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ABSTRACT 

In this paper we apply a new morphology-function analysis method, a Bayesian Morphometry 

Algorithm (BMA), to a set of cross-sectional magnetic resonance images of subjects in the Baltimore 

Longitudinal Study of Aging, some of whom have very mild cognitive impairment. Based on Bayesian 

model selection, this new method is able to test a series of hypotheses about morphology-function 

associations and determine morphological changes associated with clinical variables. 

 

INTRODUCTION 

The purpose of this paper is to describe the application of a new Bayesian method for 

morphological analysis, which can be used to determine associations among structural and clinical 
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variables in medical-imaging studies. We developed this algorithm because, although image data have 

become increasingly important to neurological clinical trials, current methods for the determination of 

morphology-function associations may have limited applicability. For example, in Voxel-Based 

Morphometry (VBM) of magnetic resonance (MR) images (Ashburner 2000; Davatzikos 2001), each 

voxel location is analyzed separately across all experimental cases; therefore, the number of variables 

equals the number of voxels (i.e., resolution elements or resels) in the image volume, which is often too 

large for standard statistical tests to be applied efficiently for detecting interactions among voxel and 

clinical variables. Multivariate methods, particularly partial least square analysis of the correlation 

matrix of image voxels and functional variables (e.g., experimental designs and subject behaviors) 

(McIntosh 1996), show promise for application to functional imaging data, and could be applied to 

morphological analysis as well. However, there may be cases in which nonlinear associations among 

brain structures and clinical variables may not be optimally modeled using this approach. In addition, 

the applicability of standard statistical tests, such as the t-test used in VBM, may depend on the 

underlying distributions of the variables, in that only the mean and standard deviation are considered in 

calculation of these statistics. Finally, some statistical tests may require a predefined significance 

threshold; in contrast, our Bayesian method requires no user input.  

Recently we developed a Bayesian Morphometry Algorithm (BMA) (Peng 2001, 2002) to analyze 

morphology-function relationships. Given a set of morphological variables (e.g., morphological 

measurements) and a set of clinical variables, BMA identifies associations among sets of 

morphological variables and clinical variables. First, we define an association as probabilistic 

dependence among sets of morphological variables and clinical variables. Second, in BMA we 

compute the strength of many morphology-function associations, and select the strongest one as the 

representative association for that group of variables; this process is accomplished by Bayesian model 

selection (Herskovits 1991; Cooper 1992; Heckerman 1997; Buntine 1996; Glymour 1999); that is, 

BMA selects the most probable multivariate model of associations based on maximum a posteriori 
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(MAP) calculations. Third, sets of morphological variables that have similar conditional-probability 

distributions, given the clinical (functional) variables of interest, are consolidated into an association 

cluster; thus, a mechanism reflecting multivariate associations is naturally embedded in BMA. Regions 

of interest containing the corresponding voxels are then generated for each association cluster. 

To obtain morphological variables from image data, we generate Regional Analysis of Volumes 

Embedded in Stereotaxic Space (RAVENS) density maps (Davatzikos 1997, 1996a, 1996b, 1998, 

2001; Goldszal 1998; Shen 2001a, 2001b) from MR images of the brain, using a high-dimensional 

mass-preserving elastic transformation algorithm called Hierarchical Attribute Matching Mechanism 

for Elastic Registration (HAMMER) (Shen 2001b). The key property of the generated maps is that 

voxel intensity is proportional to the local volume of the corresponding brain structure prior to 

registration (Davatzikos 2001). Thus, voxel intensity is analogous to a volumetric measurement of the 

corresponding brain tissue. Since images of different subjects are put into the same stereotaxic space 

via registration, and volumes are preserved when generating RAVENS maps, the voxel-wise data can 

be compared directly, reflecting voxel-wise morphological changes of the original brain structures. 

Several other methods (Ashburner 2000; Friston 1995a, 1995b; Gaser 1999; Gee 1993; Thompson 

1996, 1997a, 1997b; Woermann 1999) have been developed to obtain similar morphological 

information. 

In this paper we apply BMA to cross-sectional MR image data from a sub-sample of subjects from 

the Baltimore Longitudinal Study of Aging (BLSA). Over the course of the BLSA, some of these 

individuals have developed signs of mild cognitive impairment (MCI), as defined by the Clinical 

Dementia Rating (CDR) scale (Morris 1993). Individuals with MCI have cognitive decline greater than 

expected for their age, but do not meet criteria for functional loss and dementia. MCI is associated with 

a high risk for conversion to Alzheimer's disease, with annual rates of conversion of 6% (Daly 2000) to 

12% (Petersen 2001). Recently, Morris and colleagues have argued that 100% of individuals with MCI 

will develop Alzheimer's disease over 9.5 years (Morris 2001). Neuroimaging studies have 
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demonstrated reduced volumes of mesial temporal lobe structures, including the hippocampus and 

entorhinal cortex, in cross-sectional studies and accelerated rates of hippocampal volume loss in 

longitudinal studies (Jack 1997, 1999, 2000; Fox 1998; Xu 2000; Bobinski 1998). However, these 

imaging studies have focused on particular brain regions, rather than examining many structures 

throughout the brain. In this paper, we apply BMA to demonstrate the sensitivity of this technique to 

previously described volumetric changes associated with MCI, and extend these findings to other brain 

regions.  

 

METHODS 

In this section we first present the BMA approach, then introduce the MCI data, and related image-

processing methods. 

 

Bayesian Morphometry Algorithm 

BMA is based on a Bayesian-network construction algorithm (Peng 2001, 2002; Herskovits 1991; 

Cooper 1992). A Bayesian Network (BN) (Jensen 1996; Glymour 1999; Heckerman 1997; Herskovits 

1991; Cooper 1992; Buntine 1996) is a graphical model of probabilistic associations among a group of 

variables; thus, we can represent voxel-morphometric information (e. g., dilation or contraction during 

spatial normalization), as well as functional information (e. g., presence or absence of MCI), as 

variables in a BN. Directed edges in a BN model represent conditional-probability distributions among 

these variables. Thus, in BMA, voxel-morphological variables and clinical variables are nodes, and 

edges represent associations among variables. Within this framework, we have cast morphology-

function analysis as the generation of a multivariate BN model from MR image data and respective 

clinical information.  

BMA's Bayesian-network construction algorithm is based on maximum a posteriori calculations, 

i. e., BMA searches for the most probable Bayesian network structure given the data. In the case of 
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complete data for discrete variables with finite numbers of states, the formula p(D|S) for computing the 

probability of the data given a BN structure was first given in Herskovits (1991) and Cooper (1992), 

and has been called the Bayesian score for structure S (Cooper 1992; Heckerman 1997; Buntine 1996; 

Glymour 1999). Because the total number of possible BN structures (each of which is a directed 

acyclic graph) is super-exponential in the number of variables (Herskovits 1991), it is impossible to 

assess all possible structures for any nontrivial data set. Hence, we present the following method, 

illustrated in Fig.1, to obtain a BN structure. 

 

  

 

(a) Hypotheses  (b) Associations generated by BMA (c) Homogeneous association regions 

Fig.1 Schematic illustration of BMA: Two regions (red and green) might both be associated with a functional 

deficit, albeit in different ways.  These regions are constructed based on identifying respective leading voxels 

(solid arrows), and homogeneously associated voxels (dotted arrows); these homogeneously associated voxels 

are often strongly associated with the leading voxels.  One of the key characteristics of our approach is that it 

can distinguish between the red and the green regions above, based on their respective conditional-probability 

tables. 

 

The overall goal of BMA, as shown in Fig.1, is to determine associations among voxel-

morphological variables and clinical (functional) variables (shown as a functional deficit in Fig.1), and 

to consider the joint (multivariate) effect of morphological variables on the clinical variables. Initially, 

we have many hypotheses (one for each voxel-morphological variable) regarding associations among 
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voxel-morphological variables and a given clinical variable. We use the likelihood ratio computed from 

the Bayesian scores as measures of these hypotheses, and select the voxel-morphological variable with 

the largest likelihood ratio as the representative (i.e. leader) of the first group of homogeneously 

associated voxel variables (for details see Peng 2001, 2002). Then we use a Bayesian clustering method 

(Cheeseman 1995; Chickering 1997) to determine the group of voxels whose associations with the 

clinical variable are homogeneous, i.e., similar to the association between the first leader variable and 

the clinical variable. We then use the similar process, accounting for the previously detected 

associations, to find a second leader variable and corresponding group of homogeneously associated 

voxels. We repeat this process until every initial hypothesis has been tested; the resulting Bayesian 

network has a structure similar to those in Fig.1 (b) and (c), where there are many homogeneously 

associated voxels (regions A and B) represented by the leader variables uA and uB. The regions of 

interest correspond to these association clusters. (For technical details of BMA, as well as its evaluation 

using simulated data, see Peng (2001, 2002)). 

The different association clusters have different conditional-probability distributions with respect 

to the clinical variable; these multivariate association patterns are not considered in commonly used 

statistical tests, such as the t-test. For example, in the specific case shown in Fig.1 (c), BMA has 

determined that the conditional-probability distribution for uB given the clinical variable is distinct from 

that for uA and the same clinical variable. Thus, the clinical variable is associated (in different ways) 

with both functional regions represented by uA and uB. In other words, BMA can reflect nonlinear 

associations among different regions and a clinical variable. Unlike the t-test, BMA is not based on 

assumptions regarding the distributions of the voxel-morphological variables, and it does not depend on 

a predefined significance threshold.  

We described the implementation of BMA, its application to simulated data, and a comparison of 

its performance to that of VBM, in (Peng 2001). In the following we focus on evaluating BMA with 

data from the BLSA. 
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Application to Structural Findings Associated with MCI 

As part of the BLSA neuroimaging study (Resnick 2000), MR images and clinical information are 

obtained annually from selected BLSA participants. The goals of this study are to determine prior 

physical and psychological characteristics that predict changes in brain structure and function in later 

life, and to determine changes in brain structure and function associated with changes in cognitive and 

memory performance, the rate of change in brain anatomy in normal men and women, and the 

frequency and progression of brain abnormalities in normal aging populations.   

To demonstrate the application of BMA to cross-sectional MR data, we examined images from 40 

male subjects. These subjects have varying degrees of cerebral atrophy. The MR images compared in 

this study consist of T1-weighted gradient-echo SPGR MR images obtained during each subject’s 5th 

annual assessment. The size of these images is 256×256×124 voxels and the voxel resolution is 

0.94mm×0.94mm×1.5mm.  

 

Image Registration 

For the purpose of this voxel-based analysis of morphological changes, we segmented gray matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF) in each image volume using an automated 

technique (Goldszal 1998). Because morphological variations of CSF are implied by morphological 

changes of GM and WM, in this paper we examined the morphological changes of GM and WM only. 

We then generated RAVENS maps (Davatzikos 1997, 1996a, 1996b, 1998, 2001; Goldszal 1998; Shen 

2001a, 2001b) from these segmented images. RAVENS maps are produced via a high-dimensional 

mass-preserving elastic transformation, which generates a number of tissue-density maps in a 

stereotaxic space. Mass preservation warranties that regional volumetric measurements can be 

performed after spatial normalization, by accounting for the amount of compression or expansion that 
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occurs during spatial normalization. Expansion decreases tissue density, so that the total amount of 

tissue remains constant, and the converse is true for compression; therefore, regional volumetric 

measurements are performed via regional tissue density measurements, in the stereotaxic space. For 

example, longitudinal atrophy would be reflected by a relative decrease of brain-tissue density in 

corresponding RAVENS maps over time. In this study we generated RAVENS maps with a high-

dimensional elastic transformation referred to as HAMMER (Shen 2001).   

After image registration, each RAVENS density map was smoothed using a Gaussian kernel to 

reduce registration error, as is conventional for voxel-based morphometry. For the purpose of reduction 

of computational burden, we down-sampled these smoothed RAVENS density maps by a factor of 2, 

resulting in images with size 128×128×62 voxels. In summary, this process yielded data consisting of 

MCI status, and GM and WM volumes for 40 subjects; 7 of these subjects had MCI; the size of each 

volume was 128×128×62 voxels, and the voxel resolution was 1.875mm×1.875mm×3.0mm.  

 

Application of BMA 

In our experiments, we examined associations among voxels in RAVENS maps and the MCI 

(functional) variable. We analyzed the GM and WM RAVENS maps separately.  

Because the Bayesian score (Herskovits 1991; Cooper 1992), i. e., the scoring function for BN 

structures used in this paper, is defined for discrete variables, we discretized the RAVENS maps’ voxel 

intensities. In this paper, we discretized data by thresholding the z-scores. That is, for each voxel, we 

calculated the mean value across subjects, and compared each case to the mean value; the assigned 

label was 0 when a voxel intensity was larger than or equal to the mean value, otherwise it was 1. Thus, 

a label '1' indicates that a subject at the corresponding voxel-location had volumetric shrinkage (i. e. 

atrophy), compared to the whole sample. This discretization procedure transformed the RAVENS 
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density maps into categorical maps, which together with the respective clinical information (MCI = 

“Yes” or “No”), were used as the input to BMA.  

 

RESULTS 

Subjects’ ages ranged from 59 to 84 years (mean age = 69.75, standard deviation = 6.34). Of these 

40 subjects, 7 were determined to have mild cognitive impairment (MCI) based on the CDR scale. The 

MCI subjects had mean age 72.29 and standard deviation 7.76; the non-MCI controls had mean age 

69.21 and standard deviation 6.00.  

In the following, we first show results obtained with the 9mm Gaussian smoothing kernel; we then 

show results obtained with smoothing kernels of different sizes.  

In both GM and WM experiments, BMA produced two major association clusters of voxel-

morphological variables with the MCI variable, from which regions of interest (ROIs) were obtained. 

The characteristics of these association clusters are listed in Table 1, where we represent the 

importance of a leader variable as loge(r), the logarithm of the likelihood ratio of Bayesian scores with 

and without the corresponding edge in the BN structure. Approximately 4-5% of GM and WM voxels 

were found to be associated with the MCI variable. The data presented in Table 1 indicate that the 

strongest association is much more important than the secondary association, in that their logarithm 

scale factors differ substantially (6.3 vs. 4.8 and 7.0 vs. 4.4); in addition, there were relatively fewer 

voxels detected in the secondary association clusters (i.e. 0.45% << 3.74% and 0.58% << 4.84%). 

Therefore, we present only the major ROIs in the strongest association clusters. Because the model in 

this example did not yield multivariate associations, individual ROIs in the first association cluster 

obtained with BMA are visualized separately. Of note, ROIs visualized in this section represent regions 

with shrinkage of volume (atrophy) in the presence of MCI. Probabilities of the occurrence of MCI 

conditioned on atrophy of the leaders of the first association clusters (for GM and WM) are listed in 

Table 2, where we see that MCI is not present in the absence of atrophy in these regions, and the 
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probability of MCI given atrophy of the voxels in these clusters is approximately 42% for the GM 

cluster, and 58% for the WM cluster, respectively; note that these probabilities happen to sum to 1 by 

chance. 

Fig.2 shows the largest ROIs found for GM. In Fig.2 (a), the first ROI returned by BMA contains 

disctinct (i.e., not contiguous) clusters centered on entorhinal cortex bilaterally (right more pronounced 

than left), and on the boundaries of the hippocampi. This result is in accordance with previously 

reported analyses of morphological changes associated with MCI (Jack 1997, 1999, 2000; Fox 1998; 

Xu 2000; Bobinski 1998; de Toledo-Morrell 2000). In Fig.2 (b), a second ROI is detected more 

laterally, near the inferior aspect of the left temporal lobe. Of note, accelerated longitudinal declines in 

lateral temporal lobe cerebral glucose metabolism have been reported in carriers for the Apolipoprotein 

E epsilon 4 allele, a genetic risk factor for Alzheimer's disease (Small 2000; Rapoport  2000).  

 

Table 1. Characteristics of association clusters for examination of MCI. loge(r) is the logarithm of the likelihood 

ratio for the Bayesian models with and without the corresponding association; Ω is the number of voxels in the 

cluster; rΩ is the percentage of voxels in the respective tissue, i.e., GM or WM. 

Association cluster # 1 2 

loge(r) 6.310 4.755 

Ω 7662 930 GM 

rΩ 3.74% 0.45% 

loge(r) 7.036 4.357 

Ω 9190 1108 WM 

rΩ 4.84% 0.58% 
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Table 2. Probabilities of states of the MCI variable conditioned on the states of the first leader variable found for 

GM and WM, respectively.  

Conditional probabilities of the  

MCI variable given states of the leadersStates of the first leader voxel-variable 

MCI = 'No' MCI = 'Yes' 

Atrophy = 'No' 100% 0% 
GM 

Atrophy = 'Yes' 58% 42% 

Atrophy = 'No' 100% 0% 
WM 

Atrophy = 'Yes' 42% 58% 

 

Fig.3 (a) and (b) show the largest ROIs found in WM association clusters; these ROIs are centered 

on entorhinal cortex bilaterally, consistent with the gray-matter findings presented above.  

In addition to our confirmation of the associations between atrophy in mesial and lateral temporal-

lobe regions and MCI, we also observed associations for GM in the left insular region, centered on the 

transverse temporal gyrus (Fig. 4a) and for WM centered on the inferior frontal gyrus (Fig.4b).  These 

regions were also observed in VBM analyses of these data (for Fig.2 and Fig.3, the respective results 

obtained from SPM99 are shown in Fig.5 and Fig.6, respectively). For example, the largest ROIs 

detected by the different methods overlapped substantially, as listed in the right-most column of Table 

3. Of note, each voxel represents a large region in the original non-smoothed image; anatomically, 

these overlapping ROIs belong to the same functional region of brain.  
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(a) ROI centered on right entorhinal cortex  (b) ROI centered on the inferior aspect of the left 

temporal lobe 

Fig.2 Gray-matter detection results (red) overlaid on the average RAVENS density map of all subjects' GM 

volumes. Regions in red depict ROIs found in the first association cluster. 

(a) ROI centered on right entorhinal cortex (b) ROI centered on left entorhinal cortex and the left 

inferior temporal gyrus 

Fig.3 White-matter detection results (red) overlaid on the average RAVENS density map of all subjects' WM 

volumes. Red depicts ROIs found in the first association cluster.  
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(a) A GM ROI centered on the left transverse temporal 

gyrus 

(b) A WM ROI centered on the left inferior frontal gyrus 

Fig.4 Additional regions (red) detected in the first association cluster in GM and WM 

 

    

(a) VBM result 

corresponding to Fig.2 (a)  

(b) VBM result 

corresponding to Fig.2 (b) 

(a) VBM result 

corresponding to Fig.3 (a) 

(b) VBM result 

corresponding to Fig.3 (b) 

Figs.5 and 6 VBM analysis results (from SPM99) corresponding to Figs.2 and 3. The p-value threshold is 0.05. 

The ROIs are marked in red. 

 

We also considered the effect of different sizes of the smoothing kernel on registration error and on 

ROI detection. Table 3 shows the overlap ratio of the largest ROIs detected with different kernel sizes, 

relative to the largest ROIs found using the 9mm kernel. A smaller kernel renders the results more 
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sensitive to registration error; in contrast, larger kernels merge interesting signal with noise, rendering 

morphometry less sensitive. Our results in Table 3 demonstrate these phenomena: both the 5mm-kernel 

and the 17mm-kernel have smaller overlap ratios than does the 13mm-kernel. Nevertheless, the largest 

ROIs appear to belong to the same anatomic region, indicating that BMA is relatively robust to kernel 

size.  (Overlap ratios were smaller for WM than for the GM; a likely reason is that the WM results 

were noisier.) 

 

Table 3. Overlap of the largest ROIs obtained with different methods (BMA or VBM) and different sizes of the 

Gaussian smoothing kernel. If the largest ROI generated by BMA using a 9mm kernel is X, and that of another 

kernel size is Y, then the listed ratio is calculated as the volume of the intersection of X and Y, divided by the 

volume of X.  

BMA VBM 
Tissue 

5mm 13mm 17mm 9mm 

GM 26.1% 81.4% 59.7% 79.0% 

WM 17.0% 27.2% 23.5% 41.6% 

 

 

DISCUSSION  

The clusters generated by BMA contained voxels that have similar probabilistic associations with 

the MCI clinical variable; these clusters are located in regions previously shown to be associated with 

reduced volume in individuals with MCI. The major morphological associations with MCI in our cross-

sectional BLSA data are centered on entorhinal cortex, which contains critical connections to the 

hippocampus. The significance of this finding is twofold: first, in our experiment we confirmed prior 

findings on the association between entorhinal cortex morphology and MCI (Peterson 2001; Jack 1997, 

1999, 2000; Fox 1998; Xu 2000; Bobinski 1998; de Toledo-Morrell 2000); second, we have 

demonstrated that the BMA framework can be applied to imaging data from large-scale studies, such as 

the BLSA. Other regions of association included the lateral and inferior aspects of the left temporal 
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lobe; the left insula; and the left inferior frontal region. Associations for several temporal-lobe regions 

and inferior frontal cortex are consistent with the involvement of these regions early in the course of 

Alzheimer’s disease (Small 2000; Rapoport 2000). These findings may also suggest other regions that 

show very early changes in MCI, but they require independent confirmation. 

Because BMA is based on BN models of morphology-function associations, it is able to 

incorporate additional types of variables without changing the algorithm. For example, it would be 

straightforward to add an age variable to these experiments to investigate potential associations among 

regions related to MCI, and the ages of subjects (this was not done in this paper because our data set 

doesn't show such a relationship). In addition, the Bayesian model-selection approach used in this 

paper allows us to compare hypotheses, since a hypothesis corresponds to a Bayesian-network model 

(or set of models): we can calculate p(S|D), i.e. the posterior probability of a model S given the data D, 

and select the model (or the corresponding hypothesis) with the larger posterior probability. Along with 

this approach, the domain knowledge of different models (or hypotheses) can also be incorporated as a 

prior probability distribution over models. 

In contrast to BMA, VBM (Ashburner 2000; Davatzikos 2001) uses standard statistical tests to 

assess hypotheses regarding morphology-function associations. These statistical tests, e.g. t-test, may 

have limited utility when higher-order associations are present, because a mechanism to automatically 

formulate the hypotheses of higher-order associations is not embedded in these conventional tests. 

BMA examines the first-order association hypotheses in searching the first group of homogenous 

associations; after determining that there is at least one group of first-order associations, BMA 

continues to search for more complicated association patterns, until no improvement of the model can 

be made. Therefore, when first-order associations are dominant in the data, such as the MCI data set 

used in this paper, BMA and VBM will produce similar results. For data sets manifesting nonlinear 

higher-order associations, BMA and VBM will generate different ROIs, as in Peng (2001). 
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This application of BMA did not include confounding variables, however these can be 

incorporated into the analysis as parents of the clinical variable of interest, and applying BMA to these 

variables. Confounders will render the outcome variable(s) conditionally independent of the image 

variables; in addition, variables (e.g., gender, perhaps) that affect the nature of structure-function 

associations would not result in conditional independence, but would result in different clusters 

depending on the state(s) of these variables. It is important to note that many of the methods we have 

described in this paper for categorical variables can be extended to BNs consisting of continuous or a 

combination of continuous and categorical variables (Geiger 1994). 

In contrast to methods such as partial least squares analysis (McIntosh 1996), BMA is based on an 

analysis of categorical variables; we see this as having both benefits and disadvantages. Depending on 

the nature of the data, discretization of continuous variables may lead to loss of information; however, 

it is well known that a nonparametric method, such as the Mann–Whitney test, may have statistical 

power that, in the worst case, approaches that of its corresponding parametric test (i.e., the t-test). If the 

variables are categorical, or naturally lend themselves to discretization, a distinct advantage of 

analyzing categorical variables by modeling them with Bayesian networks is the ability to model all 

associations, including those among clinical and imaging variables, using a common framework. 

Furthermore, Bayesian networks can model, and the BMA algorithm can recover, highly nonlinear 

associations among structure and function variables. Thus, we see these approaches as complementary. 

Potential errors in our results come from several different sources. The small number of subjects 

with MCI probably contributes to the multifocal false-positive ROIs, such as those shown in Fig.4 (b). 

The small number of subjects with MCI also results in errors in the determination of homogenous 

associations in BMA, which is implemented based on Monte Carlo approximation (Cheeseman 1995; 

Chickering 1997).   

In addition, limitations in the raw image data and image processing, including tissue classification 

and registration errors, contribute to errors in subsequent analysis. Although HAMMER (Shen 2001b) 
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is a highly accurate image-registration technique, registration error still degrades the quality of 

morphology-function analysis. In addition, z-score thresholding for RAVENS-map discretization may 

be inaccurate, particularly for variables that don't have a bimodal distribution; we plan to evaluate 

BMA's performance with a variety of discretization schemes. A common discretization method is 

based on the Gaussian mixture model (e.g., Roberts 1998); however, many of these approaches do not 

degrade gracefully as the number of subjects decreases. These limitations in the pre-processing steps, 

however, would have similar impact on other approaches to structure-function analysis.  

 

CONCLUSION 

In this paper we show how a novel Bayesian method for morphology-function analysis can be 

applied for identification of morphological changes that may be associated with MCI. Analysis of data 

from the BLSA neuroimaging study confirms previous reports of an association between mesial 

temporal lobe morphology and MCI, providing evidence of the utility of the BMA algorithm. 

Additional regions in the inferior and lateral aspects of the left temporal lobe are also found in this 

study. 
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