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Abstract.  We propose a system for solving pixel-based multi-spectral image classification problems 
with high throughput pipelined hardware. We introduce a new shared weight network architecture that 
contains both neural network and morphological network functionality. We then describe its 
implementation on Reconfigurable Computers. The implementation provides speed-up for our system in 
two ways. (1) In the optimization of our network, using Evolutionary Algorithms, for new features and 
data sets of interest. (2) In the application of an optimized network to large image databases, or directly 
at the sensor as required. We apply our system to 4 feature identification problems of practical interest, 
and compare its performance to two advanced software systems designed specifically for multi-spectral 
image classification. We achieve comparable performance in both training and testing. We estimate 
speed-up of two orders of magnitude compared to a Pentium III 500 MHz software implementation. 
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1. Introduction 
 
Multi-spectral sensors are producing increasing volumes of remotely sensed imagery. With such large 
quantities of data, image analysis is becoming both an expensive and difficult problem. The 
computational bottleneck appears in two places. The first is algorithm development. There are a large 
number of features that are of potential interest in remotely sensed imagery and a large variety of data 
sets that can be exploited. A system that can rapidly develop algorithms for different features, and 
different sensors is therefore very attractive. Pattern recognition systems are an ideal candidate for such 
problems, and potentially can provide specialized solutions using a general-purpose tool. The second 
computational bottleneck appears in the application of algorithms to large image databases or directly to 
the sensor as the data is acquired. Traditionally pattern recognition systems are developed in software, 
and then if possible, ported to dedicated hardware systems, to obtain real-time performance. This 
approach suffers from long development times. In this paper we present a Reconfigurable Computer 
based pattern recognition system that finds high throughput digital hardware solutions to multi-spectral 
image classification problems directly. 
 
While pattern recognition aims to produce general-purpose tools, there is often problem specific 
knowledge that can be included to obtain better performance. For example, modern multi-spectral 
sensors are now being produced with high spatial resolution. Pattern recognition algorithms can 
therefore utilize both spectral and spatial information. One approach is to decompose the problem into 
feature extraction, followed by classification. With this approach, a number of predefined spatial 
algorithms are applied to the raw image data. Classification is then performed in the transformed feature 
space. In practice, feature extraction and classification are tightly coupled. A good set of features will 
make classification easier, but at the same time, the relevant features will depend on the type of 
classifier used.  For this reason the feature set must usually be carefully chosen with respect to the 
particular problem. In an effort to produce a more general-purpose pattern recognition tool, other 
approaches such as wrapper and filter techniques [1], have been suggested. We will compare our system 
to two software systems that use the wrapper approach. In this case, a number of features are generated, 
a classifier optimized and performance measured. The feature set is then modified, often according to 
heuristic or stochastic techniques, and a classifier re-optimized. The process continues iteratively, until 
the desired performance is obtained.  
 
Another approach to the feature extraction / classification problem is to include problem domain 
knowledge in the classifier architecture itself. Convolutional, or shared weight neural networks, are an 
example of this approach, and use architectural constraints to implement known invariants. Shared 
weight networks have been successively applied to several problems in speech and image processing. 
[2], [3], [4]. Another example of this approach was presented in [5] where a morphological shared 
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weight neural network was used for an automatic target recognition problem. In this case, a shared 
weight morphological input layer was used to implement the hit or miss transform for feature extraction. 
This was followed by feed-forward neural network for classification. In both these cases the choice of 
network components is dictated, to some degree, by the constraints of gradient based learning 
algorithms.  
 
In this paper, we present a new shared weight architecture implemented using Reconfigurable 
Computers (RC) [6]. Reconfigurable computers are based on digital logic devices known as Field 
Programmable Gate Arrays (FPGAs). FPGAs contain an array of uncommitted digital logic resources 
that can be configured to implement application specific processing by downloading a configuration bit-
stream to the device. FPGAs offer performance within a factor of 10 to Application Specific Integrated 
Circuits, but since they can be programmed many times, they have many of the benefits and flexibility 
of software. A reconfigurable computer usually incorporates a number of FPGA devices, with local 
memory, on a plug-in board that communicates with a host computer through a global bus.  
 
We use a stochastic optimization technique, from the field of Evolutionary Algorithms (EA), to 
optimize the network parameters [7]. This means we can essentially ignore the learning algorithm and 
define our architecture specifically for the problem. It also allows us to constrain our solution to the 
hardware resources available in Reconfigurable Computers. Section 2, will describe our architecture and 
motivations in more detail. Section 3 then describes its implementation on a Reconfigurable Computer. 
This section also describes how the hardware implementation is used to accelerate the computationally 
intensive EA, leading to training time equal to or less than more computationally efficient gradient-
based techniques. In Section 4, we will describe the Evolutionary Algorithm that we used in more 
detail. In Section 5 we will compare our system to two software systems that use the wrapper technique 
on several practical multi-spectral pattern recognition problems. Section 6 we present our conclusions 
and suggest directions for future work. 
 
2. Network Design 
 
Parallel, distributed processing, seen in network and cellular architectures, are an attractive model for 
computation. This model is particularly suitable for hardware design for the following reasons: 
 
• Inherent Parallel Processing: The final output of a network is a result of partial calculations performed 

by each node. 
• Simple Processing Elements: Each node of the network need only be capable of solving part of a 

particular problem and therefore are relatively simple 
• Modular: Nodes are usually homogeneous across the network leading to simple large-scale designs.  
 
For these reasons, networks appear to be a good starting point from which to develop high-throughput 
solutions to pattern recognition problems. This is not a new thing, and is partly why neural networks 
have received considerable attention for practical problems.  
 
2.1 A Generalized Perceptron 
 
Traditional neural networks, using linear perceptrons, involve multiplication of inputs by weights, and 
then summing the results. This linear operation is then followed by a non-linear activation function to 
produce the perceptron output. The linear perceptron, suggested by Rosenblatt [8] is defined in equation 

1, where ,i im x ∈ℜ and Sign(a) is a hard-limiting function. 
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Neural networks have been applied to remotely sensed satellite imagery by several authors [9], [10]. 
Neural networks have also been implemented on FPGAs by several researchers to accelerate both 
training and application of particular networks. A fundamental operation in neural networks is 
multiplication. This can be expensive to implement on FPGAs as the number of nodes and connectivity 
within the network grows. Several techniques have been used to reduce this problem: implementation of 
partially connected neural networks [11], and time multiplexing of network nodes using partial 
reconfiguration [12]. FPGA implementations can provide significant speed-up compared to software 
implementations, and have the advantage of flexibility, which is of benefit to many applications. 
However, for other applications FPGAs cannot provide sufficient densities of neurons and ASIC 
implementations, often analogue, are the preferred solution.  
 
For the morphological perceptron, the operations of multiplication and addition are replaced by addition 
and maximum / minimum respectively. The definition of the morphological perceptron comes from 
work presented in [13] and is defined by equation 3: 
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Morphological perceptrons have been shown to have equivalent classification power to the linear 
perceptron [14] and can be implemented on FPGAs much more efficiently than traditional neural 
networks. In [15] we found that a morphological network required approximately one quarter of the 
resources of a neural network implementation of comparable size. Several other researchers have 
suggested morphological networks but in other forms. Morphological networks presented in [16] use 
morphological maximum and minimums to replace the linear perceptron addition, but use multiplicative 
weights on the inputs. Min-max classifiers in [17] are similar in principle to [13], but they consider a 
restricted set of additive weight parameters.  
 
In this paper we implement a shared weight network architecture that includes both morphological and 
linear perceptron functionality. This is described by equation 4.   
    

   ( )1 ( )N
i i i iy Sign F m x w θ= = + −      (4) 

where:  ℜ∈iii xwm ,,  

i
N

i bF 1= is a function chosen from a discrete set that operates on the set { }1 Nb b…  

 
The generalized perceptron has both multiplicative and additive weights. In addition, there are 
parameters that discretely select F from a finite set. We impose several constraints on this potentially 
large set of functions. First, there is a maximum fan-in of 2 applied to the building blocks used to 
construct the Function F . This means that a function F of N variables can always be decomposed into 
a number of nested 2 variable functions. Second, adjustable weights are only applied at particular 
locations in our architecture. For example, a generalized perceptron with 4 inputs would be constructed 
with 2-input building blocks in a multi-layered network shown in Figure 1.  
 

 
Figure 1: Constructing Larger Fan-in Perceptrons.  
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The function set from which F  is drawn, is defined by the network of 2-input parameterized functions 

parF .  Three binary parameters {Mux, Func and Morph} define a set of 8 functions that are applied to 

the two inputs, which are summarized in Table 1.  
 

Parameters ∈ {0,1} 
Mux Func Morph 

Fpar applied to inputs b1 and b2 

0 0 0 Average       (b1 + b2)/2 
0 0 1 Difference   (b1 – b2)/2 
0 1 0 Absolute Average | (b1 + b2)/2 | 
0 1 1 Absolute Difference | (b1 – b2)/2 | 
1 0 0 Maximum     ∨ {b1, b2} 
1 0 1 Minimum      ∧ {b1, b2} 
1 1 0 Select     b1 

1 1 1 Select     b2 

Table 1: Functions defined for i
N

i bF 1= for N = 2 

 
This function set is motivated primarily by the use of the generalized perceptron within a shared weight 
network for spatial filtering. Convolutional, or shared weight neural networks, arrange linear 
perceptrons in layers. The input to each perceptron is usually from a small local neighborhood. Weights 
are shared amongst all perceptrons in the layer. Figure 2 illustrates this approach for a 3x3 
neighborhood leading to a perceptron fan in of N=9. The image array of perceptrons (0,0) through 
(M,M) share the same weight matrix. 
 

 
 

Figure 2: Neighborhoods of Shared Weight Perceptrons.  
 
This architecture implements a linear spatial filter by convolution of the image with the shared weight 
matrix. One of the first implementations of convolutional neural networks was called the Neocognitron 
and was reported in [4]. They have been applied to a wide range of problems in image and signal 
processing [2]. Linear spatial filters can implement low, high and band-pass frequency-domain filters 
and are ideal for suppressing purely Gaussian noise.  When noise is non-Gaussian, nonlinear filters seen 
in morphological image processing can be more effective. For example median filters are ideal for 
suppressing Laplacian noise [18]. As with the linear perceptron, the morphological perceptron can also 
be used in a shared weight network. Such a network can implement a family of non-linear spatial filters 
including soft morphological erosion and dilation [19].  
 
A natural approach to deal with the combination of Gaussian and Non-Gaussian noise found in most 
real-world images, is to define a hybrid system that incorporates both linear are non-linear filtering 
components. Other examples of this approach are L-filters [20] where multiple order-statistic filters are 
combined with a linear combination. In another approach [21], the outputs from a bank of linear phase 
FIR filters are combined with a median or order statistic filter. A comprehensive account of nonlinear 
filters, particularly with respect to hybrid approaches can be found in [22]. By including both linear and 
morphological perceptron functionality, a shared weight generalized perceptron network can implement 
this type of hybrid architecture. 
 
In Table 1 it can be seen that the function set also includes the absolute value. This is motivated by edge 
detection. In gradient weight kernels suggested by Roberts [23] and Sobel [24], two linear filter weight 
matrices are used to estimate the gradient in two orthogonal directions. In many practical problems, it is 
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the magnitude of the gradient that is of interest, not necessarily the direction. This is usually calculated 
with the sum of squares, or a sum of absolute values of the two orthogonal directions. A similar quantity 
is often seen in spatial filters suggested for texture discrimination. Laws in [25] suggested several 3x3 
and 5x5 weight matrices specifically for texture. Similar to Gabor filters [26], they implement 
asymmetric band-pass filters. During feature extraction a bank of these filters are often applied to an 
image. The sum of squares, or the sum of absolute values (texture energy measures), of the filter 
responses has been suggested as the most useful quantities. This will be further discussed in the next 
section.  
 
2.2 The Spatial Layer. 
 
This section gives more detailed discussion of how the generalized perceptron is used within a shared 
weight network. In this discussion it is convenient to refer to the parts of the perceptron separately. That 

is, parF : the three parameter functions described by Table 1 will be referred to as a function building 

blocks. Application of both additive and multiplicative coefficients according to Equation 4 will be 
referred to as weighting.  

)(* iiii wxmb +=      (5) 

 
We first describe the spatial perceptron. It receives input from a 5x5 pixel neighborhood depicted in 

Figure 3. The node consists of a hierarchical network built from parF  and input-weighting units.  

 

 
 

Figure 3: 5 x5 Neighborhood of the Spatial Perceptron. 
 
At the top level, the 25 inputs are combined into 3 rings. These are grayed in Figure 3. The 5x5 ring has 
16 inputs and the 3x3 ring has 8 inputs. The 3rd ring is simply the center pixel. Weighting is applied to 
the output of each ring. The center and 3x3 ring are then combined with a function building block. This 
output is then combined with the 5x5 ring using a second function building block. The hierarchical 
summation1 of inputs leads to a center bias in the average. This corresponds to a weight of 8 applied to 
the center pixel, and a weight of 1 for pixels in both 3x3 and 5x5 rings. To achieve a semi-flat, or 
Gaussian average the multiplicative coefficients, which combine the 3 rings, can be used. In addition, 
each ring can also return a maximum, minimum or a subset of order statistics. By associating weights 
with these rings, a hybrid linear/non-linear spatial filter is implemented. 

                                                
1 It is often convenient to describe our architecture in terms of particular parameter specializations.   
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Figure 4: Order of Combination for 5x5 Ring. 
Edge detection dictates the order of pixel combination within the 3x3 and 5x5 rings. The order for the 
5x5 case is illustrated in Figure 4. First, pixels in each corner of the ring are combined. In the 5x5 case, 
a 4-input, 2 layer network of function building blocks is used. In the 3x3 ring, there are only 2 pixels 
associated with a corner and therefore only 1 function building block is required. In both cases, this sub-
network can be configured to return the average, maximum or minimum of any subset of pixels in the 
corner. To estimate a gradient opposite corners are then combined with another function building block. 
In this case, the absolute value of the difference can be used to calculate the magnitude of the edge 
response. The two diagonals that result are then combined with a final function building block. This is 
most clearly seen in Figure 4. Texture measures based on linear spatial filters have been described as 
combinations of center weighted spot detectors and edge masks [27]. By combining edge responses 
from one ring with weighted averages of other rings, the spatial processor can effectively implement 
these types of band-pass texture measures.  
 
To force rotationally invariant operators, and to reduce the number of parameters, only one quarter of 
the network is parameterized. The parameters for the top left quadrant of the network are used, or 
shared by the other three quadrants. This is a common way of enforcing rotationally invariant 
structuring elements when optimizing morphological filters [28]. Figure 5 illustrates the technique. Only 
the top-left portion of the neighborhood with gray background has parameters. The parameters are then 
rotated through the four quadrants. In this example, a particular set of parameters produces a filter that 
depends only on pixels that are crossed. In terms of morphology, the structuring element that results can 
be seen on the right of Figure 5. 
 

 
 

Figure 5: Enforcing Rotational Invariance. 
 

Although rotational invariance is a desirable property, the use of symmetric spatial filters is not the only 
solution. In fact, the more powerful asymmetric spatial filter can be implemented at the cost of 
increased resources and larger parameter space. This is illustrated in Figure 6. The entire spatial 
network is parameterized and then multiple parameter sharing rotations of this network are applied to 
achieve rotational invariance. Similar to filter bank approaches used for texture classification, the 
outputs are then combined with additional function building blocks. We have implemented and 
experimented with this configuration, however for the remainder of this paper we will restrict our 
attention to the symmetrical spatial filters of Figure 5. 
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Figure 6: Implementing Rotationally Invariant Asymmetric Spatial Filters. 

 
2.3 A Multi-Layered Network. 
 
In this section we describe how a multi-layered network is constructed from the spatial layer described. 
We first introduce a second type of layer, known as the spectral layer. This layer is built from 
generalized perceptrons whose multiple inputs are taken from the same spatial location. For example, in 
3-band color imagery, a perceptron in the spectral layer will receive input from the red, blue and green 
channels of a single co-registered location. The term Spectral Layer suggests the more general 
application to multi-spectral imagery.  
 
To simplify the hardware implementation the number of bits used to represent perceptron input and 
output values is kept constant. This allows layers to be easily cascaded to form larger networks. 
Application of weights within the spectral and spatial layers means the number of bits must be increased 
within the perceptron to maintain full precision. To reduce the number of bits at the output we 
implemented a parameterized activation function for both spectral and spatial perceptrons defined by 
Equation 6. This replaces the hard-limiting activation function described earlier.  
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where        par is an positive integer parameter, 
       Max_Range and Min_Range are predefined integer constants.  
 
This activation function is illustrated in Figure 7 and applies linear scaling according to an integer 
parameter, and saturation at pre-defined constants.  
 

 
Figure 7: Parameterized Activation Function. 
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Multi-layered networks are constructed by using pairs of spectral and spatial layers in series or parallel. 
This is similar to the Neocognitron architecture in which pairs of S-cells and C-cells are used 
alternatively [29]. Figure 8 illustrates the structure of the particular implementation we experimented 
with. We implement 4 layers in parallel, and 6 layers (3 Spectral / Spatial pairs) in series. The entire 
network has 16 inputs. In this example the input imagery has 4 spectral channels.  
 

 
Figure 8: A 9-layer Shared Weight Network. 

 
3. Hardware Implementation 
For our implementation we used the Firebird reconfigurable computer from Annapolis Microsystems 
[30]. This is a 64-bit PCI card that contains a Virtex 2000E FPGA made by Xilinx Inc. [31], and a total 
of 40 Mbytes of on-board memory distributed in 5 independent banks. 
 
There are two goals for our implementation: 

1. To implement high-throughput solutions to the multi-spectral image classification problem.  
2. To accelerate the evolutionary algorithm, or training of our network.  

 
Shared weight networks provide the architecture necessary for the first goal since the perceptrons within 
a particular layer can be easily time-multiplexed. The entire network is implemented with 18 highly 
pipelined perceptrons (9 spectral and 9 spatial perceptrons). Input data is provided to the network, one 
pixel from each input channel, in raster-scan order. On-chip memory resources are used to buffer rows 
of pixels so that, after an associated latency, a spatial layer perceptron has access to the entire 
neighborhood each clock cycle. Input to the network is assumed to be 8-bit, 2’s complement integers in 
the range –127 to 127. The network maintains this data path width and produces an 8-bit 2’s 
complement output. Max_Range and Min_Range from equation 6 are therefore 127 and –127 
respectively. The sign of the pixel output dictates what class a pixel is assigned to for the 2-class 
classification problem. Note, this effectively fixes the threshold parameter θ from Equation 4 at zero.  
 
The second implementation goal leads to additional on-chip infrastructure, and a tight coupling between 
the RC and the host workstation. Evolutionary algorithms can be considered a ‘sample and test’ design 
paradigm [32]. This involves choosing a set of parameters, applying the function to the training data, 
and finally assessing the performance. When this approach is applied to image processing problems, 
application can involve several data intensive operations. By implementing these operations in RC, the 
evolutionary algorithm can be greatly accelerated. Figure 9 illustrates the additional on-chip 
infrastructure that is required.  



9 

 

 
 

Figure9: Pipelined ‘Sample and Test’ Architecture. 
 
The host processor writes parameters to on-chip registers, which dictates a candidate solution in the 
parameterized shared weight network. Input images are then passed through the network, producing an 
output image. At the same time, the target classification (class labels) are passed to a delay unit. This 
unit implements latency equivalent to the shared weight network. The latency adjusted training data is 
then compared to the network output in the Error Function unit. An error is calculated and stored in on-
chip registers where it can be read by the host.  
 
As mentioned earlier, the most computationally intensive component for our problem is the application 
of the parameterized network to the input data, and therefore the error function could be calculated 
elsewhere. We prefer to calculate this value on-chip due to the communication limitations between host 
processor and reconfigurable computer imposed by the PCI global bus. To efficiently evaluate a large 
number of candidate solutions this communication must be minimized. Figure 10 illustrates the 
communication between host workstation and RC during training. 
 

 
Figure 10: Communication Between Host and Reconfigurable Computer (RC). 

 
In Figure 10, large volume input data and class labels are loaded once at the start of optimization to the 
RC local memory. Communication between host and the RC during optimization involves downloading 
a particular set of parameters, initiating the network evaluation, and then retrieving the output error. 
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Only at the end of optimization, is the result image from the lowest error network retrieved for 
inspection.  
 
In our implementation we used a binary error metric based on a weighted hamming distance between 
the network output and the training data class labels. It is defined in Equation 7. 
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where: 
TF is the number of Class 1 pixels misclassified by the network and TT is the total number of 
Class 1 pixels in the training set. Similarly, FF is the total number of class 2 pixels 
misclassified and FT is the total number of class 2 pixels in the training set.  

 
Positive output pixels are assigned to one class, and negative output pixels the second class. Since in 
binary classification problems, finding all Class 2 pixels is equivalent to finding the Class 1 pixels, two 
errors need to be calculated: one error for class 1 pixels being positive and a second error for class 1 
pixels being negative. The host program retrieves both these errors from the RC and chooses the best 
one.  
 
Note, this error metric is suitable only for binary or two-class classification problems. Secondly, only 
classification error is considered. No measure is made of the certainty in decision such as a distance 
from the decision boundary. The benefit of the weighted hamming metric is the simplicity of on-chip 
implementation.  
 
3.1 Resource Usage 
  
The 18-layer network was implemented at 50MHz. The resource estimates from both Synthesis and 
Place and Route software are summarized in Table 2. It can be seen that post synthesis the usage was 
estimated at 45%, while after place and route it grows to 64%. This indicates there is significant room to 
optimize the design. All components of the network and fitness evaluator architectures were designed 
with structural VHDL to which placement constraints can be applied. This effectively allows the design 
to be manually placed, which would bring the 64% usage closer to 45%. Manually placing the design 
would also allow higher clock rates to be achieved. 
 
Resource Number Percent of chip 
Post Synthesis   
Number of SLICES 8706    out of    19200 45% 
Post Place and Route   
Number of SLICES 12427   out of   19200 64% 
Number of BLOCKRAMs             56 out of 160 35% 
Number of Tri-state buffers            2256 out of 19520 11% 

 
Table 2: Network Resource Usage. 

 
Note, SLICES are an abstract unit of digital logic resources (Look up tables and registers) for Virtex 
FPGA devices. BLOCKRAMs refer to dedicated memory elements that are also available on Virtex 
FPGAs. These were used to implement the spatial layer row-buffering and other latencies required to 
pipeline the network.  
 
3.2 Evaluation of Speed-up 
 
Evaluating the speed-up of the RC implementation compared to software implementations is a difficult 
problem since the quality of the pattern recognition algorithm is also of interest. In this comparison we 
ignore algorithm quality, and compare the hardware execution speed to a high-level software 
approximation of the network components. For the software, execution time was estimated by 
implementing a number of optimized image processing operators. For each Spectral Layer in the 
network, a linear combination was used. For each Spatial Layer, a 5x5 neighborhood average was 
calculated. The software experiment therefore performed a total of 9 linear combinations of 4 images 
and 9 neighborhood averages. This software implementation is therefore simpler (and less powerful) 
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than the RC implementation. The hardware execution time was the average from 1000 network 
evaluations. The execution times and relative speed-up are summarized in Table 3. It can be seen that 
the RC implementation, based on a Virtex FPGA device (introduced late 1998) obtains a speed-up of 
two orders of magnitude compared to the software implementation running on a 500 MHz Pentium III 
(introduced February 1999).  
 

Image Size (pixels) 
 

Software 
Evaluation Time 

(Seconds) 

RC 
Evaluation Time 

(Seconds) 

Speedup 
 

65536 0.18 0.001 112 

131072 0.36 0.003 124 

262144 0.71 0.006 129 

524288 1.39 0.01 122 

1048576 2.75 0.02 136 

 
Table 3: Evaluation Times for Software and RC Implementations. 

 
4. Optimization with Evolutionary Algorithms 
 
In this section we describe the evolutionary algorithm that is used to optimize the parameterized shared 
weight network. EA have been applied extensively to neural network design and optimization in a 
number of different ways. We use EA to optimize parameters of a fixed topology network. This is 
similar to optimization of neural network weights in [33] and [34]. The flexibility of EA means the 
topology can also be optimized for a particular problem [35]. Developmental encoding has also been 
suggested, which optimizes a program whose instructions dictate placement and connectivity of 
network nodes [36]. A good review of evolutionary neural networks can be found in [7]. 
 
When optimizing network architectures, competition (the main evolutionary pressure in traditional EA) 
is not the only factor. Since sub-components in a network are dependent, and only contribute partially to 
a complete solution, collaboration is also required. The idea is to decompose, or modularize the 
optimization problem and find a collection of sub-components that work well together. We first define 
the subcomponent of our network, known as a node, as a spectral and spatial perceptron pair. The 
solution space for the entire network is therefore defined by the parameters of 9 nodes. We will discuss 
the node representation in Section 4.1. We then describe the genetic operators, which are used to 
produce new candidate solutions, in Section 4.2. In section 4.3 we will describe the evolutionary neural 
network technique that we used to optimize the complete 9-node network.  
 
4.1 Representation 
 
The parameter space for a node is defined by a combination of integers and binary bits. The hardware 
implementation dictated particular representations for particular parameters. However, this can be 
significantly different from the representation used to optimize the network. The representation of 
parameters in both hardware and software are summarized in Table 4. The additive coefficients are 
stored in the hardware registers using two's complement representation. For the multiplicative 
coefficients, a sign bit is used (MSB). The activation function is represented by an unsigned integer. 
There is also an additional unsigned integer parameter associated with each input to the network. This is 
used to select a particular channel of the multi-spectral input image. This parameter has a range from 1 
to the number of bands. The Firebird local memory dictated an upper limit of 12 input channels. The 
mutation strategy that is applied to parameters to produce new candidate solutions are also summarized 
in Table 4. 
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Parameter representation  
in Software 

Parameter representation in 
Hardware 
 

Mutation Strategy 

Node Parameters (Spectral and Spatial Perceptrons) 

BIT Func 
BIT Morph 
BIT Mux 

Binary bit 
Binary bit 
Binary bit 

Bit flip 
Bit flip 
Bit flip 

INT Sum_Coef 
 

Two's Complements form of: 
Sign(Sum_Coef)*2|Sum_Coef| 

 
±1 in range {–6 to 6} 

INT Mult_Coef 
Sign Bit Representation of 
Mult_Coef ±1 in range {–7 to 7} 

UNSIGNED Scaling  
(Activation Function) 

Tri-state control lines.  ±1 in range {0 to 4} 

Channel Chooser: 4 Per Node (Input layer nodes only) 

UNSIGNED Band Tri-state control lines ±1 in range {1 to Number of 
Bands in Training Data} 

 
Table 4: Software Chromosome for Spectral / Spatial Network Node. 

 
4.2 Genetic Operators 
 
Mutation can be applied to a node in a variety of ways, most easily visualized as a mutation tree. For 
each mutation there is a probability of a particular branch being taken. This is illustrated in Figure 11. 
This figure illustrates a 4 input spectral perceptron, followed by the parameterized activation function. 
This is followed by the spatial perceptron and finally the second activation function. Once the end of the 
mutation tree is reached mutation points are chosen with equal probability. The choice of probabilities is 
fairly arbitrary and is based on familiarity with the representation and experimentation. 
 

 
 

Figure 11: Hierarchical Implementation of Mutation. 
 
For nodes at the input-layer, parameters are also included to select the appropriate channel from the 
input data. There is a 20% chance that an input layer node will randomly mutate one of these 4 input 
parameters. The remaining 80% of the time, mutation is applied according to Figure 11. 
 
Crossover within the node is applied in a similar way to mutation and is illustrated in Figure 12. In this 
case there is a 50% chance that the crossover is applied to the spectral component and 50% chance the 
spatial component. Within these components, crossover points (illustrated by dashed lines) are chosen 
with equal probability. 
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Figure 12: Hierarchical Implementation of Crossover. 
 
4.3 Evolutionary Algorithm 
 
In our implementation we implement 9 error metric units, one for each spectral/spatial layer. This 
allows us to efficiently implement an Incremental Learning approach. In the incremental optimization 
of neural networks described in [37], and [38], the optimization begins with one network node. Once 
this node has reached a specified level of error, or there is no improvement in error after a specified 
number of generations, another node is introduced. In some cases, the first node is fixed and the EA is 
only applied to the second node. In other cases, the parameter space is extended to include both nodes 
are then evolution continues as normal.  This process continues until the network has reached a desired 
error or maximum number of nodes.  
 
In our implementation, the four 1st layer nodes are optimized in parallel in four different populations.  
Since an error is calculated on the output from each node, these populations can be optimized 
independently. Within each population, we used a simple generational Genetic Algorithm with elitism 
[39]. In the second stage, the best 1st layer nodes in each population are configured and remain fixed. 
The 4 nodes in the 2nd layer are then optimized independently in 4 populations. In the third stage, the 
best 2nd layer nodes are also configured. Both 1st and 2nd layer nodes remain fixed and only the output 
node is optimized.  
 
To maximally utilize the fitness evaluator resources, all 9 nodes should be involved in evolution at all 
times. This is not possible with the Incremental Learning approach, and some nodes remain fixed while 
others are evolved. It is possible to evolve higher layer nodes while lower-level nodes are evolved.  This 
means the 1st, 2nd and 3rd layers are evolved in Stage 1. Only the 2nd and 3rd are evolved in Stage 2 and 
just the 3rd layer in Stage 3. This is illustrated in Figure 13 for clarity. The arrows in this figure indicate 
that optimization of the node configuration is based on the nodes output. This can produce unpredictable 
fluctuations in the higher-layer scores, since the data they are supplied with can vary from one 
evaluation to the next. At the start of the network evolution there is another affect. That is, reward is 
given to nodes that simply pass the data on. They are rewarded for the high scores from the lower layers 
and therefore not the processing they perform. 
 

 
Figure 13: 3 Stage Incremental EA 

 
After Incremental Evolution, a variable number of Optimization Cycles are applied. This is motivated 
by the fact that nodes that may not score well individually can be very useful within the network and in 
fact may lead to better scores in the final output. This is the main reason why competition is not the only 
factor in network optimization, and co-operative behavior is desired. Various mechanisms have been 
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suggested for implementing this with varying levels of complexity [40]. The Optimization Cycle 
approach that we used is most similar to greedy strategy suggested in [37]. 
  
In the Optimization Cycle, nodes receive reward based on the final network output. There are 9 stages 
to the optimization cycle, 1 for each node in the network. The network is configured with the best nodes 
from each population that were found in the incremental development phase. Each node in the network 
is then evolved in turn using the fitness calculated on the final network output. This is illustrated for 
clarity in Figure 14. 

 
Figure 14: The 9 Stage Optimization Cycle 

 
5. Performance Comparison 
 
In this section we compare the accuracy of our system to two software pattern recognition systems 
designed for multi-spectral image classification. The first software system is GENIE [41], which 
implements the wrapper feature selection method. In this system, features are constructed by combining 
a number of image processing primitives in a graph. A Fisher linear discriminant is then applied to the 
graph outputs to produce a classification. A genetic algorithm is used to modify graphs from one 
iteration to the next. The image processing primitives include a rich set of linear and non-linear spatial 
filters, as well as several more complex spectral processing algorithms. A more detailed description of 
the architecture can be found in [42]. The second system, known as AFREET, is also a wrapper 
technique. It produces features by building a number of independent trees from image processing 
primitives. It then applies a Support Vector Machine (SVM), typically without kernels, in place of the 
fisher discriminant. The feature set is updated according to a greedy heuristic strategy between 
iterations [43]. SVM have gained considerable interest for pattern recognition problems since they 
implement explicit measures to reduce well-defined bounds on generalization error [44]. The image 
processing primitives contain a rich variety of both spatial and spectral algorithms similar to the GENIE 
system.  
 
In previous experiments we compared our system on 4 different features of interest, over three different 
scenes [45]. The scenes are generated from the MODIS airborne simulator data set [46]. Preprocessing 
was applied to produce a 10-channel image that simulates the output from the first 10 channels of the 
Multi-spectral Thermal Imaging sensor reported in [47]. The features were chosen to span a range of 
difficulties. The first feature of interest is water. This is the easiest problem of the four since water has a 
unique spectral signature. The second problem is to identify the golf courses. It is believed that this 
problem is of moderate difficulty but should have distinguishable spectral properties. The type of grass 
used in golf courses is often unique and therefore may be detected with purely spectral information. The 
third feature of interest is not as well defined, and is simply urban or 'built-up' areas. Urban areas can 
include a wide variety of materials and therefore spectral signatures. Spatial information is therefore 
believed to play an important role in identifying this feature. The fourth feature of interest is roads. This 
problem is significantly different from the previous three broad area features. We include it to 
investigate the versatility of our system, however we do not expect that our pixel based classification 
approach would be competitive with dedicated road finding algorithms. 
 
In previous experiments, we used a leave two-out scheme for training/testing. That is, one scene was 
used for training and algorithms were then tested on the remaining two scenes. This was repeated for all 
3 permutations. While the ultimate goal of our systems is to produce algorithms that can be applied 
across multiple scenes and periods of time, we found that it was difficult to solve this problem using 
only one scene for training. One solution to this problem lies in remote sensing and application of 
advanced preprocessing to reduce the variation encountered in environment and sensor over long 
periods of time. In this experiment, we attempt to overcome this problem by providing the pattern 
recognition systems with a more accurate representation of the problem. We introduce a fourth scene for 
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each feature. The 4 scenes are then divided into two images by tiling non-overlapping portions from 
each scene. This means that half of each of the 4 scenes is represented in both training and testing data. 
Examples of the tiled data sets, and associated class labels are illustrated in Figure 15 for the golf 
course, and road finding problems. For the class labels, white indicates the feature of interest, gray 
indicates non-feature and black corresponds to don't know and does not contribute to the error. The class 
labels was generated with a graphical point and paint program and can appear arbitrary. Regions that 
are ambiguous are left as don’t know to avoid providing inconsistent training data.  
 

             

Figure 15: Tiled Images used for Training for the Golf Course and Road Finding Features. 

 
5.1 Results 
 
Convergence of evolutionary algorithms is difficult to define. For this reason we apply our system to all 
problems at 4 different levels of effort, which are detailed in Table 5. For the GENIE software system, a 
population of 100 candidate graphs is evolved over 100 iterations for each problem. The average 
training time for the GENIE system was 19 hours. The AFREET system was applied for 200 iterations 
(feature selection/SVM optimization). To accelerate the SVM optimization, AFREET sub-samples the 
training data. For this reason, execution time does not depend on the training image size, as in the other 
systems, but rather the problem difficulty. Execution times varied from 9 minutes through to 50 minutes 
and averaged 19 minutes for all the problems.  
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Effort Level Low Medium High Extreme 
Execution Time  34.7 seconds 3.2 minutes 15 minutes 56 minutes 
Population 50 100 200 200 
Generations 120 240 240 480 
Optimization Cycles 1 2 6 12 

Table 5: Levels of Effort used in Training. 

All systems were trained on each of the two tiled images, for each problem, in turn. The result is then 
applied to the second image, for each problem, to obtain an out-of-sample test scores. We define a score 
out of 1000 based on the error metric previously defined in Equation 7. This is described in Equation 8.  
 

( ) 1000*1 ErrorScore −=     (8) 
 
The scores achieved in training and testing are summarized in Tables 6 and 7 respectively.  
 
Training Shared Weight Network GENIE AFREET 

Image Low Medium High Extreme  (Avg. 19 hrs)   Time (minutes) 
Cloud 1 997.6 999.4 1000 1000 999.9 995.7 10.3 
Cloud 2 994 994.9 999.8 999.5 998.6 998.7 9 
Golf 1 992.3 995 998.8 997.2 997.3 999.7 9.3 
Golf 2 996.1 998.7 999 999.7 998.7 997.9 13.8 
Urban 1 881.6 974.3 983.9 987 992.1 984.7 25.3 
Urban 2 947 982.6 991.3 993.2 996.5 992 12.3 
Road 1 818.3 878.8 892.6 898.2 911 903.6 50 
Road 2 904.1 930 917.6 925.4 944.6 935.9 22.7 

 Table 6: Fitness Scores Obtained on Training Data. 

Training Shared Weight Network GENIE AFREET 
Image Low Medium High Extreme     

Cloud 1 989 968 981.4 991 978.5 819.6 
Cloud 2 995 995 997.2 997.3 999.9 971.3 
Golf 1 836.5 962 987 971.4 823.5 966.7 
Golf 2 977.6 984 986 987 968.6 998.7 
Urban 1 852 957.5 948 947.4 973.2 980 
Urban 2 817.2 858.3 922.5 946 936.2 943.5 
Road 1 837.4 897.3 883.8 909.3 935.5 913.7 
Road 2 800.8 855.9 847.9 816.6 869.7 838.2 

Table 7: Fitness Scores Obtained on Testing Data. 

 
Table 8 shows the training and testing scores that were achieved when our system is applied with 8 
different random seeds to the Road 1 problem. This experiment was conducted to investigate the 
variability of our system at the different levels of effort. 
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Run 1 2 3 4 5 6 7 8 Average S.D. 
Low           

Training 785.6 835.2 837 813.5 793.4 802.6 845.8 774.7 811 26.2 
Testing 798.3 866.4 827.2 827.2 816.5 796 893 790.5 826.9 36.1 

Medium           
Training 878.5 904.8 901.7 859.4 912.7 880 831.8 872.3 880.2 26.6 
Testing 896.7 858 894.2 890 910.9 903.7 876.3 890.3 890 16.5 
High           

Training 902 908.9 873.6 909.6 883.3 902.3 901.6 884.2 895.7 13.4 
Testing 901.6 911.1 899.4 928.5 906.9 895.2 916.6 865 903 18.7 

Extreme           

Training 894.1 922 899 897.9 871.9 925.4 902 903.7 902 16.7 
Testing 871.5 917.1 914.4 909.6 896 913.2 911.1 916.3 906.2 15.5 

 
Table 8: Fitness Scores Over 8 runs for the Road Problem (tested on the second road tile). 

 
5.2 Discussion 
 
With low effort, our system performed poorly on both training and test images. This illustrates the 
difficulty of the problems, and therefore does not measure the true capacity of the system. With 
increased effort, the approach shows potential as a practical pattern recognition system. For the more 
difficult problems, our approach is usually outperformed on the training data by the GENIE and 
AFREET systems. This indicates that our system may lack classification power for difficult training 
data, compared to the software systems. The network has a fixed number of resources with which it can 
work, and therefore this is not surprising. In contrast, both GENIE and AFREET systems are able to 
form extremely complex algorithms to fit training data. Test data results indicate that our system does 
not appear to suffer from over fitting. It is hypothesized that the limited resources of our system may be 
responsible for its good performance on test data.  
 
The results of Table 8 indicate there is variation in performance from one run to the next, particularly at 
low levels of effort. This is expected from an evolutionary algorithm system. It can be seen for high-
levels of effort the variation is reduced, which indicates that a more efficient EA search strategy would 
help with this problem. In addition, it is noted that for two of the runs at extreme level of effort, our 
system actually obtained higher training data scores than both the GENIE and AFREET systems. This 
indicates that the system may in fact have sufficient resources for practical problems, however the 
difficulty in obtaining these scores is a problem. A different EA strategy may help with this problem. 
Another solution would be to increase the classification power of the system, hence providing a richer 
solution space that could potentially be searched more easily.   
 
To improve our system, it is concluded that the classification power should be increased. The fact that 
the system has a fixed set of resources for problems of varying levels of difficulty may also be a 
limitation, and a more flexible use of the resources may be desirable. At the same time, it is known that 
increasing classifier complexity can lead to problems of over-fitting. Therefore, it is likely that 
including explicit measures to avoid over fitting, such as a non-binary error function, on-chip cross 
validation or boosting [48], would be beneficial to a more complex system.  
 
6. Conclusions and Future Directions 
 
Evolutionary Algorithms and Reconfigurable Computers have been used independently for a number of 
years. More recently, these fields have been combined in the field of Evolvable Hardware. This means 
mutual benefit: the long computation times of Evolutionary Algorithms is avoided, and digital hardware 
building blocks can be more easily optimized. This new design environment seems ideal for producing 
high throughput hardware solutions to optimization problems. In this paper we demonstrated this 
approach for solving large data volume pattern recognition problems.  
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We exploited the flexibility of ‘sample and test’ optimization to define our parameter space in terms of 
feature extraction algorithms used in image processing. This resulted in a hybrid feature 
extraction/classification architectures that is scalable, inherently parallel and easily implemented. 
Analysis of both processing speed and pattern recognition quality suggest our approach can produce 
viable high-performance solutions to the multi-spectral classification problem.  
 
Our current implementation uses a static feed-forward architecture. In the field of image and signal 
processing, this is considered a Finite Impulse Response (FIR) filter architecture. We intend to extend 
our work to include feed-back or state to network layers. This will lead to an Infinite Impulse Response 
(IIR) filter architecture. We are particularly interested in these architectures since they are naturally 
suited to real-time video image processing, where temporal information can be exploited. In practice, 
IIR filters are usually much more difficult to design than FIR filters. The combination of Reconfigurable 
Computing and ‘sample and test’ optimization provides us with a unique framework for designing these 
filters.  
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