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Thesis directed by Professor. Edward F. Kuester

To keep pace with the expanding wireless and electronics industries, manu-

facturers are developing innovative materials for improving system performance,

and there is a critical need to accurately characterize the electrical properties of

these new materials at microwave frequencies. To address this need, this thesis

develops a nondestructive method for measuring the relative permittivity and loss

tangent of dielectric substrates using a split-cylinder resonator.

Three theoretical models for the split-cylinder resonator are derived using

mode-matching, least-squares boundary residual, and Hankel-transform methods,

from which one can calculate the relative permittivity and loss tangent of a dielec-

tric substrate from measurements of the split-cylinder resonator’s TE0np resonant

frequency and quality factor.

Each of these models has several advantages over previously published mod-

els. First, the accuracy of the relative permittivity measurement is increased be-

cause each model accurately models the fringing fields that extend beyond the

cylindrical-cavity sections. Second, to increase the accuracy of the loss tangent

measurement, each model accurately separates the conductive metal losses of the

split-cylinder resonator from the dielectric losses of the substrate. Finally, in con-

trast to previous models for the split-cylinder resonator that use only the TE011

resonant mode, each of the new models include the higher-order TE0np resonant

modes, thereby broadening the frequency range over which one can make relative

permittivity and loss tangent measurements. In a comparison of the three models,

the mode-matching method was found to be superior on the basis of measurement

accuracy and computational speed.

Relative permittivity and loss tangent measurements for several dielectric

materials are performed using a split-cylinder resonator and are in good agreement

with measurements made using a circular-cylindrical cavity, split-post resonator,

and dielectric post resonator. This thesis also identifies sources of uncertainty and

presents a comprehensive uncertainty budget for both the relative permittivity and

loss tangent.
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Chapter 1

Introduction

The most precise methods for determining the relative permittivity ²
0
r and

loss tangent tan δ of low-loss dielectrics are resonator methods. Commonly-used

resonator techniques include the dielectric-post resonator, circular-cylindrical cav-

ity, and the whispering-gallery mode method [1]. Although usually limited to a

single frequency, these resonant methods provide the needed accuracy that broad-

band methods lack. A disadvantage of these techniques is that samples must

be accurately machined into a symmetrical geometry such as a cylinder. Since

sample machining is destructive and sometimes expensive, conventional resonator

methods are rarely used for large-scale quality-control purposes.

Kent developed a resonator technique for performing nondestructive meas-

urements of the relative permittivity and loss tangent [2, 3]. This method, the

split-cylinder resonator technique, uses a cylindrical cavity which is separated into

two halves as shown in Figure 1.1. A sample is placed in the gap between the two

shorted cylindrical waveguide sections. A TE0np resonance is excited, and from

measurements of the resonant frequency and the quality factor, one determines the

relative permittivity and loss tangent of the sample. In terms of sample geometry,

the only requirements are that the sample must extend beyond the diameter of

the two cavity sections and the sample must be flat. This arrangement provides

the accuracy of a resonator technique without having to machine the sample.
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Figure 1.1: Split-cylinder resonator.

Unfortunately, having little or no sample preparation comes at the cost of

needing a more comprehensive model for the split-cylinder resonator. In conven-

tional resonator methods, the boundary-value problem is relatively straightfor-

ward since the electric and magnetic fields are confined to the sample or within

a metallic cavity. However, for the split-cylinder resonator, a gap exists between

the two cylindrical waveguide sections, and the electric and magnetic fields extend

into the sample outside of the cylindrical waveguide regions.

Kent, in his original model [2], correctly recognized that neglecting the fields

in the region of the sample outside of the waveguide sections would lead to a

systematic error in the measured permittivity. He initially proposed a correction

to the measured permittivity based on a perturbation calculation. Later, Kent

and Bell developed an improved approximation to correct the initial model [4].

In contrast, this thesis develops three new theoretical models for the split-

cylinder resonator. In each of the three models, we derive expressions for the

electric and magnetic fields in each of the split-cylinder resonator regions, making
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sure that we accurately represent the fringing fields in the sample region. By en-

forcing the appropriate boundary conditions on these fields we derive a resonance

condition for the split-cylinder resonator that one can use to accurately calcu-

late the relative permittivity of the dielectric substrate. Once expressions for the

fields and the relative permittivity are determined, we develop for each model an

explicit expression for the loss tangent. By properly separating the conductive

losses in the split-cylinder resonator from the dielectric losses of the substrate,

high-accuracy loss tangent measurements are possible. Chapter 2 presents the

mode-matching model, while Chapter 3 and Chapter 4 outline the models derived

with the least-squares boundary residual and Hankel-transform methods.

In Chapter 5 we compare the three models, derived in the previous three

chapters, using a variety of criteria, including the satisfaction of the boundary con-

ditions, agreement in computed relative permittivity and loss tangent, and com-

putational speed. Based on this comparison, we conclude that the mode-matching

model is superior and implement this model into our measurement software.

Finally, in Chapter 6, we develop the metrology required for accurate relative

permittivity and loss tangent measurement made with the split-cylinder resonator.

Beginning with the mechanical specifications of the split-cylinder resonator, we

then discuss the characterization of the intermediate variables necessary to cal-

culate the relative permittivity and loss tangent. Next, we provide a detailed

step-by-step procedure for making measurements using a split-cylinder resonator

and develop an uncertainty budget for both the relative permittivity and loss

tangent. Then we present relative permittivity and loss tangent measurements of

several dielectric substrates and show good agreement with measurements made

using other techniques. Although we do present some single-frequency results

using only the TE011 resonant mode, we also demonstrate how one can extend

the measurement frequency range of the split-cylinder resonator by making use
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of the higher-order TE0np resonant modes. Finally, we summarize the results of a

repeatability study that confirms the measurement stability of the split-cylinder

resonator.



Chapter 2

Mode Matching Model

2.1 Introduction

The first method we selected to model the split-cylinder resonator was the

mode-matching method. Developed in the 1940’s [5, 6] and later generalized in the

1960’s [7, 8], the mode-matching method remains a popular technique for solving

electromagnetic boundary problems, especially those involving discontinuities in

waveguides and transmission lines where explicit solutions are often not possible.

Before using the mode-matching method to develop a theoretical model for the

split-cylinder resonator, we describe the implementation of the mode-matching

method for a simple discontinuity problem.

The mode-matching method is most often applied to problems where the

geometry is composed of distinct regions that can be represented by a separable

coordinate system. One such geometry is the discontinuity problem shown in

Figure 2.1. In this example, the two regions, with different cross-sections, share

a common z-axis and intersect at z = 0. The two regions could represent either

an intersection of two waveguides or the two sections of a cavity resonator. In

the former, one calculates the amplitudes of the reflected and transmitted waves

at the discontinuity, while in the latter, one calculates the resonant frequencies of

the resonator.

We represent the transverse electric and magnetic fields in each region by
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S1

Region 1

Region 2

S2 (z)

Figure 2.1: Example of a waveguide discontinuity.

an infinite series of normal modes. In region one,

~ET1 =
∞X
n=1

An~en1 , (2.1)

~HT1 =
∞X
n=1

An~hn1, (2.2)

while in region two,

~ET2 =
∞X
n=1

Bn~en2 , (2.3)

~HT2 =
∞X
n=1

Bn~hn2. (2.4)

where ~eni and
~hni are the transverse components of the nth mode in region i, and

the constants An and Bn are unknown mode coefficients to be determined. If the

cross-sections of regions one and two can be represented by a separable coordinate

system, then ~eni and
~hni are merely the normal modes in each region. Each of

these normal modes satisfies Maxwell’s equations and the boundary conditions

everywhere except the discontinuity at z = 0.

To satisfy the boundary conditions at the discontinuity, we find the solutions

for the mode coefficients An and Bn. In our example, the transverse electric
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and magnetic fields are continuous across the aperture denoted by S1 and the

transverse electric field is zero on the perfectly conducting surface not containing

the aperture (S2 − S1). Therefore, the resulting boundary conditions for the

electric and magnetic field are

~ET1 =


~ET2 on S1

0 on (S2 − S1)
(2.5)

and

~HT1 = ~HT2 on S1. (2.6)

Substituting equations (2.1-2.4) into (2.5) and (2.6), we obtain

∞X
n=1

An~en1 =


∞X
n=1

Bn~en2 on S1

0 on (S2 − S1)
(2.7)

and
∞X
n=1

An~hn1 =
∞X
n=1

Bn~hn2 . (2.8)

To reduce the number of infinite series in both equation (2.7) and (2.8), we make

use of the orthogonality of the modes in each region. In region 1, the orthogonality

relation is Z
S1
~em1 × ~hn1 · ~azds = Vmnδmn (2.9)

while the relation in region 2 isZ
S2
~em2 × ~hn2 · ~azds =Wmnδmn (2.10)

where Vmn and Wmn are normalization constants and δmn is the Kronecker delta

function. For these orthogonality relations to be valid, the modes in each waveguide

must be nondegenerate, the waveguide boundaries must be perfect conductors,

and the material contained within each of the waveguides must be lossless [9].

To simplify the boundary conditions on the electric field, we take the vector

product of (2.7) with ~hm2 and integrate over the cross-section S2. Employing the
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orthogonality relation found in (2.10), we eliminate one infinite series in equation

(2.7)
∞X
n=1

AnCmn = BmWmm (2.11)

where

Cmn =
Z
S2
(~en1 × ~hm2) · ~az ds. (2.12)

We use the orthogonality relation for the waveguide modes in the larger waveguide

to ensure that the boundary condition is enforced at z = 0 in both the aperture

region S1 and the conductive region (S2 − S1) [10].
To simplify the boundary condition on the magnetic field, we take the vector

product of (2.8) with ~em1 and integrate over the waveguide cross-section S1. Using

the orthogonality relation found in (2.9), equation (2.8) reduces to

AmVmm =
∞X
n=1

BnDmn (2.13)

where

Dmn =
Z
S1
(~em1 × ~hn2) · ~az ds. (2.14)

We could have employed either of the orthogonality relations in equations (2.9)

and (2.10) to simplify the magnetic field boundary condition in (2.8), since both

relations enforce the boundary condition for the magnetic field on the aperture

region S1. However, by choosing the orthogonality relation for the waveguide

modes in the smaller waveguide, we have employed the orthogonality relations

from both regions, and this helps to reduce the errors due to relative convergence

[11].

Equations (2.11) and (2.13) represent an infinite system of equations with

unknown mode coefficients An and Bn. Although the boundary conditions are

satisfied when we include an infinite number of modes in each region, we must

truncate the number of modes in order to reduce the problem to a finite system
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of equations. Assuming N1 modes in region 1 and N2 modes in region 2, we have

a system of equations
N1X
n=1

AnCmn = BmWmm (2.15)

and

AmVmm =
N2X
n=1

BnDmn. (2.16)

In matrix form, we can rewrite equations (2.15-2.16) as C −W
V −D


 A
B

 = [Z]
 A
B

 = 0 (2.17)

where

[Z] =

 C −W
V −D

 . (2.18)

If, in our example of Figure 2.1, the problem is the intersection of waveguides, one

can calculate the constants An and Bn from the system of equations in (2.17) and

determine the electric and magnetic fields from equations (2.1-2.4). If, however,

the problem is a cavity resonator, one would like to calculate the resonant fre-

quencies of the cavity in addition to the constants An and Bn. The linear system

of equations in (2.18) has a nontrivial solution only if

det[Z] = 0. (2.19)

Equation (2.19) is the resonance condition for the cavity resonator, and one can

calculate the resonant frequencies from this equation.

To implement the mode-matching method, it is always necessary to truncate

the number of modes in each region. Unfortunately, this leads to a numerical error

known as relative convergence. Wexler [7], in particular, first noted that numerical

convergence was dependent on the ratio of the number of modes in each region and

suggested that there might be a criterion for the ratio of modes that would mini-

mize the relative convergence error. Further insight into relative convergence was
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Figure 2.2: Cross-section of split-cylinder resonator with sample.

made by Masterman and Clarricoats [12]. In their paper, they observed that rela-

tive convergence was minimized when the spatial frequency of the highest mode in

each region was the same. Later, Ilinski [13] found that the relative convergence

is minimized when the wavelength of the highest-order mode in each region is the

same, thus taking into account the differences in material properties between the

regions. Besides specifying a particular ratio of modes in each region, Vassallo

[11] found that the relative convergence could also be reduced by employing all

available orthogonality relations. We will address relative convergence and other

issues related to the mode-matching method in the next section where we use the

method to derive a theoretical model for the split-cylinder resonator.

2.2 Split-Cylinder Theoretical Model

In this section, we apply the mode-matching method to the specific case of

the split-cylinder resonator, shown in Figure 2.2. The split-cylinder resonator is

a circular-cylindrical cavity of radius a and length 2L, separated into two halves
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by a variable-length gap containing a dielectric substrate. At z = ±d/2, both
cylindrical-cavity sections are terminated by a conductive flange that extends in

the radial direction. A TE0np resonant mode is excited with two coupling loops,

one in each cylindrical-cavity section. Each of the loops is connected to a coaxial

transmission line and each of the transmission lines is connected to a port of an

automatic network analyzer.

A flat dielectric substrate, with a thickness d, is placed in the gap between

the two cylindrical-cavity sections, and the gap between the two sections is de-

creased until the dielectric substrate contacts the conductive flanges. Besides the

requirement that the sample be flat, the substrate must cover the entire aperture

between the cylindrical-cavity and the sample regions.

In the following sections, we represent the electric and magnetic fields in

the different split-cylinder regions as a series of normal modes. Using the mode-

matching method, we enforce the boundary conditions and derive the resonance

condition for the split-cylinder resonator. Using the resonance condition and the

expressions for the electric and magnetic fields, we show how to calculate the

dielectric substrate’s relative permittivity and loss tangent from a measurement

of the TE0np resonant frequency and quality factor.

2.2.1 Fields in the Upper Cylindrical-Cavity Region

From the symmetry of the split-cylinder resonator and the assumption that

we excite TE0n modes in the upper cylindrical-cavity region, the electric field has

only a φ-component of the form

Eφu =
∞X
n=1

AnUnRnu(ρ)Znu(z), (2.20)

where An are unknown mode coefficients, Rnu are radial eigenfunctions to be

determined, and Znu are longitudinal functions. We also include the factor Un, a
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constant to be defined later for improving matrix conditioning. Assuming that An

and Un are nonzero for all n, we substitute (2.20) into the vector wave equation

∇2 ~E + ω2µ0²0²
0
a
~E = 0 (2.21)

to obtain

1

Rnu

1

ρ

∂

∂ρ

Ã
ρ
∂Rnu
∂ρ

!
− 1

ρ2
+ k2u = −

1

Znu

∂2Znu
∂z2

= k2n, (2.22)

where k2u = ω2µ0²0²
0
a, ω = 2πf , k

2
n is the separation constant, f is the frequency,

and ²
0
a is the relative permittivity of the air within the upper cylindrical-cavity

region. We have assumed that the fields have a time-dependence of ejωt.

We use the method of separation of variables to solve for Rnu(ρ) and Znu(z).

Applying this method to (2.22) we find

Eφu(ρ, z) =
∞X
n=1

AnUn
h
C

0
nJ1(hnuρ) +D

0
nY1(hnuρ)

i
·"

A
0
n sin[pnu(L+

d

2
− z)] +B0

n cos[pnu(L+
d

2
− z)]

#
(2.23)

where A
0
n, B

0
n,C

0
n, and D

0
n are constants, J1 is the Bessel function of the first

kind of order one, Y1 is the Bessel function of the second kind of order two, and

p2nu = k
2
u − h2nu.
We assume that the metal waveguide wall and endplate of the cylindrical-

cavity section are perfect conductors. Therefore, the boundary conditions on the

transverse electric field yield

Eφu(ρ, z = L+
d

2
) = 0, 0 ≤ ρ ≤ a, (2.24)

Eφu(ρ = 0, z) is finite, 0 ≤ z ≤ L+ d
2
, (2.25)

Eφu(ρ = a, z) = 0,
d

2
≤ z ≤ L+ d

2
. (2.26)

It follows that

B
0
n = 0, (2.27)
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D
0
n = 0, (2.28)

hnu =
j1,n
a
, (2.29)

where j1,n is the nth zero of J1 and (2.23) reduces to

Eφu(ρ, z) =
∞X
n=1

AnUnJ1(hnuρ) sin[pnu(L+
d

2
− z)]. (2.30)

From the differential form of Faraday’s law

∇× ~E = −jωµ0 ~H (2.31)

and (2.30) we find the components of the magnetic field

Hρu(ρ, z) = −
1

jωµ0

∞X
n=1

pnuAnUnJ1(hnuρ) cos[pnu(L+
d

2
− z)], (2.32)

Hzu(ρ, z) = −
1

jωµ0

∞X
n=1

hnuAnUnJ0(hnuρ) sin[pnu(L+
d

2
− z)]. (2.33)

2.2.2 Fields in the Sample Region

Although the split-cylinder resonator is not a closed cavity, we assume a

perfectly-conducting boundary at the sample radius ρ = b in order to implement

the mode-matching method. The value of b must be large enough to ensure the

attenuation of the electric and magnetic fields before they reach this proposed con-

ductive boundary. Later in this section, we examine the value of b and investigate

its effect on the calculation of the relative permittivity and loss tangent.

We assume that the electric field in the sample region takes the form

Eφs =
∞X
n=1

BnVnRns(ρ)Zns(z), (2.34)

where Bn are unknown mode coefficients, Rns are radial eigenfunctions to be

determined, and Zns are longitudinal functions. We add a factor Vn to improve

matrix conditioning.
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Assuming that Bn and Vn are nonzero for all n, we substitute (2.34) into

the vector wave equation

∇2 ~E + ω2µ0²0²
0
s
~E = 0 (2.35)

to obtain

1

Rns

1

ρ

∂

∂ρ

Ã
ρ
∂Rns
∂ρ

!
− 1

ρ2
+ k2s = −

1

Zns

∂2Zns
∂z2

= k2n, (2.36)

where k2s = ω2µ0²0²
0
s, k

2
n is the separation constant, and ²

0
s is the relative permit-

tivity of the sample.

We use the method of separation of variables to solve for Rns(ρ) and Zns(z).

Applying this method to (2.36) we find

Eφs(ρ, z) =
∞X
n=1

BnVn
h
C

0
nJ1(hnsρ) +D

0
nY1(hnsρ)

i
·h

A
0
n sin(pnsz) +B

0
n cos(pnsz)

i
, (2.37)

where A
0
n, B

0
n,C

0
n, and D

0
n are constants, J1 is the Bessel function of the first

kind of order one, Y1 is the Bessel function of the second kind of order two, and

p2ns = k
2
s − h2ns .
To increase the sensitivity of the split-cylinder resonator, the electric field

should be maximum in the sample region. Therefore, we consider only TE0np

resonant modes where p, the number of half-wavelengths along the z-axis, is an

odd integer. For this mode family, the electric field is symmetric about z = 0 and

maximum at z = 0, the center of the sample.

We also assume that the flanges of the cylindrical-cavity regions are perfect

conductors. Given these assumptions, the boundary conditions on the transverse

electric field yield

Eφs(ρ, z = −
d

2
) = Eφs(ρ, z =

d

2
), 0 ≤ ρ ≤ b, (2.38)

Eφs(ρ = 0, z) is finite, 0 ≤ z ≤ d
2
, (2.39)

Eφs(ρ = b, z) = 0, 0 ≤ z ≤ d
2
. (2.40)
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It follows that

A
0
n = 0, (2.41)

D
0
n = 0, (2.42)

hns =
j1,n
b
, (2.43)

where j1,n is the nth zero of J1 and (2.37) reduces to

Eφs(ρ, z) =
∞X
n=1

BnVnJ1(hnsρ) cos(pnsz). (2.44)

From the differential form of Faraday’s law

∇× ~E = −jωµ0 ~H (2.45)

and (2.44) we find the components of the magnetic field

Hρs(ρ, z) = −
1

jωµ0

∞X
n=1

pnsBnVnJ1(hnsρ) sin(pnsz) (2.46)

Hzs(ρ, z) = −
1

jωµ0

∞X
n=1

hnsBnVnJ0(hnsρ) cos(pnsz) (2.47)

2.2.3 Resonance Condition

In the previous two sections, we derived expressions for the electric and

magnetic fields in the upper cylindrical-cavity and sample regions. Because of the

symmetry of the split-cylinder resonator at z = 0, these are the only two regions

that we need to consider. We now derive the resonance condition for the split-

cylinder resonator by enforcing the boundary conditions on the transverse fields

in the aperture region separating the cylindrical-cavity and sample regions, inte-

grating over the boundary surface, and making use of the orthogonality relations

of the normal modes in both regions.

First we enforce the boundary condition that the tangential electric field is

continuous at z = d/2

Eφu

Ã
z =

d

2

!
= Eφs

Ã
z =

d

2

!
, 0 ≤ ρ ≤ b. (2.48)
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Substituting (2.30) and (2.44) into (2.48) we find

∞X
n=1

BnVnJ1(hnsρ) cos(pns
d

2
) =


∞X
n=1

AnUnJ1(hnuρ) sin(pnuL), 0 ≤ ρ ≤ a

0, a ≤ ρ ≤ b.
(2.49)

To reduce the infinite sum on the left-hand side of (2.49) to a single term, we make

use of the orthogonality of the modes. With the assumption that the conductive

boundaries are perfectly conducting and all materials within the split-cylinder

resonator are lossless [9], the orthogonality relation for the upper cylindrical-cavity

region is Z 2π

φ=0

Z a

ρ=0

h
E
(n)
φu
×H(m)

ρu

i
· ~azρ dρ dφ = F δmn, (2.50)

and the relation for the sample region is

Z 2π

φ=0

Z b

ρ=0

h
E
(n)
φs
×H(m)

ρs

i
· ~azρ dρ dφ = Gδmn, (2.51)

where F and G are normalization constants and δmn is the Kronecker delta func-

tion.

To reduce (2.49), we can multiply both sides by either H(m)
ρu and use the

orthogonality relation in equation (2.50), or we can multiply by H(m)
ρs and use

the orthogonality relation in equation (2.51). The electric field must not only be

continuous at the aperture (0 ≤ ρ ≤ a) at z = d/2, but it also must go to zero
on the perfectly conductive flange that extends to ρ = b. Only the orthogonality

relation for the modes in the sample region will allow us to enforce the electric field

boundary condition over the entire boundary from (0 ≤ ρ ≤ b) [10]. Therefore,
multiplying both sides of (2.49) by H(m)

ρs and integrating over the cross-section of

the sample region we find

∞X
n=1

AnUn
ahnu

h2ms − h2nu
J0(hnua)J1(hmsa) sin(pnuL) = BmVm

b2

2
J20 (hmsb) cos(pms

d

2
).

(2.52)



17

The second boundary condition that we enforce is the continuity of the

tangential magnetic field

Hρs

Ã
z =

d

2

!
= Hρu

Ã
z =

d

2

!
, 0 ≤ ρ ≤ a. (2.53)

Substituting (2.32) and (2.46) into (2.53) we find

∞X
n=1

pnsBnVnJ1(hnsρ) sin(pns
d

2
) =

∞X
n=1

pnaAnUnJ1(hnaρ) cos(pnaL), 0 ≤ ρ ≤ a.
(2.54)

We again employ an orthogonality relation to reduce the infinite sum on

the right-hand side of (2.54) to a single term. For the case of the magnetic fields,

either of the orthogonality relations found in (2.50) or (2.51) will work in principle.

However, according to [11], by selecting the remaining orthogonality relation, we

reduce the errors due to relative convergence. Therefore, we use

Z 2π

φ=0

Z a

ρ=0

h
E
(n)
φu
×H(m)

ρu

i
· ~azρ dρ dφ = F δmn. (2.55)

Multiplying each side of (2.54) by E
(n)
φa and integrating over the cross-section

of the upper cavity region we find

AnUnpnu
a2

2
J20 (hnua) cos(pnuL) =

∞X
m=1

BmVm
apmshnu
h2ms
− h2nu

J1(hmsa)J0(hnua) sin(pms

d

2
).

(2.56)

To match the boundary conditions exactly, we must include an infinite num-

ber of modes in both the upper cylindrical-cavity region and the sample region.

The result is an infinite system of equations with unknown constants An and Bn.

To reduce this to a finite system of linear algebraic equations, we must truncate

the number of modes in each region. If we choose the number of modes in the

cylindrical-cavity region to be Nu and the number of modes in the sample region

to be Ns, then (2.53) and (2.56) form two systems of equations

QA = RB (2.57)
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and

SA = PB, (2.58)

where

Qmn = Un
ahnu

h2ms
− h2nu

J1(hmsa)J0(hnua) sin(pnuL), (2.59)

Rmm = Vm
b2

2
J20 (hmsb) cos(pms

d

2
), (2.60)

Snn = Unpnu
a2

2
J20 (hnua) cos(pnuL), (2.61)

Pnm = Vm
apmshna
h2ms − h2nu

J1(hmsa)J0(hnua) sin(pms
d

2
) (2.62)

noting that both R and S are diagonal matrices.

The system of equations represented by (2.57) and (2.58) is rewritten as

[Z] [X] = 0, (2.63)

where

[Z] =

 Q −R
S −P

 (2.64)

and

[X] =

 A
B

 . (2.65)

The resonance condition follows from the fact that this linear system of equations

has a nontrivial solution only if

det [Z] = 0. (2.66)

Equation (2.66) can be used to iteratively calculate either the resonant frequency f

of the split-cylinder resonator given a known sample permittivity ²
0
s or the sample

permittivity given a measured resonant frequency.
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2.3 Relative Permittivity

In the previous section, we used the mode-matching method to derive the

resonance condition for the split-cylinder resonator

det [Z] = det

 Q −R
S −P

 = 0, (2.67)

where

Qmn = Un
ahnu

h2ms
− h2nu

J1(hmsa)J0(hnua) sin(pnuL), (2.68)

Rmm = Vm
b2

2
J20 (hmsb) cos(pms

d

2
), (2.69)

Snn = Unpnu
a2

2
J20 (hnua) cos(pnuL), (2.70)

Pnm = Vm
apmshnu
h2ms
− h2nu

J1(hmsa)J0(hnua) sin(pms

d

2
). (2.71)

To use equation (2.67) to calculate the substrate’s relative permittivity ²
0
s,

we must first define Un and Vn. The inclusion of Un and Vn help to improve the

matrix conditioning of Z by preventing any matrix element from becoming too

small or too large relative to the other matrix elements.

The matrices Q and S include the trigonometric functions sin(pnuL) and

cos(pnuL). For large n, pnu is large and imaginary, resulting in large values for

sin(pnuL) and cos(pnuL). Thus, to keep Q and S from becoming ill-conditioned,

we define Un as

Un =
pNu

cosh[Im(pnu)L]
, (2.72)

where pNu is the value of pnu when n = Nu, the total number of modes included

in the cylindrical-cavity region.

In a similar way, the matrices R and P include the trigonometric functions

cos(pms
d
2
) and sin(pms

d
2
). For large m, pns is large and imaginary and cos(pms

d
2
)



20

-1.0x10-52 

-0.5

0.0

0.5

1.0

de
t[Z

]

2015105

Frequency (GHz)

Figure 2.3: Determinant of Z as a function of resonant frequency. In this example,
the sample’s relative permittivity is 10, radius is 29.05 mm, and thickness is 1 mm.
The length of the upper cylindrical-cavity section is 25.326 mm and the radius is
19.05 mm.

and sin(pms
d
2
) are large as well. To keep R and P from becoming ill-conditioned,

we define Vn as

Vn =
pNs

cosh[Im(pns)
d
2
]
, (2.73)

where pNs is the value of pns when n = Ns, the total number modes included in

the sample region.

With Un and Vn defined, we can use the split-cylinder resonance condition

in (2.67). If the sample’s thickness d and radius b are known, along with the

cylindrical-cavity section’s radius a and length L, only two unknown variables

remain in (2.67): the resonant frequency f and the sample’s relative permittivity

²
0
s. Thus, (2.67) can be used in two ways.

The first way is to calculate the resonant frequency of the split-cylinder

resonator given the value of the sample’s relative permittivity. This is useful

for identifying the location of the TE0np modes. Figure 2.3 shows a plot of the
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Figure 2.4: Determinant of Z as a function of relative permittivity ²
0
s. In this

example, the sample’s radius is 29.05 mm and thickness is 1 mm. The length
of the upper cylindrical-cavity section is 25.326 mm and the radius is 19.05 mm.
The split-cylinder’s TE011 resonant frequency is 7.83 GHz.

determinant of Z as a function of frequency for a sample with thickness d = 1 mm

and relative permittivity ²
0
s = 10.

Each zero crossing in Figure 2.3 corresponds to the resonant frequency of

a TE0np mode, where p is odd. The first zero crossing occurs at the resonant

frequency of the fundamental TE011 mode. Because other resonant modes, besides

those in the TE0np family, are excited in the split-cylinder resonator, plotting the

determinant of Z versus frequency is an important tool for properly identifying

the frequencies of the TE0np modes.

The second, and more important, use of the split-cylinder resonance condi-

tion is to the calculation of the value of the sample’s relative permittivity ²
0
s. In

this case, the resonant frequency f of the TE0np mode and the dimensions of the

sample and cylindrical-cavity sections are known, and we calculate the sample’s

relative permittivity with (2.67). Figure 2.4 shows a plot of the determinant of Z
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as a function of relative permittivity.

With the split-cylinder’s resonant frequencies, each zero-crossing of the de-

terminant of Z corresponds to the resonant frequency of a TE0np mode. However,

to calculate the sample’s relative permittivity, only one of the zero-crossings of the

determinant of Z is the true value of the sample’s relative permittivity, and the

remaining zero-crossings should be ignored. Figure 2.4 is a plot of the determinant

of Z as a function of the sample’s relative permittivity with several zero crossings,

only one of which corresponds to the true value of sample’s relative permittivity

of the sample.

Since we cannot solve explicitly for the sample’s relative permittivity using

(2.67), we must employ an iterative method, in our case the Newton-Raphson

technique. With any such iterative method, one must supply an initial guess for

the relative permittivity so that the algorithm converges to the correct value of

the relative permittivity. It is important to note, as seen in Figure 2.4, that the

initial guess must be sufficiently close to the sample’s relative permittivity to avoid

converging to the wrong zero-crossing. In Chapter 5, we examine several examples

to see how close the values of the initial guesses must be. In our particular example,

the first-zero crossing in Figure 2.4 is the correct one that corresponds to a relative

permittivity of 10.

We must truncate the total number of modes in the upper cylindrical-cavity

region Nu and the sample region Ns so that the number of linear algebraic equa-

tions is finite. But the truncation of the number of modes leads to a systematic

error in the calculation of the sample’s relative permittivity. This phenomenon

is often referred to as relative convergence and its effect must be minimized for

accurate relative permittivity measurements.

To minimize the relative convergence error, we employ all the available or-

thogonality relations in the derivation of the resonance condition as recommended
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by [11]. Although this helps to reduce the relative convergence error, the most

effective way of reducing relative convergence is to properly select the optimal

ratio of modes in each region.

In our introduction to this chapter, we noted that Ilinski [13] found that the

relative convergence is minimized when the wavelength of the highest-order mode

in each region is the same. For the split-cylinder resonator, the wavelength of the

highest-order evanescent mode in the cylindrical-cavity region is

λu =
2π

Im[pNu ]
, (2.74)

and the wavelength of the highest-order mode in the sample region is

λs =
2π

Im[pNs ]
, (2.75)

where

p2Nu = ω2µ0²0²
0
a −

µ
j1,Nu
a

¶2
(2.76)

and

p2Ns = ω2µ0²0²
0
s −

µ
j1,Ns
b

¶2
. (2.77)

The relative convergence is minimized if the number of modes in each region is

selected so that

Im[pNu] = Im[pNs ]. (2.78)

To examine the effect of relative convergence on the calculation of relative

permittivity, we show in Figure 2.5 the calculated relative permittivity of a dielec-

tric substrate as a function of the number of modes in the cylindrical-cavity and

sample regions. Also shown on this plot is the optimal ratio of modes as defined

by (2.78). The calculated relative permittivity can vary several percent depending

on selection of the number of modes. However, the variation in permittivity is

reduced considerably if the ratio of modes is determined from (2.78).
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Figure 2.5: Relative permittivity ²
0
s as function of the number of modes in the

cylindrical-cavity and sample regions. In this example, the sample’s radius is
29.05 mm and thickness is 1 mm. The length of the upper cylindrical-cavity
section is 25.326 mm and the radius is 19.05 mm. The split-cylinder’s TE011
resonant frequency is 7.83 GHz.

The total number of modes to achieve numerical convergence may be deter-

mined with the same sample and split-cylinder resonator dimensions as specified

in Figure 2.5, and using (2.78) to calculate the optimal ratio of modes. By increas-

ing the number of modes in each region, we find the number of modes sufficient to



25
Number of Modes in Number of Modes in Sample
Cylindrical-Cavity Sample Region Relative

Region Region Permittivity
Nu Ns ²

0
s

4 8 9.9616
6 10 9.9697
8 13 9.9760
10 16 9.9800
12 19 9.9827
14 22 9.9845
16 25 9.9857
18 28 9.9867
20 31 9.8873
22 34 9.8879
24 37 9.9883
26 40 9.9886
28 43 9.9889
30 46 9.9891

Table 2.1: Relative permittivity ²
0
s as a function of modes in the cylindrical-cavity

and sample regions where the ratio of modes is fixed. In this example, the sample’s
radius is 29.05 mm and thickness is 1 mm. The length of the upper cylindrical-
cavity section is 25.326 mm and the radius is 19.05 mm. The split-cylinder’s TE011
resonant frequency is 7.83 GHz.

reach numerical convergence. Table 2.1 lists the calculated relative permittivity

as a function of the number of modes in the sample and cylindrical-cavity regions.

As expected, the values of the computed relative permittivity shown in Table 2.1

vary significantly when the number of modes is small. However, as the total num-

ber of modes is increased, the relative permittivity converges, and for Nu = 30

and Ns = 46, the variation in the relative permittivity is less than 2× 10−4. Note
that this example is for a particular split-cylinder resonator measuring a substrate

with a permittivity near 10 and a thickness of 1 mm. For a different split-cylinder

resonator or another dielectric substrate, the total number of modes required to

achieve numerical convergence may vary.

In addition to examining the convergence of the relative permittivity as a
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Figure 2.6: Relative permittivity as a function of sample radius b. In this example,
the sample’s radius is 29.05 mm and thickness is 1 mm. The length of the upper
cylindrical-cavity section is 25.326 mm and the radius is 19.05 mm. The split-
cylinder’s TE011 resonant frequency is 7.83 GHz.

function of the number of modes, we also examine the effect of the sample radius

b. In our derivation of the resonance condition for the split-cylinder resonator, a

perfectly conducting boundary at ρ = b in the sample region is assumed, although

no conductive boundary exists physically. To ensure that the addition of this

conductive boundary in the theoretical model would not lead to systematic errors,

we calculate the relative permittivity as a function of b. Once again, this example

assumes the sample’s thickness is 1 mm. The length of the upper cylindrical-

cavity section is 25.326 mm and the radius is 19.05 mm. The split-cylinder’s

TE011 resonant frequency is 7.83 GHz. The results, shown in Figure 2.6, indicate

the calculated relative permittivity as a function of b, beginning with an initial

value of b equal to the radius a of the cylindrical-cavity section. In this example,

the calculated relative permittivity stabilizes for values of b several millimeters

greater than the cylindrical-cavity radius a. This is due to the fact that the
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Figure 2.7: Normalized electric field in sample region as a function of ρ. In this
example, the sample’s radius is 29.05 mm and thickness is 1 mm. The length
of the upper cylindrical-cavity section is 25.326 mm and the radius is 19.05 mm.
The split-cylinder’s TE011 resonant frequency is 7.83 GHz.

electric field in the sample region quickly attenuates when ρ > a.

Figure 2.7 is a plot of the electric field at z = 0 as a function of ρ. We see

that the electric field decays rapidly when ρ > a, and that the electric field drops

several orders of magnitude as ρ increases. Therefore, in order to minimize any

effect of the conductive boundary assumed at ρ = b, the sample must not only

completely cover the cylindrical-cavity sections, but must radially extend further

until the electric field has sufficiently attenuated, only a few millimeters in this

example.

2.4 Loss Tangent

In the last section, we outlined the method to calculate the sample’s relative

permittivity from the measured resonant frequency of the split-cylinder resonator

and the various dimensions of the sample and cylindrical-cavity sections. Having
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characterized these variables, we outline how to calculate the sample’s loss tangent

tan δs from a measurement of the TE0np resonant mode’s quality factor Q. We

define the quality factor Q as

Q =
ω(Wu +Ws)

Pe + Pw + Pf + Ps
, (2.79)

where Wu and Ws are the average energies stored in the cylindrical-cavity and

sample regions respectively, and Pe, Pw, Pf , and Ps are the powers dissipated per

second in the cylindrical-cavity endplate, wall, flange, and sample respectively.

Note that we have ignored the power dissipated in the coupling loops as we ensured

that the resonance was very weakly coupled (<-50 dB), an assumption we justify

in Section 6.3.1. When we calculated the sample permittivity using (2.66), we

also determined the mode coefficients An and Bn. With these mode coefficients

we calculate the electric and magnetic fields in the upper-cylindrical cavity region

Eφu(ρ, z) =
NuX
n=1

AnUnJ1(hnuρ) sin[pnu(L+
d

2
− z)], (2.80)

Hρu(ρ, z) = − 1

jωµ0

NuX
n=1

pnuAnUnJ1(hnuρ) cos[pnu(L+
d

2
− z)], (2.81)

Hz(ρ, z) = − 1

jωµ0

NuX
n=1

hnuAnUnJ0(hnuρ) sin[pnu(L+
d

2
− z)], (2.82)

and the fields in the sample region

Eφs(ρ, z) =
NsX
n=1

BnVnJ1(hnsρ) cos(pnsz), (2.83)

Hρs(ρ, z) = − 1

jωµ0

NsX
n=1

pnsBnVnJ1(hnsρ) sin(pnsz), (2.84)

Hzs(ρ, z) = − 1

jωµ0

NsX
n=1

hnsBnVnJ0(hnsρ) cos(pnsz). (2.85)

In the derivation of these fields, we assume that all the metal surfaces of the

split-cylinder resonator are perfect conductors. This is not the case in the deriva-

tion of an expression for the loss tangent, where one assumes that the metal has
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a finite conductivity σ and surface resistance Rs. However, for high-conductivity

metals, the fields should not significantly differ from those in the case of perfectly-

conducting metals, and we use the above expressions for the electric and magnetic

fields without modifications.

We define the stored-energy terms Ws and Wu as

Ws = ²0²
0
s

d
2Z

z=0

bZ
ρ=0

2πZ
φ=0

|Eφs|2ρ dφ dρ dz (2.86)

= ²0²
0
s

πb2

4

NsX
n=1

|Bn|2|Vn|2J20 (hnsb)
"
d+

sin(pnsd)

pns

#

and

Wu = ²0²
0
a

LZ
z= d

2

aZ
ρ=0

2πZ
φ=0

|Eφu|2ρ dφ dρ dz (2.87)

=



−²0²0a
πa2

4

NuX
n=1

|An|2|Un|2J20 (hnua)·"
d− 2L− sin(pnud)

pnu
+
sin(2pnuL)

pnu

#
, pnu is real

²0²
0
a

πa2

4

NuX
n=1

|An|2|Un|2J20 (hnua)·"
d− 2L− sin(pnud)

pnu
+
sin(2pnuL)

pnu

#
, pnu is imaginary.

In the same way, we define the sources of power dissipation as

Pe = Rs

aZ
ρ=0

2πZ
φ=0

|Hρu|2ρ dφ dρ
¯̄̄
z=L

(2.88)

= Rs
πa2

ω2µ20

NuX
n=1

|An|2|Un|2J20 (hnua)
¯̄̄̄
¯cos(pnu d2)

¯̄̄̄
¯
2

Pw = Rs

LZ
z= d

2

2πZ
φ=0

|Hzu|2ρ dφ dz
¯̄̄
ρ=a

(2.89)
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=



−Rs πa

2ω2µ20

NuX
n=1

|An|2|Un|2h2nuJ20 (hnua)·"
d− 2L− sin(pnud)

pnu
+
sin(2pnuL)

pnu

#
, pnu is real

Rs
πa

2ω2µ20

NuX
n=1

|An|2|Un|2h2nuJ20 (hnua)·"
d− 2L− sin(pnud)

pnu
+
sin(2pnuL)

pnu

#
, pna is imaginary

Pf = Rs

bZ
ρ=a

2πZ
φ=0

|Hρs|2ρ dφ dρ
¯̄̄
z=d

2

(2.90)

= Rs
π

ω2µ20

NsX
n=1

|Bn|2|Vn|2
½
b2J20 (hnsb)− a2[J1(hnaa)− J1(hnsa)]2

¾ ¯̄̄̄
¯sin(pnsd2)

¯̄̄̄
¯
2

and

Ps = tan δ ω²0²
0
s

bZ
ρ=0

d
2Z

z=0

2πZ
φ=0

|Eφs|2ρ dφ dρ dz (2.91)

= tan δ ²0²
0
s

πb2ω

4

NsX
n=1

|Bn|2|Vn|2J20 (hnsb)
"
d+

sin(pnsd)

pns

#

Solving (2.79) in terms of the sample’s loss tangent tan δ, we find

tan δ =

ω(Ws +Wa)

Q
− Pe − Pw − Pf

²0²
0
s

πb2ω

4

NsX
n=1

|Bn|2|Vn|2J20 (hnsb)
"
d+

sin(pnsd)

pns

# . (2.92)

With the measured resonant frequency and quality factor, the calculated sample’s

relative permittivity ²
0
s, and the dimensions of the cylindrical-cavity and sample,

the only two unknown variables in (2.92) are Rs, the surface resistivity of the

cylindrical-cavity sections, and tan δ, the loss tangent of the sample. As outlined

in Section 6.3.4, we obtain Rs from a measurement of the quality factor of the

split-cylinder resonator, when there is no sample and the gap between the two

cylindrical-cavity sections is closed (d = 0). Once we have calculated Rs, we use

equation (2.92) to explicitly calculate the sample’s loss tangent.

As was the case with the calculation of the sample’s relative permittivity,

we must examine the convergence of the loss tangent. First, we consider the effect



31

50

40

30

20

10
3025201510

 Optimal Ratio of Modes
50

40

30

20

10

N
um

be
r o

f M
od

es
 in

 S
am

pl
e 

R
eg

io
n

3025201510

Number of Modes in Cylindrical Cavity Region

 2.926 

 2.924 

 2.922 

 2.92 

 2.918 

 2.918 

Loss Tangent x 104

Figure 2.8: Loss tangent as a function of modes in the cylindrical-cavity and
sample regions. In this example, the sample’s radius is 29.05 mm and thickness
is 1 mm. The length of the upper cylindrical-cavity section is 25.326 mm and the
radius is 19.05 mm. The split-cylinder’s TE011 resonant frequency is 7.83 GHz.

of relative convergence using the example in Section 2.3. The sample’s thickness

is 1 mm, the radius is 29.05 mm and the relative permittivity is 10. The length of

the upper cylindrical-cavity section is 25.326 mm, the radius is 19.05 mm, and the

surface resistance of the metal is 0.026 Ω/m2. The split-cylinder’s TE011 resonant
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Number of Modes in Number of Modes in Sample
Cylindrical-Cavity Sample Region Loss

Region Region Tangent
Nu Ns tan δ × 104
4 8 2.929
6 10 2.927
8 13 2.925
10 16 2.924
12 19 2.923
14 22 2.922
16 25 2.921
18 28 2.920
20 31 2.920
22 34 2.920
24 37 2.919
26 40 2.919
28 43 2.919
30 46 2.918

Table 2.2: Loss tangent as a function of the number of modes in the cylindrical-
cavity and sample regions where the ratio of modes is fixed.

frequency is 7.83 GHz and the quality factor is 5000.

We calculate the loss tangent as a function of the number of modes in the

cylindrical-cavity and sample regions and plot the results in Figure 2.8. Unlike

the variation in the relative permittivity, with variation of several percent, the

effect on the loss tangent variation is much smaller, less than one percent. Using

the criteria in equation (2.78) to select the optimal ratio of modes in each region,

we can minimize this small error, due to relative convergence, on the loss tangent.

With the optimal ratio of modes found, we examine the convergence of the

loss tangent as a function of the total number of modes in each region. Using the

same values for the example shown in Figure 2.8, and fixing the optimal ratio of

modes as determined by (2.78), we increase the number of modes in each region

to find how many modes are sufficient to reach numerical convergence. Table 2.2



33
3.2

3.1

3.0

2.9

2.8

Lo
ss

 T
an

ge
nt

 x
 1

04

35302520

 Sample Radius b (mm)

Cylindrical-cavity Radius a

Figure 2.9: Loss tangent as a function of the radius of the sample region.

lists the calculated relative permittivity as a function of the number of modes

in the sample and cylindrical-cavity regions. The value of loss tangent converges

quickly as the number of modes increases, and shows changes less than 1× 10−6

when Nu = 30 and Ns = 46.

The effect of the conductive boundary at ρ = b on the calculation of the

loss tangent is shown in Figure 2.9, a plot of the loss tangent as a function of b,

the radius of the sample region. Unlike the relative permittivity, the loss tangent

does not rapidly stabilize for values of b slightly larger than a, the radius of the

cylindrical-cavity section, but decreases with increasing values of b. We believe

this is due to the fact that the tangential magnetic field on the conductive flange

Hρs(ρ, z = d/2) slowly decays as ρ increases. Although the magnetic field, as

shown in Figure 2.10, decreases as a function of ρ, it is reduced by only an order

of magnitude even when b is over a centimeter larger than a.

An important term in the calculation of the loss tangent is the power dis-

sipated on the conductive flange Pf . Equation (2.90) shows that the conductive
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Figure 2.10: Normalized magnetic field along the conductive flange as a function
of ρ.

losses on the flange are related to the value of the tangential magnetic field Hρs .

As b increases, more conductive losses due to the flange are included, and the value

of the loss tangent decreases. Although this variation in loss tangent is less than

2 × 10−5 in our example, it is an error that must be included in the uncertainty
analysis for the loss tangent.



Chapter 3

Least-Squares Boundary Residual Model

3.1 Introduction

In this chapter we derive a theoretical model for the split-cylinder resonator

using the least-squares boundary residual (LSBR) method. Initially used to solve

electromagnetic scattering problems [14], the LSBR method was later extended

to the solution of eigenvalue problems [15].

Similar to the mode-matching method, the electric and magnetic fields are

represented in the various split-cylinder resonator regions as a series of normal

modes. However, to derive the resonance condition, the LSBR method differs

considerably from the mode-matching method. In the mode-matching method, we

obtained a resonance condition by multiplying the boundary condition expressions

for the transverse fields by an appropriate mode and integrating over boundary

surface, taking into account the orthogonal properties of the modes. In the LSBR

method, we define a functional that is constructed from the various boundary

conditions on the transverse fields, and a resonance condition is achieved when

this functional is minimized.
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3.2 Split-Cylinder Theoretical Model

3.2.1 Transverse Electric and Magnetic Fields

We assume the split-cylinder resonator geometry shown in Figure 2.2. This

is identical to that in the mode-matching model, including the conductive bound-

ary at the sample radius ρ = b. Therefore, we use the expressions for the transverse

electric and magnetic fields derived in the previous chapter. From Section 2.2.1,

the transverse fields in the upper cylindrical-cavity section of the split-cylinder

resonator are

Eφu(ρ, z) =
NuX
n=1

AnUnJ1(hnuρ) sin[pnu(L+
d

2
− z)] (3.1)

=
NuX
n=1

Anφnu (3.2)

Hρu(ρ, z) = − 1

jωµ0

NuX
n=1

pnuAnUnJ1(hnuρ) cos[pnu(L+
d

2
− z)] (3.3)

=
NuX
n=1

Anψnu (3.4)

where

φnu = UnJ1(hnuρ) sin[pnu(L+
d

2
− z)], (3.5)

ψnu = −
1

jωµ0
pnuUnJ1(hnuρ) cos[pnu(L+

d

2
− z)] (3.6)

Un =
pNu

cosh[Im(pnu)L]
, (3.7)

p2nu = k
2
u − h2nu (3.8)

hnu =
j1,n
a
, (3.9)

and

k2u = ω2µ0²0²
0
a. (3.10)
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Likewise, from Section 2.2.2, the transverse fields in the sample region are

Eφs(ρ, z) =
NsX
n=1

BnVnJ1(hnsρ) cos(pnsz) (3.11)

=
NsX
n=1

Bnφns (3.12)

Hρs(ρ, z) = − 1

jωµ0

NsX
n=1

pnsBnVnJ1(hnsρ) sin(pnsz) (3.13)

=
NsX
n=1

Bnψns , (3.14)

where

φns = VnJ1(hnsρ) cos(pnsz), (3.15)

ψns = −
1

jωµ0
pnsVnJ1(hnsρ) sin(pnsz), (3.16)

Vn =
pNs

cosh[Im(pns)
d
2
]
, (3.17)

p2ns = k
2
s − h2ns , (3.18)

hns =
j1,n
b
, (3.19)

and

k2s = ω2µ0²0²
0
s. (3.20)

As in the mode-matching model, these fields satisfy Maxwell’s equations and

all the boundary conditions except for the boundary at z = d/2, the intersection of

the upper cylindrical-cavity and sample regions. Note that the number of modes

is truncated in each region — Nu modes in the upper cylindrical-cavity region and

Ns modes in the sample region.

3.2.2 Resonance Condition

To match the boundary conditions at z = d/2, we define the functional

J ({An}, {Bn}, ks) =
Z a

0

Z 2π

0
|Eφu − Eφs|2 ρ dφ dρ

¯̄̄
z=d/2
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+
Z a

0

Z 2π

0
W 2
1 |Hρu −Hρs|2 ρ dφ dρ

¯̄̄
z=d/2

+
Z b

a

Z 2π

0
W 2
2 |0− Eφs|2 ρ dφ dρ

¯̄̄
z=d/2

(3.21)

whereW1 andW2 are arbitrary weighting constants with units of impedance. The

first two terms in (3.21) represent the matching of the tangential electric and mag-

netic fields over the aperture separating the upper-cylindrical cavity region from

the sample region. The third term in (3.21) is the condition that the tangential

electric field must be zero on the conductive flange of the split-cylinder resonator.

Substituting the tranverse electric and magnetic fields from both regions

into (3.21), we express J in matrix form

J ({An}, {Bn}, ks) = xZx (3.22)

where x is the row vector (A1, A2 · · ·ANu, B1, B2 · · ·BNs) and Z is a complex

Hermitian matrix [15]. The bar indicates a complex conjugate. The matrix Z is

the sum of three matrices that correspond to the three terms in (3.21)

Z =

 Z1A Z1B

Z1C Z1D

+
 Z2A Z2B

Z2C Z2D

+
 0 0

0 Z3D

 (3.23)

where

Z1A =


R 2π
φ=0

R a
ρ=0 φ1uφ1u ρdρdφ · · · R 2π

φ=0

R a
ρ=0 φ1uφNuu ρdρdφ

...
. . .

...R 2π
φ=0

R a
ρ=0 φNuuφ1u ρdρdφ · · · R 2π

φ=0

R a
ρ=0 φNuuφNuu ρdρdφ


z=d/2

(3.24)

Z1B =


− R 2πφ=0 R aρ=0−φ1uφ1s ρdρdφ · · · − R 2πφ=0 R aρ=0 φ1uφNsu ρdρdφ

...
. . .

...

− R 2πφ=0 R aρ=0−φNuuφ1s ρdρdφ · · · − R 2πφ=0 R aρ=0 φNuuφNsu ρdρdφ


z=d/2

(3.25)

Z1C =


− R 2πφ=0 R aρ=0−φ1sφ1u ρdρdφ · · · − R 2πφ=0 R aρ=0 φ1sφNuu ρdρdφ

...
. . .

...

− R 2πφ=0 R aρ=0−φNssφ1u ρdρdφ · · · − R 2πφ=0 R aρ=0 φNssφNuu ρdρdφ


z=d/2

(3.26)
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Z1D =


R 2π
φ=0

R a
ρ=0 φ1sφ1s ρdρdφ · · · R 2π

φ=0

R a
ρ=0 φ1sφNsu ρdρdφ

...
. . .

...R 2π
φ=0

R a
ρ=0 φNsuφ1s ρdρdφ · · · R 2π

φ=0

R a
ρ=0 φNsuφNsu ρdρdφ


z=d/2

(3.27)

Z2A =


R 2π
φ=0

R a
ρ=0 ψ1uψ1u ρdρdφ · · · R 2π

φ=0

R a
ρ=0 ψ1uψNuu ρdρdφ

...
. . .

...R 2π
φ=0

R a
ρ=0 ψNuuψ1u ρdρdφ · · · R 2π

φ=0

R a
ρ=0 ψNuuψNuu ρdρdφ


z=d/2

(3.28)

Z2B =


− R 2πφ=0 R aρ=0−ψ1uψ1s ρdρdφ · · · − R 2πφ=0 R aρ=0 ψ1uψNsu ρdρdφ

...
. . .

...

− R 2πφ=0 R aρ=0−ψNuuψ1s ρdρdφ · · · − R 2πφ=0 R aρ=0 ψNuuψNsu ρdρdφ


z=d/2

(3.29)

Z2C =


− R 2πφ=0 R aρ=0−ψ1sψ1u ρdρdφ · · · − R 2πφ=0 R aρ=0 ψ1sψNuu ρdρdφ

...
. . .

...

− R 2πφ=0 R aρ=0−ψNssψ1u ρdρdφ · · · − R 2πφ=0 R aρ=0 ψNssψNuu ρdρdφ


z=d/2

(3.30)

Z2D =


R 2π
φ=0

R a
ρ=0 ψ1sψ1s ρdρdφ · · · R 2π

φ=0

R a
ρ=0 ψ1sψNsu ρdρdφ

...
. . .

...R 2π
φ=0

R a
ρ=0 ψNsuψ1s ρdρdφ · · · R 2π

φ=0

R a
ρ=0 ψNsuψNsu ρdρdφ


z=d/2

(3.31)

Z3D =


R 2π
φ=0

R b
ρ=a φ1sφ1s ρdρdφ · · · R 2π

φ=0

R b
ρ=a φ1sφNsu ρdρdφ

...
. . .

...R 2π
φ=0

R b
ρ=a φNsuφ1s ρdρdφ · · · R 2π

φ=0

R b
ρ=a φNsuφNsu ρdρdφ


z=d/2

(3.32)

and
2πZ

φ=0

aZ
ρ=0

φmuφnu ρdρdφ =
πa2UmUm sin(pmuL) sin(pmuL)J

2
0 (hmua), (m = n)

0, (m 6= n)

(3.33)
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−
2πZ

φ=0

aZ
ρ=0

φmsφnu ρdρdφ =

−2πUnVm sin(pnuL) cos(pms
d
2
) ahnu
h2ms−h2nu

J0(hnua)J1(hmsa)

(3.34)

−
2πZ

φ=0

aZ
ρ=0

φmuφns ρdρdφ =

2πUmVn cos(pns
d
2
) sin(pmuL)

ahmu
h2mu−h2ns

J0(hmua)J1(hnsa)

(3.35)

2πZ
φ=0

aZ
ρ=0

φmsφns ρdρdφ =

πa2VmVm cos(pms
d
2
) cos(pms

d
2
)

·
h
J21 (hmsa)− 2

hmsa
J0(hmsa)J1(hmsa) + J

2
0 (hmsa)

i
(m = n)

2πVmVn cos(pms
d
2
) cos(pns

d
2
)

a

h2ms
− h2ns

· [hnsJ0(hnsa)J1(hmsa)− hmsJ0(hmsa)J1(hnsa)] (m 6= n)
(3.36)

2πZ
φ=0

bZ
ρ=a

φmsφns ρdρdφ =

πVmVm cos(pms

d
2
) cos(pms

d
2
)

·
n
b2J20 (hmsb)− a2[J21 (hmsa)− 2

hmsa
J0(hmsa)J1(hmsa) + J

2
0 (hmsa)]

o
(m = n)

−2πVmVn cos(pms
d
2
) cos(pns

d
2
) a
h2ms−h2ns

· [hnsJ0(hnsa)J1(hmsa)− hmsJ0(hmsa)J1(hnsa)] (m 6= n)
(3.37)

2πZ
φ=0

aZ
ρ=0

ψmuψnu ρdρdφ =
πa2

ω2µ20
UmUmpmupmu cos(pmuL) cos(pmuL)J

2
0 (hmua), (m = n)

0, (m 6= n)

(3.38)
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−
2πZ

φ=0

aZ
ρ=0

ψmsψnu ρdρdφ =

−2π
ω2µ20

UnVmpmspnu cos(pnuL) sin(pms

d

2
)

ahnu
h2ms
− h2nu

J0(hnua)J1(hmsa)

(3.39)

−
2πZ

φ=0

aZ
ρ=0

ψmuψns ρdρdφ =

2π

ω2µ20
UmVnpmupns sin(pns

d

2
) cos(pmuL)

ahmu

h2mu
− h2ns

J0(hmua)J1(hnsa)

(3.40)

2πZ
φ=0

aZ
ρ=0

ψmsψns ρdρdφ =

πa2

ω2µ20
VmVmpmspms sin(pms

d

2
) sin(pms

d

2
)

·
h
J21 (hmsa)− 2

hmsa
J0(hmsa)J1(hmsa) + J

2
0 (hmsa)

i
(m = n)

2π

ω2µ20
VmVnpmspns sin(pms

d

2
) sin(pns

d

2
)

a

h2ms
− h2ns

· [hnsJ0(hnsa)J1(hmsa)− hmsJ0(hmsa)J1(hnsa)] (m 6= n)
(3.41)

In order to match the boundary conditions on the transverse electric and magnetic

fields on the boundary separating the upper cylindrical-cavity region from the

sample region at z = d/2, we minimize the function J in (3.22). The functional

J is minimized when the row vector x equals the eigenvector associated with the

smallest eigenvalue of the Hermitian matrix Z [15]. Therefore, we compute the

eigenvalue of Z as a function of ks, until a minimum eigenvalue is found. From the

computed eigenvectors at that minimum, we compute x, the row vector containing

the mode coefficients An and Bn.

Besides the values of mode coefficients, we also determine the value of ks at

the minimum. Since k2s = ω2µ0²0²
0
s is a function of both the split-cylinder resonant

frequency and the sample relative permittivity, we can use this resonance condition
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Figure 3.1: Smallest eigenvalue of Z as a function of the sample’s relative per-
mittivity ²

0
s. In this example the sample’s radius is 29.05 mm and the thickness

is 1 mm. The length of the upper cylindrical-cavity region is 25.326 mm and the
radius is 19.05 mm. The resonant frequency for the TE011 mode is 7.83 GHz.

in two ways. First, if the sample’s relative permittivity is known, the value of ks for

the smallest eigenvalue is used to compute the split-cylinder’s resonant frequency.

Likewise, if the resonant frequency is known, we can compute the sample’s relative

permittivity

3.3 Relative Permittivity

After the resonant modes have been properly identified and the resonant fre-

quency is measured, one can use the split-cylinder resonance condition to calculate

the value of the sample’s relative permittivity. We plot the smallest eigenvalue of

Z as a function of ²
0
s, as shown in Figure 3.1. The minima correspond to possible

values for the relative permittivity of the sample. Thus, in order to determine the

correct value of the sample’s relative permittivity, one must provide some initial

guess. With an initial guess, we can calculate the relative permittivity using an
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Figure 3.2: Relative permittivity of the sample as a function of the number of
modes in the cylindrical-cavity region for various values of the weighting function
W1. In this example the sample’s radius is 29.05 mm and the thickness is 1 mm.
The length of the upper cylindrical-cavity region is 25.326 mm and the radius is
19.05 mm. The resonant frequency for the TE011 mode is 7.83 GHz.

iterative method, such as the Newton-Raphson method.

With the LSBR method, we specify the values of the weighting functions

W1 and W2 in equation (3.21) so that numerical convergence is accelerated. We

set W2 equal to one so that the electric field boundary conditions in (3.21) would

have the same weighting. As suggested by Jansen [16], the weighting function W1

for the magnetic field boundary condition in (3.21) should be related to the wave

impedance

W1 =
η0q
²0r
=

s
µ0
²0²

0
r

. (3.42)

However, since the split-cylinder resonator has two distinct regions with different

material properties, we have several choices for the value of ²
0
r. If we choose

the wave impedance in the sample region then ²
0
r = ²

0
s. If we choose the wave

impedance in the cylindrical-cavity region then ²
0
r = ²

0
a. Or we can choose the

average of the relative permittivities of the two regions so that ²
0
r = (²

0
s+ ²

0
a)/2. In
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Figure 3.3: Relative permittivity as function of the number of modes in the
cylindrical-cavity and sample regions.

Figure 3.2, we plot the value of the calculated relative permittivity as a function

of the number of modes for the three values of W1. As the number of modes

increases, the values for the relative permittivity are in more agreement, although

there remains a small discrepancy. Both convergence and stability seem to occur
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when

W1 =

s
2µ0

²0(²
0
s + ²

0
a)
, (3.43)

so we selected this criterion as the weighting function for W1.

With the mode-matching method, we truncate the number of modes in

the cylindrical-cavity and sample regions. This truncation of modes leads to a

systematic error, known as relative convergence error, in the calculation of the

sample relative permittivity.

To examine the effect of relative convergence, we show in Figure 3.3 the

calculated relative permittivity as a function of the number of modes in the

cylindrical-cavity and sample regions. Section 2.3 outlines a criterion for selecting

the ratio of modes that minimized the relative convergence error. We use this

same criterion in the LSBR model and this value is shown in Figure 3.3. We see

that the relative permittivity varies by several percent depending on the number of

modes in each region. However, by carefully selecting the ratio of modes, the rela-

tive convergence is reduced, consistent with our findings with the mode-matching

method.

After determining the mode ratio, we investigate how the value of relative

permittivity varies as a function of the total number of modes. Thus, in Table

3.1, we list the calculated relative permittivity for an increasing number of modes

in each region. For a small number of modes, the relative permittivity varies

significantly, but rapidly converges as the number of modes increases. ForNu = 30

and Ns = 46, the variation in the relative permittivity is less than 5× 10−4.
In addition to examining the convergence as a function of the number of

modes, we examine the effect of the sample radius b on the relative permittivity. As

in the mode-matching method, the model based on the LSBR method assumes a

conductive boundary at ρ = b in the sample region, although no physical boundary
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Number of Modes in Number of Modes in Sample
Cylindrical-Cavity Sample Region Relative

Region Region Permittivity
Nu Ns ²

0
s

4 8 10.0224
6 10 10.0195
8 13 10.0078
10 16 9.9983
12 19 9.9919
14 22 9.9879
16 25 9.9856
18 28 9.9841
20 31 9.9832
22 34 9.9825
24 37 9.9820
26 40 9.9817
28 43 9.9816
30 46 9.9815

Table 3.1: Relative permittivity as a function of modes in the cylindrical-cavity
and sample regions where the ratio of modes is fixed.

exists. To ensure that the addition of this conductive boundary does not lead to

a large systematic error we compute the relative permittivity as a function of

b, as shown in Figure 3.4. For values of ρ several millimeters greater that the

cylindrical-cavity radius a, the relative permittivity converges, although there

remains a small oscillation for larger values of b. This is due to the fact that the

electric field decays rapidly when ρ > a in the sample region as shown in Figure

3.5.

3.4 Loss Tangent

In Section 3.3, the method for calculating the sample’s relative permittivity

uses the resonance condition derived with the LSBR method. The calculation

of the relative permittivity requires the measured resonant frequency and the
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Figure 3.5: Normalized electric field in sample region as a function of ρ.

dimensions of both the split-cylinder resonator and the sample. With those values,

and the addition of the resonant frequency quality factor Q, one can determine

the sample loss tangent tan δ.
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We define the quality factor Q as

Q =
ω(Wu +Ws)

Pe + Pw + Pf + Ps
, (3.44)

where Wu and Ws are the average energies stored in the cylindrical-cavity and

sample regions respectively, and Pe, Pw, Pf , and Ps are the powers dissipated per

second in the cylindrical cavity endplate, walls, flange, and sample respectively.

When we calculate the sample permittivity by finding the smallest eigenvalue of

Z, we also we also determine the coefficients An and Bn from the eigenfunctions

corresponding to the smallest eigenvalue. With these mode coefficients, we can

calculate the electric and magnetic fields in the upper-cylindrical cavity region

Eφu(ρ, z) =
NuX
n=1

AnUnJ1(hnaρ) sin[pna(L+
d

2
− z)], (3.45)

Hρu(ρ, z) = − 1

jωµ0

NuX
n=1

pnuAnUnJ1(hnuρ) cos[pnu(L+
d

2
− z)], (3.46)

Hz(ρ, z) = − 1

jωµ0

NuX
n=1

hnuAnUnJ0(hnuρ) sin[pnu(L+
d

2
− z)], (3.47)

and the fields in the sample region

Eφs(ρ, z) =
NsX
n=1

BnVnJ1(hnsρ) cos(pnsz), (3.48)

Hρs(ρ, z) = − 1

jωµ0

NsX
n=1

pnsBnVnJ1(hnsρ) sin(pnsz), (3.49)

Hzs(ρ, z) = − 1

jωµ0

NsX
n=1

hnsBnVnJ0(hnsρ) cos(pnsz). (3.50)

We then define the stored-energy terms Ws and Wu as

Ws = ²0²
0
s

d
2Z

z=0

bZ
ρ=0

2πZ
φ=0

|Eφs|2ρ dφ dρ dz (3.51)

= ²0²
0
s

πb2

4

NSX
n=1

|Bn|2|Vn|2J20 (hnsb)
"
d+

sin(pnsd)

pns

#

and

Wu = ²0²
0
a

LZ
z= d

2

aZ
ρ=0

2πZ
φ=0

|Eφu|2ρ dφ dρ dz (3.52)
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=



−²0²0a
πa2

4

NUX
n=1

|An|2|Un|2J20 (hnua)·"
d− 2L− sin(pnud)

pnu
+
sin(2pnuL)

pnu

#
, pnu is real

²0²
0
a

πa2

4

NUX
n=1

|An|2|Un|2J20 (hnua)·"
d− 2L− sin(pnud)

pnu
+
sin(2pnuL)

pnu

#
, pnu is imaginary.

In the same way, we can define the sources of power dissipation as

Pe = Rs

aZ
ρ=0

2πZ
φ=0

|Hρu|2ρ dφ dρ
¯̄̄
z=L

(3.53)

= Rs
πa2

ω2µ20

NUX
n=1

|An|2|Un|2J20 (hnua)
¯̄̄̄
¯cos(pnu d2)

¯̄̄̄
¯
2

Pw = Rs

LZ
z= d

2

2πZ
φ=0

|Hzu|2ρ dφ dz
¯̄̄
ρ=a

(3.54)

=



−Rs πa

2ω2µ20

NUX
n=1

|An|2|Un|2h2nuJ20 (hnua)·"
d− 2L− sin(pnud)

pnu
+
sin(2pnuL)

pnu

#
, pnu is real

Rs
πa

2ω2µ20

NUX
n=1

|An|2|Un|2h2nuJ20 (hnua)·"
d− 2L− sin(pnud)

pnu
+
sin(2pnuL)

pnu

#
, pna is imaginary

Pf = Rs

bZ
ρ=a

2πZ
φ=0

|Hρs|2ρ dφ dρ
¯̄̄
z=d

2

(3.55)

= Rs
π

ω2µ20

NSX
n=1

|Bn|2|Vn|2
½
b2J20 (hnsb)− a2[J1(hnaa)− J1(hnsa)]2

¾ ¯̄̄̄
¯sin(pns d2)

¯̄̄̄
¯
2

and

Ps = tan δ ω²0²
0
s

bZ
ρ=0

d
2Z

z=0

2πZ
φ=0

|Eφs|2ρ dφ dρ dz (3.56)

= tan δ ²0²
0
s

πb2ω

4

NSX
n=1

|Bn|2|Vn|2J20 (hnsb)
"
d+

sin(pnsd)

pns

#
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Solving (2.79) in terms of the sample’s loss tangent tan δ, we find

tan δ =

ω(Ws +Wa)

Q
− Pe − Pw − Pf

²0²
0
s

πb2ω

4

NSX
n=1

|Bn|2|Vn|2J20 (hnsb)
"
d+

sin(pnsd)

pns

# . (3.57)

Assuming that we have measured the resonant frequency and quality factor,

calculated the sample’s relative permittivity, and know the dimensions of the

cylindrical-cavity and sample, the only remaining unknowns values in equation

(3.57) are Rs, the surface resistivity of the cylindrical-cavity sections, and tan δ,

the loss tangent of the sample. As outlined in Section 6.3.4, we obtain Rs from

a measurement of the quality factor of the split-cylinder resonator when there is

no sample and the gap between the two cylindrical-cavity sections is closed. Once

we have the value for Rs, we can use equation (3.57) to explicitly calculate the

sample’s loss tangent.

As was the case with the calculation of the sample’s relative permittivity, we

must examine the convergence of the loss tangent. First, we consider the effect of

relative convergence using the example as in Section 3.3. The sample’s thickness

is 1 mm, the radius is 29.05 mm and the relative permittivity is 10. The length of

the upper cylindrical-cavity section is 25.326 mm, the radius is 19.05 mm, and the

surface resistance of the metal is 0.026 Ω/m2. The split-cylinder’s TE011 resonant

frequency is 7.83 GHz and the quality factor is 5000.

We calculate the loss tangent as a function of the number of modes in the

cylindrical-cavity and sample regions and plot the results in Figure 3.6. Unlike

the variation in the relative permittivity of several percent, the effect on the loss

tangent variation is much smaller, less than one percent. Using the criterion in

equation (2.78) to select the ratio of modes in each region, we can minimize this

small error, due to relative convergence, on the loss tangent.

With the mode ratio, we examine the convergence of the loss tangent as a
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Figure 3.6: Loss tangent as a function of modes in the cylindrical-cavity and
sample regions.

function of the total number of modes in each region. With the same values for the

example shown in Figure 3.6, and fixing the mode ratio as determined by (2.78),

we increase the number of modes in each region and examine the number of modes

sufficient to reach numerical convergence. In Table 3.2, we list the calculated loss

tangent as a function of the number of modes in the sample and cylindrical-cavity

regions. The value of loss tangent converges quickly as we increase the number of
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Number of Modes in Number of Modes in Sample
Cylindrical-Cavity Sample Region Loss

Region Region Tangent
Nu Ns tan δ × 104
4 8 2.921
6 10 2.921
8 13 2.923
10 16 2.923
12 19 2.924
14 22 2.924
16 25 2.923
18 28 2.923
20 31 2.923
22 34 2.923
24 37 2.922
26 40 2.922
28 43 2.922
30 46 2.911

Table 3.2: Loss tangent as a function of the number of modes in the cylindrical-
cavity and sample regions where the ratio of modes is fixed.

modes, and we see changes less than 1× 10−6 when Nu = 30 and Ns = 46.
Finally, we examine the effect of the conductive boundary at ρ = b on

the calculation of the loss tangent. In Figure 3.7 we plot the loss tangent as a

function of b, the radius of the sample region. Unlike the relative permittivity,

the loss tangent does not converge rapidly for values of b slightly larger than a,

the radius of the cylindrical-cavity section. Instead, the loss tangent decreases

for increasing values of b. This is due to the fact that the tangential magnetic

field on the conductive flange Hρs(ρ, z = d/2) is slowly decaying for increasing ρ.

Figure 3.8 shows that although the magnetic field decreases as a function of ρ, it

is reduced by only one order of magnitude even when b is over a centimeter larger

than a.

An important term in the calculation of the loss tangent is the power dissi-

pated on the conductive flange. In equation (3.55) we show that the conductive
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Figure 3.7: Loss tangent as a function of the radius of the sample region.

losses on the flange are related to the value of the tangential magnetic field Hρs .

As we increase the value of b, we include more conductive losses due to the flange,

and the value of the loss tangent decreases. Although this variation in loss tangent

is less than 2× 10−5 in our example, we must include this systematic error in our
uncertainty analysis as it might be a significant contribution to the uncertainty

in the loss tangent for low-loss substrates.
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Chapter 4

Hankel Transform Model

4.1 Introduction

In the previous two chapters we derived the resonance condition for the

split-cylinder resonator using the mode-matching and the least-squares boundary

residual (LSBR) methods. Both of these methods assume a perfectly conducting

boundary at ρ = b, the diameter of the sample, in order to derive the resonance

condition. This assumption leads to small systematic errors in the calculation of

the sample’s relative permittivity and loss tangent.

In this chapter, we summarize a method, the Hankel-transform method, for

deriving the split-cylinder resonator resonance condition that does not include

the conductive boundary at ρ = b [17]. Instead, we assume that the sample

extends to infinity in the radial direction as shown in Figure 4.1. Without a

conducting boundary at the edge of the sample, the split-cylinder resonator is no

longer a closed system. For this configuration, we employ Hankel transforms to

derive expressions for the electric and magnetic fields in the various split-cylinder

resonator regions and match these fields at the appropriate boundaries to derive a

resonance condition. Knowledge of this resonance condition and the electric and

magnetic fields leads to the calculation of the substrate’s relative permittivity and

loss tangent.
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Figure 4.1: Cross-section of split-cylinder resonator with sample.

4.2 Split-Cylinder Theoretical Model

4.2.1 Fields in the Upper Cylindrical-Cavity Region

From the symmetry of the split-cylinder resonator and the assumption that

we are exciting only TEonp modes, the electric field in the upper cavity region has

only a φ-component of the form

Eφu(ρ, z) =
∞X
n=1

AnRnu(ρ)Znu(z), (4.1)

where An is a constant, Rnu(ρ) is a radial eigenfunction and Znu(z) is a longi-

tudinal function. Assuming that An is nonzero, we substitute (4.1) into the vector

wave equation

∇2 ~E + ω2µ0²0²
0
a
~E = 0, (4.2)

to obtain

1

Rn

1

ρ

∂

∂ρ

Ã
ρ
∂Rn
∂ρ

!
− 1

ρ2
+ k2u = −

1

Znu

∂2Znu
∂z2

= k2n, (4.3)
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where k2u = ω2µ0²0²
0
a, ω = 2πf , k

2
n is the separation constant, f is the frequency,

and ²
0
a is the relative permittivity of the air within the upper cylindrical-cavity

region. A time dependence of exp(jωt) is assumed. With the method of separation

of variables to solve for Rnu(ρ) and Znu(z) in (4.3) we find

Eφu(ρ, z) =
∞X
n=1

An
h
C

0
nJ1(hnρ) +D

0
nY1(hnρ)

i
· (4.4)"

A
0
n sin[kn(L+

d

2
− z)] +B0

n cos[kn(L+
d

2
− z)]

#
,

where A
0
n, B

0
n, C

0
n, and D

0
n are constants, J1 is the Bessel function of the first

kind of order one, Y1 is the Bessel function of the second kind of order one, and

h2n = k
2
u − k2n.
From the boundary conditions on the transverse electric field

Eφu

Ã
ρ, z = L+

d

2

!
= 0, 0 ≤ ρ ≤ a, (4.5)

Eφu(ρ = 0, z) is finite, 0 ≤ z ≤ L+ d
2
, (4.6)

Eφu(ρ = a, z) = 0,
d

2
≤ z ≤ L+ d

2
, (4.7)

it follows that

B
0
n = 0, (4.8)

D
0
n = 0, (4.9)

hn =
j1,n
a
, (4.10)

where j1,n is the nth zero of J1. As a result, (4.4) reduces to

Eφu(ρ, z) =
∞X
n=1

AnRn(ρ) sin[kn(L+
d

2
− z)], (4.11)

where

Rnu(ρ) = A
0
nC

0
nJ1(hnρ) = CnJ1(hnρ). (4.12)
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To find an expression for Cn, we orthonormalize the radial eigenfunctions

Rnu. Substituting (4.12) into the orthonormalization condition

Z a

0
ρRmu(ρ)Rnu(ρ) dρ = δmn, (4.13)

we find

Cn =

√
2

aJ0(hna)
, (4.14)

where J0 is the Bessel function of the first kind of order zero.

From the differential form of Faraday’s law

∇× ~E = −jωµ0 ~H, (4.15)

and (4.11), we find the transverse component of the magnetic field

Hρu(ρ, z) = −
1

jωµ0

∞X
n=1

knAnRnu(ρ) cos[kn(L+
d

2
− z)]. (4.16)

To reduce the number of coordinates from two to one, we take the Hankel

transforms of Eφu(ρ, z) and of Hρu(ρ, z) with respect to ρ. The Hankel transform

of a function f(ρ) is defined as

f̃(ζ) =
Z ∞
0

ρ
0
J1(ζρ

0
)f(ρ

0
) dρ

0
, (4.17)

and the inverse Hankel transform is

f(ρ) =
Z ∞
0

ζJ1(ζρ)f̃(ζ) dζ. (4.18)

The Hankel transforms of (4.11) and (4.16) are

Ẽφu(ζ, z) =
∞X
n=1

AnR̃n(ζ) sin[kn(L+
d

2
− z)] (4.19)

and

H̃ρu(ζ, z) = −
1

jωµ0

∞X
n=1

knAnR̃n(ζ) cos[kn(L+
d

2
− z)], (4.20)
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where

R̃n(ζ) =
Z a

0
ρ
0
J1(ζρ

0
)Rn(ρ

0
) dρ

0
. (4.21)

The exact integral of (4.21) is obtained by substituting (4.12) and (4.14) into

(4.21):

R̃n(ζ) =

√
2

ζ2 − h2n
hnJ1(ζa). (4.22)

4.2.2 Transverse Fields in the Sample Region

In our model, we assume that the sample is infinite in the radial direction,

the magnetic and electric fields can exist anywhere along the sample, with a

conductive flange above and below the sample (z = ±d/2) in the region outside
the cylindrical waveguide sections ρ > a. Therefore, any electric or magnetic fields

outside the cylindrical waveguide regions must be confined to the sample.

In the sample region, as in the cavity regions, only TE0n modes are con-

sidered. Therefore, the vector wave equation (4.2) is also satisfied in the sample

region: "
1

ρ

∂

∂ρ

Ã
ρ
∂

∂ρ

!
+

∂2

∂z2
− 1

ρ2
+ ω2µ0²0²

0
s

#
Eφs(ρ, z) = 0. (4.23)

Taking the Hankel transform of (4.23) and integrating by parts twice we get

Ẽφs(ζ, z) = S(ζ) cos(ksz) + T (ζ) sin(ksz), (4.24)

where k2s = ω2µ0²0²
0
s − ζ2, ²

0
s is the relative permittivity of the sample, and S

and T are coefficients to be determined. The split-cylinder resonator symmetry

requires that

Ẽφs

Ã
ζ, z =

d

2

!
= Ẽφs

Ã
ζ, z = −d

2

!
(4.25)

must hold for all 0 ≤ ζ ≤ ∞, and (4.24) simplifies to

Ẽφs(ζ, z) = S(ζ) cos(ksz). (4.26)
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Again, using (4.15), we determine the transverse magnetic field

H̃ρs(ζ, z) = −
ks
jωµ0

S(ζ) sin(ksz). (4.27)

4.2.3 Resonance Condition

In the previous two sections, we derived the Hankel-transformed transverse

electric and magnetic fields in the upper cylindrical-cavity and sample regions.

With the boundary conditions and orthogonality of the normal modes in the

cylindrical-cavity region, the resonance condition for the split-cylinder resonator

is determined.

The boundary condition that the electric field is continuous at z = d/2

requires that

Ẽφu

Ã
ζ, z =

d

2

!
= Ẽφs

Ã
ζ, z =

d

2

!
0 ≤ ζ ≤ ∞. (4.28)

Substituting the Hankel-transformed electric fields (4.26) and (4.19) into (4.28)

we obtain
∞X
n=1

AnR̃n(ζ) sin(knL) = S(ζ) cos

Ã
ks
d

2

!
. (4.29)

Solving for S we find

S(ζ) =
1

cos(ks
d
2
)

∞X
n=1

AnR̃n(ζ) sin (knL) . (4.30)

The second boundary condition requires the continuity of the tangential

magnetic field at the aperture between the upper cylindrical-cavity region and

the sample region

H̃ρu

Ã
ζ, z =

d

2

!
= H̃ρs

Ã
ζ, z =

d

2

!
0 ≤ ζ ≤ a. (4.31)

Substituting the Hankel-transformed magnetic fields (4.27) and (4.20) into (4.31)

we obtain
∞X
n=1

knAnR̃n(ζ) cos(knL) = ksS(ζ) sin

Ã
ks
d

2

!
. (4.32)
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And the inverse Hankel transform of (4.32) with respect to ζ

∞X
n=1

knAnRn(ρ) cos(knL) =
Z ∞
0

ζJ1(ζρ)ksS(ζ) sin(ks
d

2
) dζ. (4.33)

To reduce the infinite summation in (4.33) to a single term, we make use of the

orthonormalization of the normal modes in the cylindrical-cavity region

Z a

0
ρRmu(ρ)Rnu(ρ) dρ = δmn, (4.34)

where δmn is the Kronecker delta function. Multiplying both sides of (4.33) by

ρRm(ρ) and integrating over the interval [0, a] we obtain

kmAm cos(kmL) =
Z ∞
0

ζR̃m(ζ)ksS(ζ) sin

Ã
ks
d

2

!
dζ. (4.35)

Substituting (4.30) into (4.35) we find the resonance condition

kmAm cos(kmL) =
∞X
n=1

An sin(knL)
Z ∞
0

ζR̃mR̃n(ζ)ks tan

Ã
ks
d

2

!
dζ. (4.36)

Again, we are faced with an infinite number of unknowns Am in (4.35). To match

the boundary condition exactly, all these terms must be included. However, in

order to reduce this to a finite system of equations, we must truncate the number

of modes Nu in the cylindrical-cavity region. We can express (4.35) in matrix

form

Z ~A = 0, (4.37)

where

Zmn = −km cos(kmL)δmn + sin(knL)
Z ∞
0
ks tan

Ã
ks
d

2

!
ζR̃mR̃n dζ, (4.38)

and ~A is a column vector of the coefficients An. The linear system of equations

(4.37) has a nontrivial solution only if

det [Z] = 0, (4.39)
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which is the resonance condition. As with the resonance conditions derived with

the mode-matching and LSBR methods, we can use these equations to calculate

either the resonant frequency of the split-cylinder resonator, given a known sample

permittivity, or to calculate the sample’s relative permittivity, given the measured

split-cylinder resonant frequency.

4.3 Relative Permittivity

In the previous section, we used the Hankel transform method to derive the

resonance condition for the split-cylinder resonator

det [Z] = 0, (4.40)

where

Zmn = −km cos(kmL)δmn + sin(knL)
Z ∞
0
ks tan

Ã
ks
d

2

!
ζR̃mR̃n dζ. (4.41)

Figure 4.2 is a plot of the determinant of Z as a function of the sample’s

relative permittivity. In this example we assume a sample thickness of 1 mm and

a relative permittivity of 10. Each zero crossing in Figure 4.2 corresponds to a

possible value for the sample permittivity. Thus, in order to solve for the sample’s

relative permittivity explicitly using (4.40), we must supply an initial guess for the

relative permittivity that is reasonably close to the real value. This will prevent

convergence to an incorrect zero.

Unlike the resonance conditions derived using the mode-matching and LSBR

methods, there is no problem of relative convergence since we only specify the

number of modes Nu in the cylindrical-cavity section. Also, we do not have

to assume a perfectly conducting boundary at ρ = b to derive the resonance

condition. Unfortunately, this comes at the cost of having to numerically integrate

(4.41) for every element of the Nu×Nu matrix Z. Thus, we examine two aspects
of numerical convergence.
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Figure 4.2: Determinant of Z as a function of resonant frequency. In this example,
the sample’s permittivity is 10, radius is 29.05 mm and thickness is 1 mm. The
length of the upper cylindrical-cavity section is 25.326 mm and the radius is 19.05
mm.

First, in order to numerically integrate the matrix elements in (4.41), we

truncate the upper bound of the integration limits to some finite value. To mini-

mize the error resulting from the finite integration bound, we calculated the rela-

tive permittivity of several samples as a function of the upper integration bound

and list these values in Table 4.1. We note that for all examples, the value of the

relative permittivity converges at an upper integration bound of 100,000.

Besides the integration bound, we also examine the influence of the to-

tal number of modes Nu in the upper cylindrical-cavity region on the relative

permittivity. Table 4.2 shows that the relative permittivity converges to a suf-

ficient degree for various samples when the total number of modes in the upper

cylindrical-cavity region reached ten.
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Sample Permittivity ²

0
rs

Resonant Frequency (GHz) UB=10,000 50,000 100,000
10.02 1.0051 1.0054 1.0054
9.81 2.0077 2.0080 2.0080
9.06 4.9970 4.9973 4.9974
7.83 9.9936 9.9941 9.9941
6.21 20.0154 20.0162 20.1063
4.22 49.9283 49.9300 49.9301
3.05 100.2077 100.2110 100.2111

Table 4.1: Convergence study showing the calculated relative sample permittivity
as a function of the upper bound of integration UB. In this study we fix the sample
thickness at 1.0 mm and allow the resonant frequency to vary. The split-cylinder
dimensions for this study are L = 25.326 mm and a = 19.050mm.

Sample Permittivity ²
0
rs

Resonant Frequency (GHz) NM=2 4 6 8 10
10.02 1.0059 1.0058 1.0057 1.0055 1.0054
9.81 2.0085 2.0084 2.0083 2.0081 2.0080
9.06 4.9979 4.9978 4.9977 4.9975 4.9973
7.83 9.9950 9.9948 9.9946 9.9943 9.9941
6.21 20.0176 20.0173 20.0170 20.0166 20.0162
4.22 49.9332 49.9325 49.9317 49.9309 49.9300
3.05 100.2171 100.2158 100.2142 100.2126 100.2110

Table 4.2: Convergence study showing the calculated relative sample permittivity
as a function of the number of modes NM included in the Hankel transform
model. In this study we fix the sample thickness at 1.0 mm and allow the resonant
frequency to vary. The split-cylinder dimensions for this study are L = 25.326
mm and a = 19.050mm.

4.4 Loss Tangent

In the previous section, a method is given for calculating the sample’s rela-

tive permittivity using a resonance condition derived from the Hankel transform

method. This calculation requires the resonant frequency of the TE0np mode and

the dimensions of the sample and cylindrical-cavity regions. With the addition of

the measured quality factor Q of the TE0np resonance, the sample’s loss tangent
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may be calculated. The quality factor Q is defined as

Q =
ω(Wu +Ws)

Pe + Pw + Pf + Ps
(4.42)

where Wu and Ws are the average energies stored in the cylindrical-cavity and

sample regions, and Pe, Pw, Pf and Ps are the powers dissipated per second in

the cylindrical-cavity endplates, walls, flange, and sample respectively. When we

calculated the sample’s relative permittivity using (4.40), we also determined the

mode coefficients An. Therefore, we can calculate the electric and magnetic fields

in the upper cylindrical-cavity region

Eφu(ρ, z) =
NuX
n=1

An

√
2

aJ0(hna)
J1(hna) sin[kn(L+

d

2
− z)], (4.43)

Hρu(ρ, z) = −
1

jωµ0

NuX
n=1

knAn

√
2

aJ0(hna)
J1(hna) cos[kn(L+

d

2
− z)], (4.44)

Hzu(ρ, z) = −
1

jωµ0

NuX
n=1

hnAn

√
2

aJ0(hna)
J0(hna) sin[kn(L+

d

2
− z)], (4.45)

and the electric and magnetic fields in the sample region

Eφs(ρ, z) =
NsX
n=1

An sin(knL)
Z ∞
0

cos(ksz)

cos(ks
d
2
)

√
2

ζ2 − h2n
hnJ1(ζa)J1(ζρ)ζ dζ, (4.46)

Hρs(ρ, z) = −
1

jωµ0

NsX
n=1

An sin(knL)
Z ∞
0
ks
sin(ksz)

cos(ks
d
2
)

√
2

ζ2 − h2n
hnJ1(ζa)J1(ζρ)ζ dζ,

(4.47)

To obtain the fields in the sample region, the inverse Hankel-transform is required.

As a result, unlike the modes in the upper cylindrical-cavity region, the fields in

the sample region must be determined by numerical integration.

We define the stored-energy terms Ws and Wu as

Ws = ²0²
0
s

d
2Z

z=0

bZ
ρ=0

2πZ
φ=0

|Eφs|2ρ dφ dρ dz (4.48)

=
π²0²

0
s

4

NsX
m=1

NsX
n=1

AmAn sin(kmL) sin(knL)

·
Z ∞
0

√
2

ζ2 − h2m

√
2

ζ2 − h2n
hmhnJ

2
1 (ζa)

1

cos(ks
d
2
)

1

cos(ks
d
2
)

"
d+

sin(ksd)

ks

#
ζ dζ
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and

Wu = ²0²
0
a

LZ
z= d

2

aZ
ρ=0

2πZ
φ=0

|Eφu|2ρ dφ dρ dz (4.49)

=


π²0²

0
a

4

NuX
m=1

NuX
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In the same way, we define the sources of power dissipation as

Pe =
Rs
2
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ρ=0

2πZ
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¯̄̄
z=L

(4.50)
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Solving (4.42) in terms of the loss tangent tan δ, we find

tan δ =

ω(Ws +Wa)

Q
− Pe − Pw − Pf
T

(4.57)

where
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0
s
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Unfortunately, the term associated with the power dissipated on the con-

ductive flange Pf posed a problem. The integrations necessary for the calculation

of Pf are similar to those in Ps, the power dissipated in the sample. In the case

of Ps, we were able to use

δ(ζ − ζ
0
)

ζ
=
Z ∞
ρ=0

ρJ1(ζρ)J1(ζ
0
ρ) dρ (4.59)

to reduce the number of numerical integrations in (4.57) to one. However, for Pf ,

the integration in ρ is from a to b, not 0 to b as in the case of Ps. Therefore, we

cannot use (4.59) to reduce the integrations in (4.55). Although we attempted

to numerically integrate Pf , we were not successful. Therefore, we neglect this

term in our calculation of the loss tangent. As a result, conductive losses on

the conductive flange are added to the dielectric losses of the sample. Thus, the

computed loss tangent is an upper bound on the loss tangent. This is a significant

systematic error that we investigate further in Chapter 5, where we show it to be

one of the main disadvantages of the Hankel-transform model.

Since we specify the number of modes only in the cylindrical-cavity region,

we do not have to investigate any relative convergence error for the loss tangent.



68
Loss Tangent tan δ × 10−4

Resonant Frequency (GHz) NM=2 4 6 8 10
10.02 41.692 41.678 41.668 41.660 41.653
9.81 17.854 17.845 17.839 17.833 17.828
9.06 5.691 5.687 5.683 5.680 5.677
7.83 3.066 3.063 3.060 3.058 3.056
6.21 2.246 2.243 2.240 2.238 2.236
4.22 1.879 1.876 1.874 1.872 1.870
3.05 1.739 1.749 1.743 1.741 1.739

Table 4.3: Convergence study showing the calculated loss tangent as a function of
the number of modes NM included in the Hankel transform model. In this study
we fix the sample thickness at 1.0 mm. Although the quality factor Q is fixed at
5000, the resonant frequency varies. The split-cylinder dimensions for this study
are L = 25.326 mm and a = 19.050mm.

However, we examined the numerical convergence of the loss tangent as a function

of the number of modes in the cylindrical-cavity section and show results in Table

4.3. Although we see good convergence with only a few number of modes, the

computed value of the loss tangent in only an upper bound, since we’ve neglected

the power dissipated on the split-cylinder flanges.



Chapter 5

Theoretical Model Comparison

5.1 Introduction

In the previous three chapters we employed the mode-matching, least-squares

boundary residual (LSBR) and Hankel-transform methods to derive three theo-

retical models for the split-cylinder resonator. Each of these models allows one to

calculate the relative permittivity and loss tangent of a dielectric substrate using

a split-cylinder resonator. In this section, we compare the three different models

using a variety of criteria, including the satisfaction of the boundary conditions,

agreement in computed relative permittivity and loss tangent, and computational

speed.

5.2 Boundary Conditions

In each of the three theoretical models, we derived a resonance condition for

the split-cylinder resonator. An essential step in this derivation is the enforcement

of the boundary conditions along the aperture separating the upper cylindrical-

cavity region from the sample region at z = d/2, shown in Figure 5.1. As part of

our comparison, the electric and magnetic fields at this boundary were calculated

for all three theoretical models, and the performance of each method was examined

in satisfying these boundary conditions.
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Figure 5.1: Cross-section of split-cylinder resonator with sample.

The first boundary condition required the continuity of the transverse elec-

tric field in the upper cylindrical-cavity region Eφu and the electric field in the

sample region Eφs at z = d/2 over the range 0 ≤ ρ ≤ a. In addition, the electric
field in the sample region Eφs is zero at z = d/2 when ρ > a since it is tangential

to a flange assumed to be a perfect conductor. Figure 5.2 is a plot of the electric

field on both sides of the boundary as a function of ρ for the three different mod-

els. In this example, we assume that the upper cylindrical-cavity radius a is 19.05

mm and the length L is 25.326 mm, sample thickness d is 1 mm and the relative

permittivity ²
0
s is 10. In addition, the resonant frequency f of the TE011 mode is

7.83 GHz.

For all three models, the electric field is zero at ρ = 0, maximum at approxi-

mately ρ = a/2 and decreases as ρ approaches the radius of the upper cylindrical-

cavity section at ρ = a. For values of ρ greater than a, the electric field in the

sample region Eφs should vanish. However, as shown in Figure 5.2, the value

in this region is non-zero, especially for cases of the mode-matching and LSBR
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Figure 5.2: Comparison of the transverse electric fields at the boundary z = d/2
as a function of ρ for three theoretical models: (a) mode-matching, (b) LSBR,
(c) Hankel-transform. Each cylindrical-cavity section’s radius a is 19.05 mm and
the length is 25.326 mm. The sample’s thickness d is 1 mm and the relative
permittivity is 10. The resonant frequency of the TE011 mode is 7.83 GHz.
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Figure 5.3: Comparison of the squared residuals r2E for the electric fields at the
boundary z = d/2 as a function of ρ for the three theoretical models. Each
cylindrical-cavity section radius a is 19.05 mm and the length is 25.326 mm. The
sample thickness d is 1 mm and the relative permittivity is 10. The resonant
frequency of the TE011 mode is 7.83 GHz.

models. This is clearly shown in Figure 5.3, a plot of the squares of the residuals

r2E over the length of the boundary

r2E =



|Eφu(ρ, z = d/2
+)− Eφs(ρ, z = d/2

−)|2
|Eφs(ρ = a/2, z = d/2

−)| , 0 ≤ ρ ≤ a

|0− Eφs(ρ, z = d/2
−)|2

|Eφs(ρ = a/2, z = d/2
−)| , ρ > a.

(5.1)

If the boundary conditions on the transverse electric field are satisfied per-

fectly, the residual rE should be zero. However, a finite value for the residuals

reaches a maximum at ρ = a, the radius of the upper cylindrical-cavity section.

This is not unexpected, as this is the location of a tranisition at the conductive

corner between the cylindrical-cavity section and the conductive flange. Although

this corner induces a singularity in the magnetic field, there is also some effect

on the electric field. In the Hankel-transform method, unlike the mode-matching
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and LSBR methods, an infinite number of TE0n modes in the sample region is

assumed. As a result, the Hankel-transform method is better able to represent

the electric field at this corner, resulting in a smaller value for the residuals.

The second boundary condition requires the continuity of the magnetic field

Hρu in the upper cylindrical-cavity region and magnetic field Hρs in the sample

region at z = d/2 over the range 0 ≤ ρ ≤ a. Unlike the electric field, the value
of the magnetic field on the conductive flange is indeterminate for ρ > a, so no

boundary condition of the magnetic field in the sample region can be specified.

Figure 5.4 is a plot of Hρ × η0 as a function of ρ at the boundary z = d/2, where

the factor of the intrinsic wave impedance η0 =
q
µ0/²0 is included to obtain the

same units as in the electric fields plotted in Figure 5.2.

Similar to the case of the electric field, the magnetic field is zero at ρ = 0,

a maximum value at approximately ρ = a/2, then decreases until it reaches the

conductive corner at ρ = a, that causes the singularity in the magnetic field.

Comparison of the three models in Figure 5.4 shows that the fields match well in

the center of the boundary, although there are some noticeable oscillations, not

surprising since Hρ is a derivative of the electric field Eφ. Closer to the edges

of the boundary, significant mismatches of the magnetic field occur, especially at

ρ = a, the location of the singularity. These differences are more apparent in

Figure 5.5, a plot of the squared residuals r2H of the magnetic field

r2H =
|Hρu(ρ, z = d/2

+)−Hρs(ρ, z = d/2
−)|2

|Hρs(ρ = a/2, z = d/2
−)| . (5.2)

Although errors occur in the matching of the transverse electric and mag-

netic fields for all three theoretical models, their significance cannot be evaluated

until the sample’s relative permittivity and loss tangent are compared, a topic we

address in the following sections.
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Figure 5.4: Comparison of the transverse magnetic fields at the boundary z = d/2
as a function of ρ for three theoretical models: (a) mode-matching, (b) LSBR, (c)
Hankel-transform. Each cylindrical-cavity section radius a is 19.05 mm and the
length is 25.326 mm. The sample thickness d is 1 mm and the relative permittivity
is 10. The resonant frequency of the TE011 mode is 7.83 GHz.
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Figure 5.5: Comparison of the squared residuals r2H for the magnetic fields at
the boundary z = d/2 as a function of ρ for the three theoretical models. Each
cylindrical-cavity section radius a is 19.05 mm and the length is 25.326 mm. The
sample thickness d is 1 mm and the relative permittivity is 10. The resonant
frequency of the TE011 mode is 7.83 GHz.

5.3 Relative Permittivity

In this section the three different theoretical models are used to compute the

relative permittivity of several dielectric substrates of varying permittivites and

thicknesses and observe the agreement between the models. For all of the com-

parisons given here, the dimensions are that the upper cylindrical-cavity section

radius a = 19.05 mm and length L = 25.326 mm.

In our first comparison, we assume that all the dielectric substrates have

a constant thickness d = 1 mm, but the resonant frequency of the TE011 mode

varies from 3 to 10 GHz. Table 5.1 lists the computed relative permittivity for

all three models. The results show agreement between the mode-matching and

Hankel-transform models within 0.2 percent. When the LSBR method is included

in the comparison, the agreement between all three models is within 1 percent.
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Sample Permittivity ²

0
rs

Resonant Frequency (GHz) Mode-Matching LSBR Hankel
10.02 1.002 0.995 1.005
9.81 2.005 1.998 2.008
9.06 4.994 4.987 4.997
7.83 9.989 9.982 9.994
6.21 20.016 20.008 19.997
4.22 49.913 49.890 49.930
3.05 100.178 100.136 100.211

Table 5.1: Comparison of calculated relative permittivity ²
0
s where the sample

thickness is constant (1 mm) and the TE011 resonant frequency varies (3-10 GHz).
In this simulation, the upper cylindrical-cavity section radius is 19.05 mm and
length is 25.326 mm.

The second comparison assumes that the resonant frequency of the TE011

mode is constant at 9.5 GHz, but that the substrate thickness d varies from 0.1

to 5 mm. Table 5.2 lists the computed relative permittivity for all three models.

Again we see that the results of the mode-matching and Hankel-transform models

agree within 0.2 percent and overall agreement between all three methods is within

1 percent.

Sample Permittivity ²
0
rs

Sample Thickness (mm) Mode-Matching LSBR Hankel
0.1 24.186 24.201 24.191
0.2 12.590 12.604 12.595
0.5 5.630 5.628 5.633
1.0 3.303 3.297 3.307
2.0 2.127 2.118 2.130
5.0 1.375 1.365 1.378

Table 5.2: Comparison of calculated relative permittivity ²
0
s where the TE011

resonant frequency is constant (9.5 GHz) and the sample thickness varies (0.1-5.0
mm). In this simulation, the upper cylindrical-cavity section radius is 19.05 mm
and length is 25.326 mm.

Both of the comparisons show excellent agreement between the mode-matching

and Hankel-transform methods for the relative permittivity, with some small dis-
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crepancies for the LSBR method. This difference, as discussed in Section 3.3, is

attributed to the fact that the relative permittivity, computed using the LSBR

method, varies somewhat depending on the values of the arbitrary weighting func-

tions W1 and W2 in equation (3.21).

Because the relative permittivity is solved iteratively in all three models,

one must supply an initial guess that must be sufficiently close to the actual value

of the relative permittivity in order to converge to the correct value. Tables 5.3

and 5.4 show the range of initial guesses that converge to the correct value of the

relative permittivity for a variety of dielectric substrates. In Table 5.3, the sample

thickness d = 1 mm is held constant while the TE011 resonant frequency is varied

from 3 to 10 GHz. In Table 5.4, the TE011 resonant frequency (f =9.5 GHz) is

held constant while the sample thickness is varied from 0.1 to 5.0 mm. In both

simulations, we note that the Hankel-transform method has a much wider range

of allowable initial guesses.

Resonant Computed Relative Initial Guess Range for ²
0
rs

Frequency (GHz) Permittivity ²
0
s Mode-Matching LSBR Hankel

10.02 1 (1-4) (1-1.5) (1-8.5)
9.81 2 (1-5) (1-3) (1-9.5)
9.06 5 (1-8.5) (1-6.5) (1-12.5)
7.83 10 (3.5-14.5) (1-17.5) (1-19)
6.21 20 (10.5-27) (10.5-29.5) (1-33)
4.22 50 (30-64.5) (40-59.5) (1-77)
3.05 100 (62-128) (90.5-110) (1-150.5)

Table 5.3: Comparison of valid initial guesses for relative permittivity ²
0
s where

the sample thickness is constant (1 mm) and the TE011 resonant frequency varies
(3-10 GHz). In this simulation, the upper cylindrical-cavity section radius is 19.05
mm and length is 25.326 mm.



78

Sample Computed Relative Initial Guess Range for ²
0
rs

Thickness (mm) Permittivity ²
0
s Mode-Matching LSBR Hankel

0.1 24.2 (9.5-37.5) (14.5-34.0) (1-91.5)
0.2 12.6 (2.5-21.5) (3.0-22.5) (1-46.5)
0.5 5.6 (1-10.5) (1-7.5) (1-19.5)
1.0 3.3 (1-6.5) (1-4.5) (1-10.5)
2.0 2.1 (1-4.0) (1-3) (1-6)
5.0 1.4 (1-2.5) (1-1.5) (1-3.5)

Table 5.4: Comparison of valid initial guesses relative permittivity ²
0
s where the

TE011 resonant frequency is constant (9.5 GHz) and the sample thickness varies
(0.1-5.0 mm). In this simulation, the upper cylindrical-cavity section radius is
19.05 mm and length is 25.326 mm.

5.4 Loss Tangent

In this section we compare the loss tangent of several dielectric substrates us-

ing the three different theoretical models. As in the previous relative permittivity

comparison, we vary the permittivity and thicknesses of the dielectric substrates

and observe the agreement between the models.

In the first comparison, we assume that the sample thickness d = 1 mm is

constant for all the substrates, but the resonant frequency f of the TE011 mode

varies from 3 to 10 GHz. In Table 5.5, we list the computed loss tangent using all

three models. The results show less than 5× 10−5 difference between the values.
Note that as the loss tangent decreases, a slight discrepancy appears in the loss

tangent computed using the Hankel-transform model. This is due to the fact, as

discussed in Section 4.4, that we neglected the resistance metal losses Pf on the

split-cylinder resonator’s conductive flange. As a result, for low-loss materials, the

loss tangent computed with the Hankel-transform method has a small systematic

error resulting in a larger value of loss tangent than the values computed with the

mode-matching or LSBR methods.

In the second comparison, the resonant frequency of the TE011 mode is held
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Sample Loss Tangent tan δ × 10−4

Resonant Frequency (GHz) Mode-Matching LSBR Hankel
10.02 41.79 42.14 41.65
9.81 17.85 17.91 17.83
9.06 5.61 5.62 5.68
7.83 2.92 2.92 3.06
6.21 2.02 2.03 2.24
4.22 1.56 1.56 1.87
3.05 1.35 1.35 1.74

Table 5.5: Comparison of calculated loss tangent tan δ where the sample thickness
is constant (1 mm) and the TE011 resonant frequency varies (3-10 GHz). In this
simulation, the upper cylindrical-cavity section radius is 19.05 mm and length is
25.326 mm.

constant at 9.5 GHz, but the substrate thickness d varies from 0.1 to 5 mm. Table

5.6 lists the computed loss tangent for all three models. The agreement between

all three models is within 0.2 ×10−5.
Sample Loss Tangent tan δ × 10−4

Sample Thickness (mm) Mode-Matching LSBR Hankel
0.1 12.21 12.20 12.27
0.2 11.79 11.78 11.84
0.5 10.71 10.72 10.75
1.0 9.36 9.38 9.38
2.0 7.60 7.63 7.60
5.0 5.23 5.25 5.20

Table 5.6: Comparison of calculated loss tangent tan δ where the TE011 resonant
frequency is constant (9.5 GHz) and the sample thickness varies (0.1-5.0 mm). In
this simulation, the upper cylindrical-cavity section radius is 19.05 mm and length
is 25.326 mm.

5.5 Computation Speed

The the final comparison of the models, the overall computational speed

was investigated. The computer used for these simulations was a Pentium-class

PC using the Microsoft Windows 2000 operating system. First, we measured

the amount of time to compute the relative permittivity in Table 5.1 and the
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associated loss tangent in Tables 5.5, and show the results in Table 5.7. We

note that the mode-matching model is nearly twenty times faster than the LSBR

method and 100 times faster than the Hankel-transform method.

Computational Speed (s)
Resonant Frequency (GHz) Mode-Matching LSBR Hankel

10.02 0.5 17.2 47.6
9.81 0.5 17.3 54.2
9.06 0.5 19.2 54.8
7.83 0.6 20.3 54.7
6.21 0.6 18.1 61.0
4.22 0.6 17.2 60.9
3.05 0.6 18.1 61.0

Table 5.7: Comparison of computational speed where the sample thickness is
constant (1 mm) and the TE011 resonant frequency varies (3-10 GHz). In this
simulation, the upper cylindrical-cavity section radius is 19.05 mm and length is
25.326 mm.

In our second simulation, we measured the amount of time to compute the

relative permittivity in Table 5.2 and the associated loss tangent in Table 5.6, and

show these results in Table 5.8. Again, we note that the mode-matching model

is superior to the other two models in terms of computational speed. The LSBR

method is slower because each iterative step in the calculation of the relative per-

mittivity involves calculating the eigenvalue of a large complex matrix. The poor

performance of the Hankel-transform method is attributed to the many numerical

integrations that are required to calculate both the relative permittivity and loss

tangent.

5.6 Model Selection

Based on our comparison of the three theoretical models, we chose to im-

plement the mode-matching model in our measurement software. First, it accu-

rately computes both the relative permittivity and loss tangent for a wide range
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Computational Speed (s)

Sample Thickness (mm) Mode-Matching LSBR Hankel
0.1 0.6 20.1 59.2
0.2 0.5 19.9 56.5
0.5 0.5 19.2 55.5
1.0 0.5 20.4 54.9
2.0 0.5 19.2 54.6
5.0 0.5 18.4 48.5

Table 5.8: Comparison of computational speed where the TE011 resonant fre-
quency is constant (9.5 GHz) and the sample thickness varies (0.1-5.0 mm). In
this simulation, the upper cylindrical-cavity section radius is 19.05 mm and length
is 25.326 mm.

of dielectric substrates. In contrast, the LSBR method results are poor for the

relative permittivity because of the arbitrary weighting functions W1 and W2,

and the Hankel-transform method results are poor for the loss tangent because

it neglected the resistive metal losses Pf in the split-cylinder resonator’s flange.

Secondly, in terms of computational speed, the mode-matching method is superior

since it doesn’t require time-consuming operations such as numerical integrations

or computation of complex eigenvalues. Because the mode-matching method per-

forms well both in terms of accuracy and speed we used it exclusively to calculate

the relative permittivity and loss tangent in the remaining chapters of the thesis.



Chapter 6

Relative Permittivity and Loss Tangent Measurements

6.1 Introduction

In this chapter we develop the metrology necessary for relative permittivity

and loss tangent measurements with a split-cylinder resonator. First, we review

the mechanical specifications for both the split-cylinder resonator and the dielec-

tric substrate. Second, we outline the process we adopted to characterize the

intermediate measurement variables required for calculating the relative permit-

tivity and loss tangent. Next, we describe the step-by-step measurement proce-

dure we employed. Relative permittivity and loss tangent measurement results

are presented for several substrates and compared with measurements made with

other techniques. Included in this discussion are the development of uncertainty

budgets for both the relative permittivity and loss tangent in addition to results

of a repeatability study that verify the stability of the split-cylinder resonator.

6.2 Mechanical Specifications

6.2.1 Split-Cylinder Resonator Specifications

This section describes the design and construction of the split-cylinder res-

onator, shown in Figure 6.1. Detailed drawings of this particular split-cylinder res-

onator are given in Appendix A. The split-cylinder resonator is simply a circular-

cylindrical cavity that is split into two halves — an upper and a lower section.
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Figure 6.1: Split-cylinder resonator.

By selecting the dimensions of these sections, one can design the split-cylinder

resonator to operate over a specific frequency range. For measurements in the

vicinity of 10 GHz, we specified a diameter of 38.1 mm and a length of 25.4 mm

for each of the cylindrical-cavity sections. With these dimensions, the resonant

frequency of the TE011 mode was approximately 10 GHz with no sample and no

gap between the two cylindrical-cavity sections.

Another design criterion was to maximize the quality factor of the split-

cylinder resonator. The larger the quality factor, the greater the sensitivity one

has in the measurement of the loss tangent of low-loss materials. Therefore, we

fabricated the two cylindrical-cavity sections from oxygen-free copper, a good

conductor with a conductivity of approximately 5.8× 107 S/m. Figure 6.2 shows
a top and side view of the lower cylindrical-cavity section. By using a high-
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Figure 6.2: Lower cylindrical-cavity section.

conductivity metal, the resistive metal losses of the cylindrical-cavity sections are

reduced and the quality factor of the split-cylinder resonator increased.

The quality factor may also be increased by the use of variable coupling

loops in the cylindrical-cavity sections. These coupling loops, one in each of

the cylindrical-cavity sections, excite the TE0np resonances in the split-cylinder

resonator. They introduce resistive losses that lower the quality factor of the

split-cylinder resonator. To minimize these losses, we designed the coupling loops

with adjustable penetration distance into the split-cylinder resonator for minimal

coupling. With oxygen-free copper for resonator construction and minimal cou-

pling, a quality factor of over 22,000 for the TE011 resonant mode at 10 GHz was

obtained with no sample and no gap between the two cylindrical-cavity sections.

Next, our design required maximum alignment of the two cylindrical-cavity

sections, even when the two sections are separated by the dielectric substrate

thickness. Any misalignment could lead to systematic errors in both the relative

permittivity and loss tangent. Therefore, as shown in Figure 6.1, we mounted

the lower cylindrical-cavity section on a base plate. The upper cylindrical-cavity

section was mounted on a plate suspended above the lower cylindrical-cavity sec-

tion by two threaded shafts. The two threaded shafts are connected by a gear
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Figure 6.3: Resonant frequency of the TE011 resonant mode as a function of the
sample’s relative permittivity and thickness.

and chain assembly. By rotating the gear on one of the threaded shafts, the top

aluminum plate moves vertically, thereby changing the distance d between the

two cylindrical-cavity sections. To maintain the alignment of the two cylindrical-

cavity sections, the top aluminum plate is guided by four stainless steel shafts,

with precision ball bearings in contact with the aluminum plate and the stainless

steel guide shafts.

6.2.2 Dielectric Substrate Specifications

The resonant frequency of the split-cylinder resonator varies considerably

as a function of the sample’s relative permittivity and thickness. Figure 6.3 is a

plot of the resonant frequency of the TE011 resonant mode as a function of sample

thickness and relative permittivity for the split-cylinder resonator described in

Section 6.2.1. The resonant frequency of the TE0np mode is inversely proportional

to both the sample thickness and relative permittivity and varies from 2 GHz for a

thick, high-permittivity material to 10 GHz for a thin, low-permittivity material.
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The advantage of this frequency dependence is that, with an approximate value

for the substrate’s relative permittivity, one may select a thickness so that a

measurement is made at a particular frequency.

However, one must be careful not to specify a sample thickness that is too

large. First, as the sample thickness increases, more power is dissipated in the

sample, resulting in lower quality factors for the TE0np modes. If the quality

factors become too low, the TE0np mode can interfere with an adjacent resonant

mode, resulting in systematic errors. In addition, as shown in Figure 6.4, the

electric field Eφs fringes further into the sample region as the sample’s thickness

increases. In this example, the relative permittivity is 10 and the TE011 resonant

frequency is 9.5 GHz. By varying the sample thickness from 0.1 mm to 5 mm,

significant fringing fields appear for substrates with thicknesses on the order of 1

mm and above. These fringing fields are not desirable because their interaction

with the conductive flange decreases the quality factor.
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Another reason to minimize the fringing fields is that the electric field Eφs

may not adequately decay before reaching the edge of the sample at ρ = b, thereby

resulting in a systematic error. Therefore, after selecting a thickness, one must

ensure that the sample diameter not only covers the entire cross-section of the

cylindrical-cavity sections, but must extend further until the electric field has

decayed significantly. For samples less than 1 mm, the sample diameter may only

have to be several millimeters more than the cylindrical-cavity sections, but for

samples greater than 1 mm, the sample diameter may be significantly larger.

Besides the sample thickness and diameter, the flatness of the sample must

be considered. All of the theoretical models we derived for the split-cylinder

resonator assume a perfectly flat sample with a uniform constant d. Unfortunately,

most samples have some variability due to the manufacturing process. As we

have not taken this into account in any of the models, uncertainty in the sample

thickness should be minimized as much as possible. In our case, we tried to limit

the thickness uncertainty to less than 0.02 mm. In some cases, it may be necessary

to machine the samples to the proper specifications.

6.3 Characterization of Measurement Variables

In order to calculate the relative permittivity and loss tangent of a dielectric

substrate, we must first accurately characterize several intermediate variables.

These include the resonant frequency f and quality factor Q of the TE0np resonant

mode; the radius a, length L, and conductivity σ of the cylindrical-cavity sections;

and the thickness d of the sample. In this chapter we discuss the method for

characterizing each variable, including an uncertainty budget for each.
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6.3.1 Resonant Frequency and Quality Factor

First, we summarize the technique for accurately measuring the resonant

frequency and quality factor or the TE0np resonant mode. Figure 6.5 shows a

plot of a TE011 resonance curve for the split-cylinder resonator, measured with

an automatic network analyzer. Commonly, the peak of the resonance curve is

assumed to be the resonant frequency and the 3-dB method is used to calculate

the quality factor. In this model, the quality factor is the peak frequency divided

by the 3-dB bandwidth, where the 3-dB bandwidth is the difference between the

half power points on either side of the resonant frequency [18]. Thus, with only

three points on the resonance curve, one can calculate the resonant frequency

and quality factor with the 3-dB method. However, as seen in Figure 6.5, the

resonance curve contains some noise, especially as the coupling levels decrease.

Therefore, the 3-dB method is susceptible to errors when the signal-to-noise ratio

decreases.

To reduce the measurement uncertainties for the resonant frequency and

quality factor, we adopted the weighted nonlinear least-squares method described

in [19]. First, we model the two-port split-cylinder resonator with the equivalent

circuit shown in Figure 6.6 [20, 21]. We employ two ideal transformers to model

the two coupling loops that excite the split-cylinder resonator, and a series in-

ductor L, capacitor C, and resistor R to model the split-cylinder resonator. The

resistances and self-inductances of the coupling loops are assumed to be negligible

[21]. An impedance-matched source is connected to port one of the cavity while

an impedance-matched load is connected to port two. Note that the source and

load can be interchanged without loss of generality.

We define T (f) as the transmission loss through the cylindrical cavity

T (f) =
Pin
PL
, (6.1)
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Figure 6.5: Resonance curve for a TE011 mode.

where f is the frequency, Pin is the maximum power delivered to a matched load

connected at port one, and PL is the maximum power delivered to the load at

port two [21]. Solving for Pin and PL we find

Pin = I1I
∗
1Z0 =

V 2s
4Z0

(6.2)

and

PL = I2I
∗
2Z0 =

V 2s
Z0

β1β2

(1 + β1 + β2)2 +Q20(
f
f0
− f0

f
)2
, (6.3)

where the coupling coefficient for port one β1 is

β1 =
n21Z0
R

(6.4)

and the coupling coefficient for port two β2 is

β2 =
n22Z0
R
. (6.5)

In (6.3), the resonant frequency f0 is defined as

f 20 =
1

4π2LC
, (6.6)
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and the unloaded quality factor Q0 is

Q0 =
2πf0L

R
. (6.7)

Substituting (6.2) and (6.3) into (6.1) we obtain

T (f) =
4β1β2

(1 + β1 + β2)2 +Q20(
f
f0
− f0

f
)2
. (6.8)

At resonance (f = f0), the transmission loss reduces to

T (f0) =
4β1β2

(1 + β1 + β2)2
. (6.9)

Taking the ratio of T (f0)/T (f) we get

T (f0)

T (f)
= 1 +

Q20(
f
f0
− f0

f
)2

(1 + β1 + β2)2
. (6.10)

Note that in practice, the unloaded quality factor Q0 is larger than the measured

quality factor Q due to the effects of the coupling loops

Q0 = Q(1 + β1 + β2). (6.11)
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Figure 6.7: Comparison of resonant frequency measurement methods.

However, if both coupling levels are minimized (β1 ¿ 1 and β2 ¿ 1), the coupling

factors β1 and β2 can be neglected and (6.10) rewritten as

T (f) =
T (f0)

1 +Q2( f
f0
− f0

f
)2
≈ T (f0)

1 +Q20(
f
f0
− f0

f
)2
, (6.12)

with the assumption that the measured quality factor Q is approximately Q0. (If

the coupling coefficients are not negligible, see [22] for methods of calculating β1

and β2.)

For each measured kth frequency point on the resonance curve

Tm(fk) = |S21(fk)|2 = T (f0)

1 +Q2(fk
f0
− f0

fk
)2
+ BG + ²(fk), (6.13)

where S21(fk) is the measured scattering parameter, BG is the background noise

floor, and ²(fk) is additive noise with zero expected value and variance σ
2
²(fk)

.

There are four unknowns in the model and these form a four-parameter vector,

~θ = (θ1, θ2, θ3, θ4) = (T (f0), Q, f0, BG). For the observed data, we model the

variance of the additive noise as

VAR[²(fk)] = σ2²(fk) =
γ21

1 +Q2(fk
f0
− f0

fk
)2
+ γ22, (6.14)
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Figure 6.8: Comparison of quality factor measurement methods.

where γ1 and γ2 correspond to the frequency-dependent noise and the noise floor,

respectively.

A weighted nonlinear least-squares fit of the measured resonance curve to

equation (6.14) is performed as outlined in [19] to determine the unknown vector

~θ, which includes the measured resonant frequency and quality factor. Besides

estimating the values of the resonant frequency and quality factor, this process

also provides the associated uncertainty estimates.

To learn how this new method for calculating the resonant frequency and

quality factor reduces the measurement uncertainty, we measured the resonant

frequency and quality factor of a split-cylinder resonator with no sample present

using both the 3-dB method and the weighted nonlinear least-squares method.

In Figure 6.7, we show results for 30 consecutive measurements using both the

3-dB and weighted nonlinear least-squares method and Figure 6.8 shows a similar

comparison for the measured quality factor.

Figures 6.7 and 6.8 show a noticeable decrease in the measurement scatter
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Resonant Standard
Measurement Frequency Deviation Quality Standard
Method (GHz) (GHz) Factor Deviation

Nonlinear Least-Squares 10.004085 0.000003 26170 40
3 dB 10.004082 0.000009 26400 180

Table 6.1: Comparison of measurement method for resonant frequency and loss
tangent.

when using the weighted nonlinear least-squares approach. Table 6.1 lists the

mean and standard deviation for the resonant frequency and quality factor using

both methods. Note that although the two method agree fairly well for both

resonant frequency and quality factor, the standard deviations are several times

smaller when using the weighted nonlinear least-squares method.

An important assumption in the derivation of equation (6.12) is that the

losses due to the coupling loops are negligible. The coupling coefficients are so

small that the loaded quality factor QL can be considered equal to the unloaded

quality factor Q0. This is only true if the split-cylinder resonator is very un-

dercoupled. In the split-cylinder resonator we used, the penetration distance of

the coupling loops into the cylindrical-cavity sections can be adjusted to vary the

amount of coupling. Figure 6.9 indicates how the measured quality factor of the

TE011 resonant mode changes as the coupling level varies.

For very high coupling, where the peak transmission loss is above -40 dB,

the measured quality factor decreases due to the increasing resistive losses in the

coupling loops. In this case, the coupling coefficients are not negligible and the

loaded and unloaded quality factors are not the same. This systematic error in

the quality factor is significant because it can lead to errors in the calculation of

the sample’s loss tangent.

On the other hand, as the coupling level decreases, the measured quality
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Figure 6.9: Measured quality factor as a function of transmission loss at the peak
of the TE011 resonant mode.

factor reaches some maximum value. This indicates that the coupling losses are

reduced to a level where they do not affect the quality factor measurement. How-

ever, at lower coupling levels, the signal-to-noise ratio decreases as well, so one

must be careful to pick a level of coupling that minimizes the coupling losses

while at the same time keeping the signal-to-noise ratio as high as possible. For

the split-cylinder resonator, a coupling level of -50 dB was found to be a good

compromise between these two criteria.

6.3.2 Split-Cylinder Dimensions

The radius a and length L of each of the two split-cylinder resonator sections

must be characterized to ensure accurate permittivity and loss tangent measure-

ments. First, the length of each of the split-cylinder’s cylindrical-cavity sections

was measured with a Sylvac digital probe at a temperature of 21.5 C. These

measurements were repeated 15 times for each section. The results, including an



95

Measurement Variable Value Standard Uncertainty

Lower Cylindrical-Cavity Section Length — Ll 25.322 mm 0.006 mm (A)
Upper Cylindrical-Cavity Section Length — Lu 25.346 mm 0.004 mm (A)

Mean Length 25.334 mm uc(L) = 0.007 mm

Table 6.2: Uncertainty budget for L, the length of a cylindrical-cavity section.
The combined standard uncertainty for the length is uc(L).

Measurement Standard
Variable Value Uncertainty

Resonant Frequency — f011 10.041 ± 0.0001 GHz 0.0002 mm (B)
Cylindrical-Cavity Section Length — L 25.334 ± 0.007 mm 0.0005 mm (A)

Speed of Light in Vacuum — c 2.99792458 m/s —
Relative Permittivity of Air in Lab — ²

0
a 1.00055 —

First Zero of J1 — j1 3.83171 —
Differences Between Split-Cylinder Sections 0.005 mm (B)

Split-Cylinder Radius — a 19.050 mm uc(a)= 0.005 mm

Table 6.3: Uncertainty budget for a, the radius of cylindrical-cavity section. The
combined standard uncertainty for the radius is uc(a).

uncertainty budget, are shown in Table 6.2. Because the theoretical model for

the split-cylinder resonator assumes that the two cylindrical-cavity sections are

identical, the mean length for L is used for both sections.

The radius a of the split-cylinder resonator is calculated from a measurement

of the TE011 resonant mode [23]. First, with no sample, we eliminate the gap

(d = 0) between the two cylindrical-cavity sections, turning the split-cylinder

resonator into a circular-cylindrical cavity with length 2L and radius a. With

the two coupling loops connected to a network analyzer, we excite the TE011

resonance. The resonant frequency of the TE011 mode is

f011 =
c

2π
q
²0a

sµ
j1
a

¶2
+
µ
π

2L

¶2
, (6.15)

where ²
0
a is the relative permittivity of the air inside the cylindrical cavity and j1
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is the first zero of the Bessel function of the first kind J1 [24]. Solving (6.15) for

the radius a we get

a = j1

²0a
Ã
2πf011
c

!2
−
µ
π

2L

¶2− 1
2

. (6.16)

Given the mean length L in Table 6.2 and measured resonant frequency,

using the method outlined in Section 6.3.1, we used (6.16) to solve for the split-

cylinder’s radius a and show the results and uncertainty budget in Table 6.3.

6.3.3 Sample Thickness

Besides the dimensions of the split-cylinder resonator, the sample thickness d

is another variable that must be characterized to ensure accurate permittivity and

loss tangent measurements. With a Mitutoyo digital micrometer, we calculated

the mean sample thickness from fifteen distinct points on the sample. Table 6.4

lists these for various locations on a Corning 7980 fused silica sample.

Since the number of repeated measurements is only fifteen, we cannot as-

sume a normal distribution for sample thickness. Rather, we calculate the stan-

dard uncertainty u(d) for the repeated measurements using a t-distribution

u(d) = tα/2,n−1
s√
n

(6.17)

where tα/2,n−1 is the critical value of the t-distribution for a 100(1-α) percent con-

fidence interval, n is the number of thickness measurements, and s is the standard

deviation of d [25]. If we select n = 15 and α = 0.05, then t0.025,14 = 2.145 and

we use (6.17) to calculate a standard uncertainty for the repeated measurements

that represents a 95 percent confidence interval. An uncertainty budget for the

Corning 7980 fused silica example is shown in Table 6.5.
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Sample Location # Thickness (mm)

1 2.535
2 2.530
3 2.531
4 2.526
5 2.518
6 2.507
7 2.506
8 2.508
9 2.513
10 2.521
11 2.528
12 2.537
13 2.532
14 2.531
15 2.530

Mean Thickness d 2.524

Table 6.4: Sample Thickness Measurements of a Corning 7980 Fused Silica Sub-
strate

Measurement Variable Standard Uncertainty

Repeated Thickness Measurements 0.023 mm (A)
Digital Micrometer 0.002 mm (B)

Sample Thickness uc(d) = 0.023 mm

Table 6.5: Uncertainty budget for d, the sample thickness. The combined standard
uncertainty for the sample thickness is uc(d).

6.3.4 Split-Cylinder Conductivity

The final measurement variable that must be characterized is the conductiv-

ity σ of the split-cylinder resonator metal walls, endplates, and flanges. This is an

important step since the metal losses must be well-characterized for an accurate

calculation of the sample’s loss tangent. Similar to the measurement of the split-

cylinder radius, we determine the conductivity of the split-cylinder resonator from

a measurement of the quality factor TE011 resonant mode when the resonator is
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Measurement Standard
Variable Value Uncertainty

Resonant Frequency — f011 10.041 ± 0.0001 GHz 4.62× 102 S/m
Quality Factor — Q 26400 ± 200 7.03× 105 S/m

Cylindrical-Cavity Section Length — L 25.334 ± 0.007 mm 1.53× 103 S/m
Cylindrical-Cavity Section Radius — a 19.050 ± 0.005 mm 1.47× 103 S/m
Permeability of Free Space — µ0 4π × 10−7 H/m —
Permittivity of Free Space — ²0 8.854 ×10−12 F/m —

Relative Permittivity of Air in Lab — ²
0
a 1.00055 —

First Zero of J1 — j1 3.83171 —

Split-Cylinder Conductivity — σ 4.64× 107 S/m uc(σ)= 0.07× 107 S/m
Table 6.6: Uncertainty budget for split-cylinder conductivity σ. The combined
standard uncertainty for the conductivity is uc(σ).

empty and the gap between the two cylindrical-cavity sections is zero (d=0).

For this configuration, the split-cylinder geometry reduces to that of a

circular-cylindrical cavity. The quality factor for a TE011 resonant mode is

Q =

s
µ0
²0²

0
a

"µ
j1
a

¶2
+
µ
π

2L

¶2# 32
2Rs

"
1

2L

µ
π

2L

¶2
+
1

a

µ
j1
a

¶2# . (6.18)

where µ0 and ²0 are the permeability and permittivity in a vacuum, ²
0
a is the

relative permittivity of the air within the cavity, j1 is the first zero of the Bessel

function of the first kind J1, a and L are the radius and length of each cylindrical-

cavity section of the split-cylinder resonator, and Rs is the surface resistance of the

metal conductor [24]. The conductivity of the split-cylinder resonator is assumed

to be uniform over the entire fixture.

Solving (6.18) for the surface resistance Rs we get

Rs =

s
µ0
²0²

0
a

"µ
j1
a

¶2
+
µ
π

2L

¶2# 32
2Q

"
1

2L

µ
π

2L

¶2
+
1

a

µ
j1
a

¶2# . (6.19)
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The conductivity σ of the metal can be written as a function of the surface resis-

tance Rs [26]

σ =
2πfµ0
2R2s

(6.20)

where f is the resonant frequency of the TE011 mode. Therefore, to determine

the value of σ, we first calculate Rs using equation (6.19) and then calculate σ

from equation (6.20). An uncertainty budget for the σ is shown in Table 6.6.

Given that the copper surfaces of the split-cylinder resonator suffer some-

what from surface roughness and impurities, our measured conductivity (4.64×107

S/m) is not far from the conductivity of pure copper (5.81× 107 S/m).

6.4 Relative Permittivity and Loss Tangent Measurements

After characterizing all the necessary intermediate measurement variables,

discussed in the previous section, we now focus on the calculation of the relative

permittivity and loss tangent of the sample. In this section, we outline the step-by-

step measurement procedure, including a discussion of the uncertainty analysis.

6.4.1 Sample Thickness

Prior to any measurements, contaminants on the surfaces of the sample

should be removed as they can be a source of error, especially for the measurement

of loss tangent. These contaminants include particles and lubricants that result

from machining as well as oils from handling. To remove the contaminants, we

clean each sample with 99% pure isopropyl alcohol and a lint-free cloth, making

sure that the alcohol has completely evaporated after cleaning. In addition, we

use lint-free gloves and avoid contact with the top and bottom faces of the sample.

After cleaning, we calibrate a digital micrometer and then measure the thick-

ness of the sample over several locations. Using the procedure in Section 6.3.3,
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we calculate the thickness d and standard uncertainty u(d).

6.4.2 Split-Cylinder Dimensions and Conductivity

Next, as with the sample, we clean any contaminants on the surfaces of

the split-cylinder resonator using 99% pure isopropyl alcohol and a lint-free cloth.

After cleaning, we measure the length L of the split-cylinder’s two cylindrical-

cavity sections using a digital probe and calculate the measurement uncertainty

u(L) as outlined in Section 6.3.2.

We then reassemble the split-cylinder resonator and connect the coupling

loops to the ports of an automatic network analyzer. To minimize the effect of

drift in our measurements, we require that the network analyzer be on for over one

hour before we make any measurements. After the allowing the system to warm

up, we close the gap between the two cylindrical-cavity sections and resonate the

TE011 mode. After adjusting the coupling loops so that the peak transmission

loss is less than -50 dB, we measure the resonant frequency f and quality factor Q

of the TE011 mode using the weighted nonlinear least-squares method described

in Section 6.3.1. From the measurement of the resonant frequency, we calculate

the radius a of the cylindrical-cavity sections using (6.16). With the measured

quality factor, we compute the conductivity σ of the resonator metal using (6.20).

6.4.3 Resonant Frequency and Quality Factor

A dielectric substrate is then placed between the two cylindrical-cavity sec-

tions, and the split-cylinder resonator is adjusted so that the two conductive

flanges contact both sides of the substrate. Depending on the relative permittivity

and thickness of the substrate, there may be a significant decrease in the resonant

frequency compared with the resonant frequency of the empty split-cylinder res-

onator, as described in Section 6.2.2. Once the resonant mode has been identified,
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one calculates the resonant frequency f and quality factor Q using the method of

weighted least-squares described in Section 6.3.1.

6.4.4 Relative Permittivity

At this point, all the intermediate variables have been measured, and one

can calculate the relative permittivity of the dielectric substrate. In Chapter 5, we

selected the theoretical model based on the mode-matching method to model the

split-cylinder resonator, and this is the model we implemented in our measurement

software. As described in Section 2.3, given an initial guess, we iteratively solve

for the relative permittivity ²
0
s using the resonance condition

det [Z] = 0. (6.21)

In Table 6.7, we show the data from a measurement of a Corning 7980 fused

silica substrate. First, we note the values and uncertainties of the intermediate

variables. These include the resonant frequency f of the TE011 mode, the radius

a and length L of a single cylindrical-cavity section, and the sample thickness d.

For the Corning 7980 fused silica substrate, the computed relative permittivity ²
0
s

is 3.833.

Also included in Table 6.7 is a calculation of the combined standard uncer-

tainty uc(²
0
s) for the relative permittivity. If we assume that the relative permit-

tivity is a function g of several intermediate variables

²
0
s = g(f0, a, L, d) (6.22)

then uc(²
0
s) can be obtained from

u2c(²
0
s) =

Ã
∂g

∂f0

!2
u2(f0) +

Ã
∂g

∂a

!2
u2(a) +

Ã
∂g

∂L

!2
u2(L) +

Ã
∂g

∂d

!2
u2(d) (6.23)

where u(f0), u(a), u(L) and u(d) are the uncertainty of the resonant frequency,

cylindrical-cavity radius, cylindrical-cavity length, and sample thickness respec-



102
Measurement Nominal Standard
Variable Value Uncertainty

Resonant Frequency — f 9.504 ± 0.0001 GHz 0.0005
Split-Cylinder Length — L 25.334 ± 0.007 mm 0.0006
Split-Cylinder Radius — a 19.050 ± 0.005 mm 0.0109
Sample Thickness — d 0.809 ± 0.004 mm 0.0141

Relative Permittivity — ²
0
s 3.833 uc(²

0
s)= 0.018

Table 6.7: Relative permittivity measurement and uncertainty budget for a Corn-
ing 7980 fused-silica substrate.

tively. We used the mode-matching model to numerically compute the partial

derivative in (6.23). Labeled as the standard uncertainty in Table 6.7, we list the

contribution of each of the various uncertainty sources and note that the sample

thickness d and the cylindrical-cavity radius a are the largest sources of error for

this particular measurement. Combining the standard uncertainties according to

(6.23), we found the combined standard uncertainty uc(²
0
s) to be 0.018, almost 0.5

percent uncertainty for the relative permittivity. If we assume a coverage factor

k = 2, then U(²
0
s), the computed expanded uncertainty is 0.036, slightly more

than 0.9 percent uncertainty [27].

6.4.5 Sample Loss Tangent

With the substrate’s relative permittivity calculated, one can determine the

loss tangent. From Section 2.4, we explicitly calculate the loss tangent tan δ using

tan δ =

ω(Ws +Wa)

Q
− Pe − Pw − Pf

²0²
0
s

πb2ω

4

NSX
n=1

|Bn|2|Vn|2J20 (hnsb)
"
d+

sin(pnsd)

pns

# . (6.24)

In Table 6.8, we show the data from a measurement of a Corning 7980 fused-

silica substrate. First, we note the values and uncertainties of the intermediate

variables. These include the resonant frequency f and quality factor Q of the
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TE011 mode, the radius a, length L and conductivity σ of a cylindrical-cavity

section, and the sample thickness d. For this particular case, the computed loss

tangent tan δ was 1.39× 10−4.
Also included in Table 6.8 is a calculation of the combined standard un-

certainty uc(tan δ) for the loss tangent. If we assume that the loss tangent is a

function g of several intermediate variables

tan δ = g(f0, Q, a, L,σ, d) (6.25)

then uc(tan δ) can be obtained from

u2c(tan δ) =

Ã
∂g

∂f0

!2
u2(f0) +

Ã
∂g

∂Q

!2
u2(Q) +

Ã
∂g

∂a

!2
u2(a) (6.26)

+

Ã
∂g

∂L

!2
u2(L) +

Ã
∂g

∂σ

!2
u2(σ) +

Ã
∂g

∂d

!2
u2(d) + u2(b)

where u(f0), u(Q), u(a), u(L) u(σ) and u(d) are the uncertainty of the reso-

nant frequency, quality factor, cylindrical-cavity radius, cylindrical-cavity length,

cylindrical-cavity conductivity, and sample thickness respectively. We used the

mode-matching model to numerically compute the partial derivatives in (6.26).

Note that we’ve added the u2(b) to the list of uncertainties terms in (6.26). This

is not the uncertainty in the radius of the sample, but the systematic error we

discuss in Section 2.4 to account for the variability in the loss tangent due to the

perfectly-conducting boundary we assumed at ρ = b.

After combining the various uncertainty components using (6.26), we found

that the combined uncertainty for the loss tangent of the 7980 Corning fused silica

sample was 2 × 10−5. If we assume a coverage factor k = 2, then the expanded
uncertainty is 4×10−5. As seen in Table 6.8, the largest uncertainty source for the
loss tangent is the systematic error attributed to the boundary at ρ = b, followed

by the uncertainty in the quality factor and conductivity.
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Measurement Nominal Standard
Variable Value Uncertainty

Resonant Frequency — f 9.504 ± 0.0001 GHz 2.11× 10−8
Quality Factor — Q 17086 ± 200 2.07× 10−6

Split-Cylinder Length — L 25.334 ± 0.007 mm 4.00× 10−8
Split-Cylinder Radius — a 19.050 ± 0.005 mm 5.26× 10−7

Split-Cylinder Conductivity — σ 4.64 ± 0.07 S/m 1.62× 10−6
Sample Thickness — d 0.809 ± 0.004 mm 1.11× 10−7

Conductive Boundary at ρ = b 2× 10−5
Loss Tangent — tan δ 1.39× 10−4 uc(tan δ)= 2× 10−5

Table 6.8: Example uncertainty budget for the loss tangent of a Corning 7980
fused-silica substrate.

6.5 Measurement Intercomparison

In our measurement intercomparison, we applied the split-cylinder resonator

method to determine the relative permittivity and loss tangent of four dielectric

substrates: Corning 7980 fused silica, single-crystal quartz, Corning 1723 glass,

and Coors Vistal alumina. These four dielectric substrates cover a wide range in

relative permittivity (3-10) and loss tangent (1×10−5−5×10−3). For these mea-
surements, we performed single-frequency measurement using the TE011 resonant

mode. Table 6.9 shows relative permittivity results while Table 6.10 shows loss

tangent results.

In order to verify the accuracy of the split-cylinder measurements, we mea-

sured the same four materials in a circular-cylindrical cavity [24], shown in Figure

6.10. As the electrical properties of these substrates are frequency dependent, we

tried to measure the substrates as close as possible to the frequency of the split-

cylinder resonator measurements. For comparison, the circular-cylindrical cavity

results are shown in Tables 6.9 and 6.10. There is good agreement between the

two measurement methods for both the relative permittivity and loss tangent of

all four materials.
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Figure 6.10: Circular-cylindrical cavity.

Sample Split-Cylinder Resonator Cylindrical Cavity

f (GHz) ²
0
r f (GHz) ²

0
r

7980 Fused Silica 9.503 3.829± 0.018 9.432 3.837±0.019
Single-Crystal Quartz 9.338 4.437± 0.015 9.290 4.429±0.022

1723 Glass 8.763 6.147± 0.017 8.631 6.156±0.031
Vistal Alumina 8.135 10.016± 0.023 8.135 9.994±0.050

Table 6.9: Comparison of relative permittivity measurements using a split-cylinder
resonator and a circular-cylindrical cavity.

Sample Split-Cylinder Resonator Cylindrical Cavity
f (GHz) tan δ × 10−3 f (GHz) tan δ × 10−3

7980 Fused Silica 9.503 0.14± 0.02 9.432 0.12± 0.05
Single-Crystal Quartz 9.338 0.02± 0.03 9.290 0.01± 0.05

1723 Glass 8.763 4.64± 0.13 8.631 4.62± 0.07
Vistal Alumina 8.135 0.01± 0.02 8.135 0.05± 0.05

Table 6.10: Comparison of loss tangent measurements using a split-cylinder res-
onator and a circular-cylindrical cavity.
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Figure 6.11: Zero-crossings of det[Z] showing the frequencies of the first six TE0np
resonant modes.

6.6 Broadband Measurements using TE0np Resonant Modes

Up to this point we have only used the TE011 resonant mode to make single-

frequency relative permittivity and loss tangent measurements using the split-

cylinder resonator. However, the mode-matching model derived for the split-

cylinder resonator includes not only the TE011 mode but also the higher-order

TE0np modes. Therefore, we employ these higher-order modes so that the relative

permittivity and loss tangent can be measured over a wider frequency range.

We used two split-cylinder resonators to measure the complex permittivity

of two fused-silica substrates over a frequency range of 10 to 50 GHz. The first of

these resonators, whose TE011 resonant frequency is 10 GHz with no sample, has

dimensions 2a=38.1 mm and L=25.3 mm. The resonator was constructed from

oxygen-free copper and had a small hole in the waveguide wall for the coupling

loop. The second split-cylinder resonator, whose TE011 resonant frequency is

35 GHz with no sample, has dimensions 2a=13.18 mm and L=3.51 mm. The

resonator was constructed from silver-plated brass and also had small holes in
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each section to accommodate the coupling loops.

Two fused-silica samples, machined from the same lot, were measured with

the two split-cylinder resonators. The sample for the larger split-cylinder resonator

was 55 mm square and 0.81 mm thick. The sample for the smaller resonator was

25 mm square and 0.28 mm thick. Each sample was placed between the two

cylindrical-cavity sections of the split-cylinder resonator, and the resonance curve

for the TE011 mode was examined on an automatic network analyzer. From the

resonance curve, we obtained the resonance frequency f and the quality factor

Q. From these two quantities and the geometrical dimensions of the split-cylinder

resonator and sample, the sample relative permittivity using (2.67) and the sample

loss tangent were calculated using (2.92).

We noted earlier that equation (2.67) could be used to calculate the resonant

frequency of the split-cylinder resonator, given the substrate’s relative permittivity

and thickness and the dimensions of the split-cylinder resonator. With the value of

the relative permittivity calculated from the TE011 resonance, a plot of det[Z] as a

function of frequency is shown in Figure 6.11. The first zero crossing corresponds

with the TE011 mode while the other zero crossings correspond to the higher-order

TE0np modes. For increased measurement sensitivity, only the TE0np modes where

p is an odd integer are included, as these modes have a maximum electric field

at the center of the sample. It is important to note where these frequencies

occur before attempting to measure them with a network analyzer because as the

frequency increases, modes other than those in the TE0np family are excited. The

information contained in Figure 6.11 reduces the chance of measuring an incorrect

mode.

After correctly identifying these higher-order modes, we measured the reso-

nant frequency and quality factor of each with a network analyzer. In some cases,

the TE0np resonance may be close in frequency to other resonant modes, thereby
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Figure 6.12: Relative permittivity of 7980 Corning fused silica substrate using
higher-order TE0np modes.

distorting the resonance curve. One must use these modes with caution as this dis-

tortion may cause errors in the calculation of the resonant frequency and quality

factor. Once the resonant frequency and quality factor are determined, we again

calculate the relative permittivity and loss tangent of the substrate using (2.67)

and (2.92). Figure 6.12 shows the measured relative permittivity of fused silica

using two split-cylinder resonators. As expected, the permittivity is relatively flat

over the frequency range. Figure 6.13 shows the measured loss tangent of fused

silica measured with the two split-cylinder resonators. We note an increase in the

loss tangent as a function of frequency, and over the frequency range of 10 to 50

GHz, the increase is linear with frequency.

Finally, to verify the accuracy of the broadband, fused silica measurements,

we machined additional samples for testing in a circular-cylindrical cavity, a

dielectric-post resonator, and several split-post resonators. In Figures 6.14 and

6.15 the split-cylinder resonator measurements of relative permittivity and loss

tangent are compared to measurements made with these other methods. We
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Figure 6.14: Comparison of measurement methods for broadband relative permit-
tivity measurements of 7980 Corning fused silica substrate.

found close agreement between all the methods for both relative permittivity and

loss tangent over the frequency range from 1 to 50 GHz.
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6.7 Thin-Material Measurements

The ability to characterize thin (< 1.0 mm) dielectric materials is an im-

portant consideration when selecting a measurement method as thin materials are

becoming more widespread. Unfortunately, many measurement methods do not

have the sensitivity to make accurate measurements of either permittivity or loss

tangent because the sample is often placed in a relatively low electric field. For

example, in a cylindrical cavity resonator, the sample is placed directly on the

bottom conductive endplate. The electric field is very low in this region and the

resonant frequency and quality factor of the cavity are only slightly perturbed.

However, in the split-cylinder resonator method, the sample is placed in a maxi-

mum electric field so that the measurement sensitivity is increased.

In order to demonstrate the ability of the split-cylinder resonator to mea-

sure the permittivity and loss tangent of thin materials, we performed a series of

measurements on six polyimide films, each with a nominal thickness of 0.05 mm.
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Figure 6.16: Relative permittivity of polyimide films as a function of frequency.

First, we measured a single polyimide film using the split-cylinder resonator, and

we show the relative permittivity results in Figure 6.16 and the loss tangent results

in Figure 6.17. The uncertainty in both the relative permittivity and loss tan-

gent are high for the single-film measurement, because relative sample thickness

uncertainty is relatively high.

To verify the single-film measurement, additional films were stacked on the

original film individually in sequence, and the relative permittivity and loss tan-

gent were measured after the addition of each film. Figures 6.16 and 6.17 show the

measurement results for the stacked films. As expected, the resonant frequency

and the measurement uncertainty for both relative permittivity and loss tangent

decreased as additional films were added. For all six measurements, the results

agreed within the measurement uncertainty.
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6.8 Repeatability Study

In order to evaluate the long-term stability of the split-cylinder resonator

measurements, we designed a repeatability study for measurements of the relative

permittivity and loss tangent of several dielectric substrates. Since not all of the

sources of variability can be identified in our uncertainty analysis, the repeatability

study helps to validate our uncertainty analysis and verify the stability of the

measurement system.

We chose four dielectric substrates that would cover a wide range in relative

permittivity (3-10) and loss tangent (1 × 10−5 − 5 × 10−3). The four substrates
selected were 7980 Corning fused silica, single-crystal quartz, 1723 Corning Glass,

and Coors Vistal alumina. The study consisted of a series of measurement ses-

sions, each on a separate day, where the four substrates were measured with the

split-cylinder resonator described in Section 6.2.1. The measurement order for

the four substrates during any single measurement session was random, and the

repeatability study consisted of eight measurement sessions made over a period of
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Sample ²

0
s Standard Deviation

7980 Corning Glass 3.826 0.003
Single-Crystal Quartz 4.435 0.005
1723 Corning Glass 6.151 0.005
Coors Vistal Alumina 10.025 0.013

Table 6.11: Repeatability study results for the relative permittivity ²
0
s of four

dielectric substrates.

Sample tan δ × 10−3 Standard Deviation
7980 Corning Glass 0.139 0.001
Single-Crystal Quartz 0.024 0.001
1723 Corning Glass 4.656 0.008
Coors Vistal Alumina 0.011 0.001

Table 6.12: Repeatability study results for the loss tangent tan δ of four dielectric
substrates.

two months. Measured values of relative permittivity and loss tangent for the four

dielectric substrates are shown in Figures 6.18-6.21. Results of the study in Tables

6.11 and 6.12 show the average measured relative permittivity and loss tangent

of the four substrates as well as the measured standard deviations. For all four

materials, there is little variation in the results over time and the standard devi-

ations are relatively small and well within the measurement uncertainties. Thus,

the major uncertainty sources in our uncertainty analysis have been accounted

for.
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Figure 6.18: Repeatability study for 7980 Corning fused silica. The measured
resonant frequency is approximately 9.504 GHz.
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Figure 6.19: Repeatability study for single-crystal quartz. The measured resonant
frequency is approximately 9.338 GHz.
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Figure 6.20: Repeatability study for 1723 Corning glass. The measured resonant
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Figure 6.21: Repeatability study for Coors Vistal alumina. The measured reso-
nant frequency is approximately 8.135 GHz.



Chapter 7

Conclusion and Future Work

In this thesis we developed three theoretical models for the split-cylinder

resonator. These models, derived using the mode-matching, least-squares bound-

ary residual, and Hankel-transform method, allow one to make nondestructive

relative permittivity and loss tangent measurements of dielectric substrates from

a measurement of the resonant frequency and quality factor of a TE0np mode.

Unlike previous models that used only the TE011 mode to perform single-

frequency measurements, our models include higher-order TE0np modes that broaden

the frequency range of the split-cylinder resonator. To improve the accuracy of the

relative permittivity measurement, we accurately represented the fringing fields in

the sample region, rather than by perturbation methods used in previous models.

Also, the separation of the conductive losses of the split-cylinder resonator from

the dielectric losses of the substrate significantly improved the sensitivity of the

loss tangent measurement.

In a detailed comparison of the models, the mode-matching model was

found to be superior to the LSBR and Hankel-transform methods on the basis

of accuracy in the calculation of relative permittivity and loss tangent as well

as computational speed. As a result, we incorporated the mode-matching model

into our measurement software and used it to characterize several dielectric sub-

strates that varied in both relative permittivity (²
0
s = 3 − 10) and loss tangent
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(tan δ = 1 × 10−5 − 5 × 10−3). Comparison of these measurements with a split-
cylinder resonator and a circular-cylindrical cavity at a single frequency, indi-

cated close agreement in both the relative permittivity and loss tangent. With

the higher-order TE0np resonant modes, measurements over a broader frequency

range showed close agreement with those made in a circular-cylindrical cavity,

dielectric-post resonator, and several split-post resonators over a frequency range

of 1-50 GHz.

Because of symmetry, the electric field in the split-cylinder resonator is

maximum at the center of the sample, resulting in a higher sensitivity for both

relative permittivity and loss tangent measurements. As a result, the relative

permittivity and loss tangent were obtained for polyimide films that were only

0.05 mm thick.

In addition to these measurement results, an uncertainty analysis was de-

veloped for both the relative permittivity and loss tangent. This revealed un-

certainties within 0.5 percent for the relative permittivity. The major sources of

uncertainty were the split-cylinder radius a and the sample thickness d. For the

loss tangent, uncertainties of not less than 2× 10−5 were found. Although there
were contributions due to uncertainties in the quality factor Q and conductivity of

the split-cylinder metal σ, the main source of uncertainty was a systematic error

introduced by assumption of the conductive boundary at ρ = b in order to imple-

ment the mode-matching method. Through a repeatability study we found that

our uncertainty analysis had taken into account the major random error sources

and that the measurement system was stable over time.

We discovered, however, several issues related to the split-cylinder that

might make the method unattractive to some users. First, although the con-

ductive losses of split-cylinder walls, endplates and flanges were separated from

the dielectric losses in the substrate, the level of the conductive losses reduces the
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Figure 7.1: Split-post resonator.

sensitivity of the loss tangent measurement. In any attempt to measure substrates

with loss tangent less than 1× 10−4, significant uncertainty is introduced.
Second, we found that the resonant frequency of the split-cylinder resonator

was highly dependent on the sample’s thickness and relative permittivity. In the

case of our split-cylinder resonator, we observed that the resonant frequency could

vary from 2 to 10 GHz depending on the properties of the dielectric substrate.

In some cases this might not be desirable, as one might want to measure the

properties of a wide range of substrates at approximately the same frequency.

To mitigate these concerns, we plan to investigate the split-post resonator,

another measurement technique for nondestructive relative permittivity and loss

tangent measurements [28]. The geometry of the split-post resonator, shown in

Figure 7.1, is similar to the split-cylinder resonator except for two items. First,

there are two dielectric posts in each of the cylindrical-cavity sections. Second,

the gap between the two halves of the split-post resonator is fixed so that the

dielectric substrate does not contact the upper half of the split-post resonator.
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For certain aspect ratios of the dielectric posts, most of the electric and

magnetic fields are confined to the posts and the region between the post where

the sample resides. As a result, only a small amount of the fields interacts with the

conductive metal walls, endplates, and flanges, most of the power is dissipated in

the posts and sample. If the dielectric posts are fabricated from low-loss materials,

then most of the energy will be dissipated in the sample, increasing the sensitivity

of the loss tangent measurement.

The dielectric posts serve a dual purpose in that the relative permittivity,

thickness and diameter of the posts largely control the resonant frequency of the

split-post resonator. The difference in resonant frequency with and without sam-

ple is relatively small compared to that observed in the split-cylinder resonator.

Therefore, a split-post resonator can measure a wide range of dielectric substrates

at approximately the sample frequency.

The advantages of the split-cylinder resonator come at a cost however. In

the case of the split-cylinder resonator, the fields in each of the three regions can

be represented by simple waveguide modes, and because of it’s symmetry, only

two of the three regions needed consideration. The split-post resonator has six

distinct regions that must be included in the model, and the two regions with the

dielectric posts must be modeled as sections of loaded waveguide.

As a result, in applying the mode-matching method to derive a theoretical

model for the split-cylinder resonator, the expressions to calculate the relative

permittivity and loss tangent are much more complex. In addition, computational

speed may also become an issue. However, we will pursue the modeling of the

split-post resonator, as we believe the advantages far outweigh the drawbacks.
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Split-Cylinder Resonator Mechanical Drawings

Figure A.1:
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Figure A.2:
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Figure A.3:
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Figure A.4:
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Figure A.5:
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Figure A.6:
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