitrary length transfer list. The entity transfer defines exactly what information is recorded with each change of ownership. The entity car_model defines car model information. The entity car defines exactly what information is recorded for each car. Within the entity car two uniqueness constraints must be satisfied, registration numbers must be unique and manufacture number per manufacturer must be unique. The entity date has constraints on day, month, year integer value and also uses the function valid_date (not shown) to check for proper day-month relations and leap years.

Hopefully this short example provides sufficient inference material for the reader to develop the suspicion that the language might have sufficient information modeling capability to form a bridge between a clear text definition of technical information and a machine readable translation, that is also human readable.

2.2 Technical Data Packages

One method for collecting information is to design technical data collection packages that support the life cycle need to gather, review and distribute design information in a timely manner. A process enhancement approach is to design the packages to compliment established documentation delivery requirements and product reviews. The packaged data provides a particular view of product information at a particular time point in the life cycle process. ISO 10303 AP 232 – “Technical Data Packaging Core Information and Exchange” provides the structure to package and relate groups of product information so that configuration controlled exchanges can be achieved. This Application Protocol provides an information structure that meets the requirements for collecting, organizing and managing the exchange of a complex set of data files and databases associated with the technical information being packaged.

2.3 Life Cycle Change Management

Product life cycle information management includes the exchange of product data relative to the identification of a problem and its causes. Product life cycle change management includes the identification of the reason for change, its cause, the approval and performance of the resulting changes to the product, and the authorization of corrective actions to prevent reoccurrence of the anomaly. ISO 10303 AP 208 – “Life Cycle Management – Change Process” provides the structure necessary to support the management of change with the product and its subsystems.

3. Baseline Spacecraft System Definition

Section 1 provides a list of focused information collections that could be transformed into STEP compatible technical data packages. For any organization with a well-established product line significantly large segments of the focused information collections are repeated with each new product. These repeated segments can be expressed in such a manner that the information template will satisfy the data recording needs of all products within the product line.

The output of the NASA spacecraft proposal development phase provides an illustrative example. The deliverable is a definition of the baseline system. It is a well structured collection of information developed by expert teams representing the subsystem design and development groups shown in Fig. 1. Relative to the needs of the systems engineer this view of the baseline system is complete and unambiguous. To support this proposal development process various NASA groups are developing highly advanced software support systems
,
,
.

Fig. 1. System’s engineering view of NASA spacecraft subsystems

Irrespective of proposal development approach the resultant baseline system is effectively defined by a template of information, the items of which are referred to as design parameters. During the proposal development stage this template is instantiated with the best estimates that the expert teams and intelligent support aids can provide. Once this phase ends the best estimates are refined by detailed work carried out within subsystem design and development groups.

Baseline subsystems can also be defined by templates of information and technical data packages developed for them.

From a technical information management perspective it is important to note where the information comes and came from and how it was developed. The system must be able to both identify the initial creator team and all appropriate links and pointers to instantiation procedures.

Relative to STEP, within the baseline system template, each system design parameter and all associated elements of information become EXPRESS entities. Each entity has an associated list of attributes. These support the viewing needs of the different design and development groups. As will be shown, additional attributes can be added to support knowledge infusion

The language EXPRESS defines the information elements of the template while ISO 10303 AP 232 – “Technical Data Packaging Core Information and Exchange” provides the additional structure needed to track the information creation trail. Who did what, when, why, what were the results and who approved it?

As the volume of product technical information accumulates the desire to infuse knowledge and intelligence into the process becomes a necessity. Database maintenance becomes a more and more difficult process. Data redundancy, ambiguity and completeness are critical uses requiring intelligent support aids. Furthermore, if the product is complex, intelligent aids are desired to support cross department and cross disciplinary design checking.

3.1 Capturing Intelligence

Intelligence is the capacity to acquire and apply knowledge. During one of Zadeh's NATO/ASI lectures it was suggested that the subject domain of artificial intelligence is based upon hard computing. That is, quantitative, precise and formal computation with numbers. It was also suggested that the subject domain of computational intelligence is based upon soft computing. That is,qualitative, imprecise and informal computation with words. Both subjects areas are based upon the assumption that acquired knowledge can be presented in some machine readable format.

The author proposes to take one step further into the domain were acquired knowledge is not machine readable. In this domain knowledge is in the format of metaphors stored in the minds of product experts. It is suggest that creative intelligence is based upon computation with metaphors.

This concept aids in understanding the process and difficulties associated with acquiring knowledge from experts. The concept implies that an intelligent support capability must first translate the metaphors of experts into machine readable constructs of hard computation numbers and soft computation words. It is not difficult to be convinced that this is very difficult. One can also be convinced that, for the foreseeable future, the creation process will remain in the minds of the experts; while, what is mundane to the expert can be automated.

The latter has been proven many times over by the CAx software development

community.

The key to process automation is to make provision for the machine readable acquisition of all knowledge needed to make tasks within the product life cycle process “mundane”. If the task is mundane to the expert and if all information needed for its automation is databased; then, it can be entered into the “task to be automated” queue.

3.2 Knowledge Representation

The dictionary definition of knowledge
 goes well beyond what today's technology can hope to represent in a machine readable format. This contribution bounds “knowledge representation” by the tools and capabilities available for its instantiation within an information management system.

To illustrate a method for infusing knowledge into such a system, consider the need to provide linguistic descriptors to the entity car, defined in Section 2.1, and label them car_body_condition, car_engine_condition and car_classification. The attributes car_body_condition and car_engine_condition are subjective linguistic measures provided by an inspector. The attribute car_classification is another linguistic measure. It may be provided directly by an appraiser using the estimates of the inspector or it may be computationally inferred from the inspector's estimates in combination with other available information such as car model, age, manufacturer, owner history, etc. Within the insurance industry this is the claims adjustment process.

The ability to automate the instantiation of the attribute car_classification requires an ability to reason in the face of uncertain information. This capability is based upon the use of fuzzy sets, possibility theory and approximate reasoning as outlined in references [2] and [8]. It requires an ability to aggregate fuzzy subsets and to use fuzzy sets to constraint variables.

The knowledge representation problem reduces to the need to supply all information needed for the operations of fuzzy set aggregation and for the statement of propositions. The following definitions for fuzzy sets and propositions are used.

· Assume X is a set serving as the universe of discourse. A fuzzy subset A of X is associated with a characteristic function

 such that

(1)

In the framework of fuzzy set theory the characteristic function is generally called the membership function associated with the fuzzy subset A. This terminology stresses the idea that a fuzzy set is defined by the pair of points x and

(x). For every value of x within the universe of discourse X there is a different degree of belonging to the fuzzy set A. The degree of belonging is defined by

.

The following EXPRESS code captures this definition of fuzzy subsets and membership functions within the context of the above example:

ENTITY car_condition_set;

SUPERTYPE OF (ONEOF(trash, poor, fair, average, good, very_good, mint));

universe_of_discourse
: car;

constraint_type
: constraint_types;

END_ENTITY;

ENTITY trash;

SUBTYPE OF (car_condition_set);

membership
: membership_function;

END_ENTITY;

etc.

ENTITY car_class_set;

SUPERTYPE OF (ONEOF(junker, budget, economy, mid_range, family_range, deluxe, luxury));

universe_of_discourse
: car;

constraint_type
: constraint_types;

END_ENTITY;

ENTITY junker;

SUBTYPE OF (car_class_set);

membership
: membership_function;

END_ENTITY;

etc.

ENTITY membership_function;

graph
: LIST(0:?) x_mu_coordinate;

END_ENTITY;

ENTITY x_mu_coordinate;

x_coordinate
: REAL;

mu_coordinate
: REAL;

WHERE

0.0 <= mu_coordinate <= 1.0;

END_ENTITY;

In the above code the entities car_condition_set and car_class_set are supertypes. Their attributes universe_of_discourse and constraint_type are inherited by each of their respective subtypes. The subtype entities trash, poor, ... and junker, budget, ... are the fuzzy subsets of the universe of discourse. Each will have a membership function. The membership function is not inherited since it will be different for each fuzzy subset within the universe of discourse.

The entity membership_function provides an example of how the EXPRESS language enforces consistency. The EXPRESS specification requires that the function be databased as linear segments connecting the listed set of points. The entity x_mu_coordinate defines the point

 as a real number pair and bounds

within the interval (0,1(. If users wish to communicate to the database using other functional formats “user friendlies” must be provided. These are written using the programming objects that can be derived from the EXPRESS specification. This enables views to be tailored to in-house corporate preferences, while leaving the database untouched and readable by foreign groups having access to the EXPRESS specification.

· A proposition in a natural language is viewed as a network of fuzzy constraints. Upon aggregation, the constraints which are embodied in the proposition result in an overall fuzzy constraint which can be represented as an expression of the form

X is R
(2)

where R is a constraining fuzzy relation and X is the constrained variable. The generalized constraint is represented as

X isr R
(3)

where “isr” is a variable which defines the way in which R constrains X, see reference [9]. The “isr” variables identify constraint relation type. This information is required for the operations of fuzzy subset aggregation. The associated keywords are identified via the semantic construct constraint_types defined by the TYPEing operator of EXPRESS.

The following EXPRESS code captures this generalized definition of constraint type by providing an enumerated list of allowable constraint relation types:

TYPE constraint_types = ENUMERATION OF

(equal, possibilistic, conjunctive,

probabilistic, usuality, random_set,

random_fuzzy_set, fuzzy_graph,

rough_set);

END_TYPE;

3.3 EXPRESS – Not a Computing Language

The language EXPRESS is not a computing language. It effectively provides the template for information to be stored within an object oriented database. Within this context knowledge representation via the statement of propositions is accomplished during database instantiation. The following EXPRESS code provides the necessary template for car condition and appraisal knowledge representation. It uses the above EXPRESS definitions for fuzzy subsets and adds 3 new attributes to the attribute list of the entity

ENTITY car;

model_type
: car_model

made_by
: manufacture;

mnfg_no
: STRING;

registration_no
: STRING;

production_year
: owner;

car_body_condition
: car_condition_set;

car_engine_condition
: car_condition_set;

car_classification
: car_class_set;

UNIQUE

joint
: made_by, mfg_no;

single
: registration_no;

END_ENTITY;

The entity car now contains three linguistic variables that may be instantiated with the fuzzy subsets identified in the respective “SUPERTYPE OF” lists of the entities car_condition_set and car_class_set. The associated database instantiation process is the proposition statement process.

It important to note that EXPRESS provides for the modeling of information. How it is to be used is of no concern to EXPRESS. In this example, the attribute car_classification may be provided directly by an appraiser or it may be derived via the fuzzy inference techniques associated with the theory of approximate reasoning.

3.4 Link to Soft Computing

The introduction of linguistic variables to an entity's attribute list, with an enumerated list of associated fuzzy set names, provides the necessary link to the realm of soft computing. Entities which must be viewed from several perspectives (mass, temperature, size, ...) will have several associated linguistic variable descriptors.

Attribute instantiation is the first problem. In many situations these are simply estimated via expert experience. In other situations a body of information exists which will allow the techniques of fuzzy cluster analysis to be applied to the attribute instantiation process.

Knowledge representation is the next problem. This is enabled by soft computing's ability to compute with words. Complex IF … THEN … word rules can be set up and evaluated via the theory of approximate reasoning. This can

· Support the engineering review process by creating a library of the IF … THEN … design rules used by the experts during the review process. These can be linked with the technical information management system's object oriented database to continuously perform background disciplinary and cross disciplinary checks on all baseline system design variables as they are entered into the system.

· Support the launching of data mining queries to a digital library for background information to be checked when certain design conditions are encountered. For example, when design parameters near a past region of anomalous or reduced performance.

· Support the product proposal creation and design process by linguistic sensitivity analysis. This analysis yields the allowable linguistic ranges for design parameter variation. This knowledge can complement and add insight into the results obtained by traditional, numerical, sensitivity analysis.

· Automate the checking for standards, best practices and lessons learned violation.

3.5 Computing with Words for Design Insight

In a metaphoric sense, consider the rectangular matrix equation

(4)

were {x} contains numeric measures of design parameters, and {b} contains numeric measures for design requirements, cost and performance objectives. The rectangular matrix [A] captures all design parameter dependencies associated with the physical and natural laws associated with modeling product requirements, cost and performance. The design process attempts to find an optimal solution to {x} relative to the measures contained in {b}. Of course the actual design process is more complex and carried out differently; but, this is its metaphoric essence.

Now let the elements of {x} and {b} contain linguistic measures. Matrix [A] still captures all design parameter dependencies however the operations of summation and multiplication must now be replaced by fuzzy constraint aggregation and the operators used for generalized constraint specification, as defined in reference [9].

At a metaphoric level, one does not need to understand exactly how linguistic constraints are defined and aggregated to see that a powerful, insight rich, capability is evolving in the soft computing community.

The design equation [A]{x}

{b} defines performance, realizability, manufacturability, etc. The inability to find a linguistic solution for {x} implies a product design with either a “null” or a single point solution in design space. This implies that, for the defined mix of requirements, performance and cost objectives, all possible product designs will have the fundamental property that they will not be robust enough to satisfy the desired mix of objectives. The key here is that the linguistic solution {x} is not a point solution; it is a fuzzy region in design space. This has much deeper interpretive meaning since the size of the fuzzy region can be directly associated with design solution robustness.

Computing with words has the potential for replacing numerical sensitivity analysis via parameter variation with a one step process that defines the fuzzy region in which the optimal design solution exists.

4. STEP – Subsystem Interface Integration

The STEP-SII (Subsystem Interface Integration) project argues that subsystem interface specifications are technical information and therefore they too can be presented in a machine readable manner via EXPRESS. In this format the interface specifications become complete, unambiguous and nonredundant; a goal that is exceedingly hard to achieve via traditional textural documentation.

Figure 2 provides a big picture view of the STEP-SII project. The process starts with a clear text definition of a subsystem's interface. The text of this Interface Control Document (ICD) is then translated into the EXPRESS language. Once in EXPRESS a variety of commercial software tools
,
 are available to provide access to object oriented databases and objects for use with programming languages such as C++ and JAVA. The EXPRESS model effectively defines the template for the technical information to be stored in the database. The next step is to instantiate the database. To support this, user friendlies are developed with a software toolbox of graphical user interfaces (GUIs). The availability of EXPRESS derived objects and GUIs makes this a straightforward process. In Fig. 2 software linkages S/W 1 and S/W 2 instantiate the database with standards and project specific data. S/W 3 enables data to be requested and S/W 4 enables it to be obtained. Since the database is object oriented it is possible for the system itself to request missing items of data. This is done by S/W 5. Engineers use requested data via “established in-house lines of communication” to do whatever has to be done to satisfy the data request and deliver it to the database via S/W 6.

Fig. 2. Subsystem Interface Integration

As this process proceeds there are many “mundane” tasks that must be done. These are mundane, to the expert, in the sense that what has to be done is clearly known and all the data needed to do the task is in the database. When this situation exists the potential for task automation is high. S/W 7 is the link which provides for task automation. Along this link data is automatically requested, processed and results placed into the database. The STEP-SII project intends to demonstrate that this can be done. The demonstration will use an EXPRESS model of subsystem characterization data to support a highly focused controls design analysis problem and a flight software development task
.

5. Conclusions

An infrastructure for the technical management of information has been presented. Areas requiring the support of state of the art soft computing and intelligent support capabilities have been identified. Have no illusions; implementation of the proposed infrastructure will require commitment, it will be slow and it will be painful. Doing the necessary computer science should present no major problems. The EXPRESS translation of technical data packages should become easier after the first few have been done. The hardest part will be capturing the soft, crisp and fuzzy dependencies and relationships between the items of information that define the product. This must be overcome and there appears to be no easy solution, today. Never-the-less, the author is convinced that the road to significant and obvious process improvement goals is the road which takes a system level view while providing intelligent support and enabling task automation within and across subsystems.

References

1. Peter Brown, M.D., “The Hypnotic Brain, Hypnotherapy and Social Communication,” Yale University Press, 1991

2. Didier Dubois and Henri Prade, “Possibility Theory, An Approach to Computerized Processing of Uncertainty, Plenum Press, 1988

3. Julian Fowler, “STEP for Data Management, Exchange and Sharing,” Technology Appraisals, UK, 1995

4. Jonathan T. Hujsak,”Digital Libraries and Corporate Technology Reuse,” D-Lib Magazine, January 1996, http://www.dlib.org/dlib/january96/01hujsak.html

5. “NASA Systems Engineering Process for Programs and Projects,” NASA/JSC, JSC-49040, Oct 1994

6. Jon Owen, “STEP: An Introduction,” Information Geometers Ltd., 1993

7. Douglas A. Schenck and Peter R. Wilson, “Information Modeling: The EXPRESS Way,” Oxford University Press, 1994

8. Ronald R Yager and Dimitar P. Filev, “Essentials of Fuzzy Modeling and Control,” John Wiley & Sons, 1994

9. Lotfi A. Zadeh, “Fuzzy Logic = Computing with Words,” IEEE Transactions on Fuzzy Systems, Vol. 4, No. 2, May 1996, pp. 103–111.

S/W 7

Established in house

lines of communication

	S/W 3	S/W 4

	S/W 5	S/W 6

S/W 1

S/W 2

Project Life Cycle

Design, Analysis, Verification and

Validation Needs

User Preferred Design,

Analysis, Verification

and Validation

Tools and Capabilities

Project Life Cycle

Design, Analysis, Verification and

Validation Needs

EXPRESS Model of

Interfaces Defines

Object Oriented ICD

Baseline System

Object Oriented

Database

Onboard

Computation

Subsystem

Baseline Spacecraft

System

OO Database

Electrical

Subsystem

Mechanical

Subsystem

Thermal

Subsystem

Ground

Operations

Instrument

Subsystems

Guidance &

Navigation

Subsystem

Command &

Communication

Subsystem

� From: Okyay Kaynak, Lotfi A. Zadeh, Burhan, Imre J. Rudas Edts., "Computational Intelligence: Soft Computing and Fuzzy-Neuro Integration with Applications", Springer-Verlag Series F: Computer and Systems Sciences, Vol 162, 1998.

� CAx = CAD/CAE/CAM…

�http://skipper2.mar.external.lmco.com/save/index.html – SAVE (Simulation Assessment Validation Environment, at Lockheed Martin)

�http://www.ccad.uiowa.edu/~infoint/ – Information Integration for Simulation-Based Design and Manufacturing at The University of Iowa

�Standard for the Exchange of Product Model Data

�http://arioch.gsfc.nasa.gov/nasa_pdewg/nasa_pdewg.html – NASA Product Data Exchange Working Group

�http://www.scra.org/uspro/ – U.S. Product Data Association, National Product Data Exchange Resource Center

�http://www.cadlab.tu-berlin.de/~PDTAG/whois.html – Product Data Technology Advisory Group, ESPRIT 9049

�http://www.univoa.pt/CRI/GR_SSNC/RESEARCH/projsip.html – SIP-STEP – based Integration Platform

�http://www.hike.te.chiba-u.ac.jp/ikeda/documentation/STEP.html – STEP Home Page, Ikeda Lab. Japan

�http://mecha.ee.boun.edu.tr/asi.html - NATO Advanced Study Institute on Soft Computing and its Applications

�http://http.cs.berkeley.edu/projects/Bisc/bisc.welcome.html - Home page for BISC (Berkeley Initiative in Soft Computing)

�http://www.scra.org/uspro//stds/stepage.html – “STEP on a Page”

�ISO 10303, Proposed Application Protocol AP-232: Technical Data Packaging Core Information and Exchange

�ISO 10303, Proposed Application Protocol AP-208: Life Cycle Product Change Process

� ISO 10303 Part 11: EXPRESS Reference Manual

� http://gsfccost.gsfc.nasa.gov/mio/asset/asset.htm - Advanced System Synthesis and Evaluation Tool (ASSET)

� http://pdc.jpl.nasa.gov/ - JPL's Project Design Center

� http://mijuno.larc.nasa.gov/default.html - Design for Competitive Advantage

� 1) the act, fact, or state of knowing; specifically, a) acquaintance or familiarity (with a fact, place, etc.). b) awareness. c) understanding. 2) acquaintance with facts; range of information, awareness, or understanding. 3) all that has been perceived or grasped by the mind; learning; enlightenment. 4) the body of facts accumulated by mankind. From: Webster's New World Dictionary of the American Language, 1966.

�http://www.steptools.com – STEP Tools Inc. STEP Software for World-wide Manufacturing

�http://www.iti-oh.com – International TechneGroup Incorporated

�http://skipper2.mar.external.lmco.com/sii/index.html – The NASA/GSFC supported STEP-SII (Subsystems Interface Integration) Project, at Lockheed Martin

_925044861.unknown

_925044958.unknown

_925045595.unknown

_925045847.unknown

_925045550.unknown

_925044923.unknown

_925042117.unknown

_925043670.unknown

