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We present phenomenology describing the internal structure of a turbulent zone, produced as the
result of the push of a heavy fluid into a light one, for the case of immiscible fluids. One finds
that the Kolmogorov cascade is realized within a range that grows with time, viz., scales between
the mixing zone width, L ∝ t2, and the viscous scale, η ∝ t−1/4. Surface tension effects lead to
formation of an emulsion-like state. Density fluctuations on scales larger than the typical drop
size, l, are governed by the Obukhov-Corrsin cascade. If l � η, a wave energy cascade, related to
capillary waves propagating along the surfaces of drops, is formed at scales below l, l ∝ t−2/5.
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Introduction. If a heavy fluid lies above a light one,
the gravity-driven Rayleigh-Taylor (RT) instability de-
velops [1–4]. At later stages, this unstable flow becomes
turbulent. The most striking feature of RT turbulence is
the formation of a turbulent mixing zone of width L that
grows quadratically with time [5]:

L ≈ αAgt2 . (1)

Here, A is the Atwood number, related to the fluid den-
sities ρ1,2 by A ≡ (ρ1 − ρ2)/(ρ1 + ρ2), and g is the ac-
celeration of gravity. The law (1) was observed in many
numerical and laboratory experiments (see Refs. [6, 7]
for recent reviews). Numerical and experimental values
of the dimensionless coefficient α in Eq. (1) vary from
0.02 to 0.07.

Recently one of us (M.C.) proposed a phenomenolog-
ical theory explaining the hierarchy of scales and the
spectra of velocity and density fluctuations in a specific
regime of 3d RT turbulence: for low A (i.e., in the Boussi-
nesq approximation) and for miscible fluids [8]. The the-
ory is based on the law (1) and also on a common feature
of multi-scale organization in hydrodynamic turbulence,
viz., that small scales adjust adiabatically to changes in
large scale characteristics. The phenomenology predicts
that, in the wide range of scales between the integral
scale, L, and the viscous scale, η, energy cascades down
scale (as observed numerically and experimentally [9–12])
and the Kolmogorov estimate for the velocity increment
(difference) [13–15],

δvr ∼ (εr)1/3 , (2)

holds. Here ε is the energy flux per unit mass, ε ∼ A2g2t,
which grows linearly with time. It was shown in Ref. [8]
that the Kolmogorov scenario is self-consistent, in the
sense that even though the RT turbulence is buoyancy
driven at scales ∼ L, the effect of buoyancy on turbu-
lence becomes irrelevant at smaller scales, r � L. This
self-consistent logic is an adaptation (to the RT turbu-
lence setting) of the Shraiman-Siggia arguments [16], in-
troduced in the context of Boussinesq convection. The

phenomenology also predicts (in agreement with the nu-
merical analysis of Ref. [17]) that the viscous scale η
decreases with time as

η ∼
(

ν3

A2g2t

)1/4

, (3)

where ν is the kinematic viscosity. (We assume that the
kinematic viscosities of the fluids are of the same or-
der.) Comparing Eq. (1) and Eq. (3) one finds that
the turbulent description is self-consistent, i.e., L � η,
for t � ν1/3A−2/3g−2/3.

It is clear that the adiabatic and Kolmogorov-like ar-
guments leading to the estimate (2) are not restricted to
the miscible case considered in Ref. [8]. In particular, the
general argument suggests that the Kolmogorov picture
also holds within some range of scales for the immisci-
ble case. In this case, however, surface tension should
play an essential role in the mixing zone. The problem
addressed in the present letter is to identify and study
phenomena related to surface tension.

Surface Tension Effects. We examine the dynamics
of two immiscible fluids when the heavier fluid is placed
initially above the lighter one. This configuration leads
to RT instability, which eventually develops into RT tur-
bulence. The size of the turbulent mixing zone (and thus
the amount of fluid entrained in the turbulent motion)
grows according to Eq. (1). Hydrodynamic motion at
scales ∼ L is driven by buoyancy. At smaller scales the
direct (i.e., directed towards smaller scales) cascade of
(kinetic) energy is realized, leading to the estimate (2).
The cascade is accompanied by mutual penetration of
the fluids, which is initiated by the injection of pure fluid
jets into the mixing zone. The collision of jets of dif-
ferent fluids produces complex (fractal) interfacial struc-
tures. Drops of both types are permanently shed from
the interface; the result is the creation of an emulsion-
like state. A schematic view of a snapshot taken inside
the mixing zone, illustrating the density distribution, is
shown in Fig. 1. Notice that the exact shapes of the
drops are by no means fixed, as fluctuations in the lo-
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FIG. 1: Schematic view of the mass distribution snap-
shot. Different mass densities are marked as grey/light
and white/heavy, respectively. Circular domains bounded
by dashed lines correspond to regions dominated by heavy
(θr > 0) and light (θr < 0) fluids. Density distribution within
any of the domains is not homogeneous: drop-rich (emul-
sion) regions alternate with drop-free regions. Arrows indi-
cate mean direction of the flow in the corresponding regions.
Drops are shed from single-phase tongues possessing fractal
shape. The inset on the top of the Figure illustrates that
surfaces of the drops are populated by capillary waves.

cal radius of curvature of the interface are of the order l,
i.e., the typical drop size. Surface tension does not allow
drops to have size much smaller than l.

Let us consider the case when the typical drop size is
larger than the viscous scale, l � η. Then the size l can
be estimated to be the scale where the kinetic energy
density of the fluids, �(δvl)2, and the interfacial energy
density, σ/l, are of the same order:

l ∼
(

σ3

A4�3g4t2

)1/5

, (4)

where � is the mean mass density, � = (ρ1 +ρ2)/2, and σ
is the surface tension coefficient. According to Eq. (4),
the characteristic drop size l decreases with time t, gen-
erating an emulsion that is progressively more dispersed.
Dynamically, the permanent decrease in the typical drop
size is realized through creation (shedding) of new drops
as well as through breakup of already existing drops into
smaller ones.

The estimate (4) is correct provided that the scale l
is much smaller than L; this requirement corresponds to
the condition

t �
(

σ

A3�g3

)1/4

. (5)

This inequality emphasizes that at large scales, ∼ L,
gravity overcomes surface tension (which tends to sta-
bilize the RT instability). Another condition, l � η,

results in

t � t0, t0 =
σ4

A2�4g2ν5
. (6)

This inequality means that the Kolmogorov cascade is
insensitive to viscosity at scales ∼ l. We assume that the
inequalities (5) and (6) are compatible, thus leading to
the condition

σ3 � A�3gν4 . (7)

Below we discuss separately scales larger and smaller
than l.

Density Fluctuations. As the mixing zone grows,
new portions of both heavy and light fluids are en-
trained in the turbulent region. Jets of the fresh por-
tions, of the typical size L, move from the mixing zone
periphery towards the mixing zone center through the
counter-propagating emulsion containing drops of other
fluid (see Fig. 1). The interfacial contact of the counter-
propagating jets generates increasingly complex (frac-
tal) structures evolving passively at scales larger than
l, where surface tension is not relevant and the interface
dynamics does not exert any back reaction on the flow
(so that it cannot lead to any interface rupture). Sur-
face tension becomes relevant at the scale l, leading to
interface breakdown, i.e., to formation of drops of sizes
∼ l. Notice that as time advances, old drops (i.e., drops
of larger size formed earlier, because at the time of their
formation l was larger) are broken, so that a majority of
drops inside the mixing zone at any given time have size
∼ l. The concentration of drops is also inhomogeneous,
implying scale-dependent density variations.

In the immiscible case, the “microscopic” density ρ
is a two-valued quantity, ρ = ρ1,2. Therefore, a spa-
tial distribution of the mass density at the scales larger
than l has to be described in the framework of a coarse-
graining procedure, i.e., in terms of averaged quantities.
For this purpose, we introduce the quantity θr, which is
the deviation of the mass density from its mean value �
coarse-grained at a scale r. Values of θr can be positive
or negative, signaling which of the two fluids dominates
the r-vicinity of a given point R. (The situation is illus-
trated in Fig. 1, where regions of a size r are enclosed
by dashed circles.) Accounting for mass advection and
neglecting surface tension effects, one arrives at the fol-
lowing continuity equation for θr (see, e.g., Ref. [18]):

∂tθr(R) = −vr(R)∇θr(R) , (8)

where vr(R) is defined as the velocity field, coarse-
grained at the same scale r. In complete analogy with the
miscible Boussinesq description of Ref. [8], one finds that
the field θr is a passive tracer advected in the inertial-
convective range of scales, L � r � l. Therefore, in
accordance with the Obukhov-Corrsin law [23, 24], the
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scalar increment (difference) at the scale r is estimated
as

δθr ∼ A�(r/L)1/3 . (9)

From Eqs. (2,9) one derives that the power generated
by the gravity force (per unit mass) at the scale r, ∼
�−1δθrgδvr, is much less than the Kolmogorov energy
flux (per unit mass), ε. As a result, the direct cascade of
passive density fluctuations is established in the range of
scales between L and l, thus confirming self-consistency
of the Obukhov-Corrsin picture.

Capillary Wave Range. If t � t0, then the drop
size, l, lies in between the integral scale, L, and the vis-
cous scale, η. We have argued above that in the range
of scales bounded from above by L and from below by l,
the Kolmogorov in-volume cascade is realized. Moreover,
one finds that at smaller scales, r < l, turbulence inside
and outside drops is also of the Kolmogorov type. As far
as dynamics on the interface (surfaces of the drops) is
concerned, we claim that a turbulent cascade of capillary
waves takes place. The capillary wave dynamics opens
an additional channel for energy transfer to small scales.
The energy flux, coming from the integral scale L, splits
in two parts at the scale l: a part of the energy cascades
further (towards η) in the bulk (the mechanism being
equivalent to that for single-phase turbulence) while the
remainder (which is roughly of the same order as the vol-
ume part) feeds capillary fluctuations, giving rise to the
capillary wave energy cascade at the surfaces of drops.

Capillary waves are excited at the scale l by the in-
ertial motion; then capillary wave interactions lead to
the formation of a cascade in which waves with smaller
and smaller wave lengths r, r � l, are produced. The
cascade is of a weak turbulence kind, i.e., the roughness
(degree of non-flatness) of the interface decreases with
scale. Therefore, zoomed at the scale r � l, the inter-
face can be viewed as an almost flat one populated by
capillary waves. Such zoomed portion of the interface is
shown schematically as an inset in Figure 1. The fluctu-
ation spectra for the capillary wave cascade were derived
by Zakharov and co-workers [19–21]. Using their results,
one finds that the pair correlation function of the wave-
generated velocity field, measured at two points on the
interface lying distance r apart from each other, is

〈v(R)v(R + r)〉 ∼ (εl)2/3(l/r)1/4 . (10)

The typical surface elevation between the two points is
estimated as hr ∼ r(r/l)3/8. Therefore, the typical slope,
hr/r, characterizing an effective nonlinearity of the prob-
lem, decreases with the scale. This estimate confirms
that the wave turbulence at the interface is weak. It is
also straightforward to check that the nonlinear interac-
tion time at the scale r within the wave turbulence range
decreases with scale, ∝ r3/4, thus making our adiabatic
description well justified.

We also find that velocity fluctuations induced by the
capillary waves (10) are stronger than respective fluctu-
ations in the bulk, described by Eq. (2). Therefore, the
interface turbulence is insensitive to fluctuations in the
bulk. On the other hand, velocity fluctuations at a scale
r generated by surface waves become negligible beyond
distance r from the interface. This explains why turbu-
lent fluctuations in the bulk are insensitive to fluctuations
at the interface.

Comparing the capillary waves dispersion law, ωk =√
σ/(2�) k3/2 (where ωk is the frequency of a wave char-

acterized by the wave vector k), with the viscosity en-
forced dissipation rate, ∼ νk2, one finds that the capil-
lary waves are dissipated at the scale

r0 = �ν2/σ. (11)

Combining Eqs. (4,3,11) one concludes that the capillary
wave interval, bounded by l from above, by r0 from below
and containing η scale in between, shrinks with time, so
that the three scales become comparable at t0.

Eq. (10) gives an estimate for velocity fluctuations
at the interface. Therefore, if the velocity spectrum is
calculated as a full volume average, an additional small
factor r/l for the capillary wave contribution emerges due
to the aforementioned localization of the capillary wave
dynamics in some close proximity of any given drop sur-
face. One concludes that the overall (volume-averaged)
contribution into the velocity increment at r � η is dom-
inated by the bulk, i.e., by the 3d Kolmogorov cascade
term, which masks the wave turbulence contribution. On
the other hand, the capillary-wave spectrum extends to
scales smaller than η, η � r � r0, where the volume
contribution is already damped by viscosity. Therefore,
the interfacial contribution should be clearly seen in the
velocity fluctuation spectrum within this special range of
scales.

Advanced Stage. When time t approaches t0, both l
and η reach r0 simultaneously and the capillary interval
collapses. Later on, for t � t0, the characteristic drop
size l becomes smaller than η, which, in turn, becomes
smaller than r0. Therefore, the capillary cascade is ab-
sent at this stage. The scale l emerges now as the result of
a balance between the capillary force σl and the viscous
force A�ν(δvη/η)l2 at the scale l. Taking into account
estimates (2,3) one arrives at

l ∼ σ

A�g

1√
νt

, (12)

which guarantees that l decreases with time faster than
η, with the viscous scale being described by Eq. (3).

For t � t0 a new range of scales, bounded by η from
above and by l from below, emerges. In this range, the
velocity fluctuations, e.g., those entering the expression
(8) for the dynamics of coarse-grained density field, are
spatially smooth; that is, the fluctuations are of the so-
called Batchelor kind [25, 26]. Thus, fluctuations of the
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coarse-grained density field are described by the following
second order structure function [25–27]:

〈(δθr)2〉 ∼ A2�2(η/L)2/3 ln(η/r) . (13)

Notice that if condition (7) is reversed, i.e., if σ3 �
A�3gν4, then the RT instability develops into turbulence
for t � [ν/(A2g2)]1/3, when l is already smaller than η,
so that turbulence begins immediately in the regime just
discussed.

Conclusions. We examined the effect of surface ten-
sion on immiscible RT turbulence. It was shown that sur-
face tension effects lead to the formation of an emulsion-
like state, with the typical drop size l decreasing in time.
We found that the character of the density fluctuations
on the scales larger than l is insensitive to the immis-
cible nature of the problem. If the size l is larger than
the viscous scale, turbulence in capillary waves propagat-
ing along the drops’ surfaces is realized in parallel with
the Kolmogorov turbulence inside, and also outside, the
drops (i.e., in the bulk). Thus, the energy is carried
towards small scales by both inertial and surface wave
cascades simultaneously. This is the regime realized at
moderate time as well as if the effects of surface tension
are stronger than those of viscosity. Later in time, the
wave turbulence interval collapses, leading to the forma-
tion of a finely dispersed emulsion with the typical drop
size being much smaller than the viscous scale.

Let us mention, for the sake of completeness, that im-
miscible RT turbulence in 2d, which is frequently ad-
dressed in numerical simulations, is very different from
that in 3d, which has been the focus of this letter. One
expects, in analogy with the Boussinesq case considered
in [8], that the Bolgiano-Obukhov regime [28, 29], rather
than the Kolmogorov regime, is realized in 2d. Besides,
it is easy to estimate that viscous scale, η, and the cap-
illary scale, l, both increase in 2d, contrary to what was
concluded above for 3d.

The description of RT turbulence proposed in this let-
ter is phenomenological. The phenomenology ignores ef-
fects associated with the spatial inhomogeneity of the
mixing zone. It also ignores the effects of intermittency,
leading to anomalous scaling of higher order velocity and
density increments [15]. These and other issues (e.g. an-
alyzing the case when two viscosities are parametrically
different) should be addressed in the future.

Even though our theory is specific to RT turbulence,
we can apply it in other situations, for instance, when
immiscible fluids are driven into a turbulent regime by
a mechanism other than constant gravity. Two inter-
esting examples of this kind are (a) the statistically
steady regime realized under permanent forcing (e.g., in
a Taylor-Couette apparatus or when two immiscible flu-
ids are pushed through a pipe) and (b) the decaying
Rightmayer-Meshkov regime realized after an initially
large acceleration is switched off. Although the over-
all temporal picture of the flow requires serious modifi-

cation, the spatial picture of the immiscible turbulence
reported in this letter will still be applicable. In par-
ticular, one finds that the multi-drop (emulsion) picture
discussed above and the splitting of the energy cascade
in two at scales smaller than the scale of the typical drop
size should be seen as well in these other immiscible tur-
bulence problems.

The authors thank R. Ecke, B. Plohr, D. H. Sharp, and
V. Steinberg for inspiration and illuminating discussions.
We acknowledge support of RSSR through a personal
grant (IK) and of RFBR, grant 04-02-16520a (IK,VL).

[1] Lord Rayleigh, Proc. Lond. Math. Soc. 14, 170 (1883).
[2] G. I. Taylor, Proc. Roy. Soc. Lon. A201, 192 (1950).
[3] S. Chandrasekhar, Hydrodynamic and hydrodynamic in-

stability, Dover Publications, NY 1961.
[4] P. G. Drazin and W. H. Reid, Hydrodynamic stability,

Cambridge University Press, Cambridge, 1981.
[5] D. H. Sharp, Physica D 12, 3 (1984).
[6] J. Glimm, J. W. Grove, X. L. Li, W. Oh, and D. H. Sharp,

J. Comp. Phys. 169, 652 (2001).
[7] G. Dimonte et. al, Phys. Fluids 16, 1668 (2004).
[8] M. Chertkov, Phys. Rev. Lett. 91, 115001 (2003).
[9] S. B. Dalziel, P. F. Linden, and D. L. Youngs, JFM 399,

1 (1999).
[10] A. W. Cook and P. E. Dimotakis, JFM 443, 69 (2001).
[11] Y. N. Young, H. Tufo, A. Dubey, and R. Rosner, JFM

447, 377 (2001).
[12] P. N. Wilson and M. J. Andrews, Phys. Fluids 14, 938

(2002).
[13] A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Fiz. VI,

56 (1941).
[14] A. M. Obukhov, Dokl. Akad. Nauk SSSR 32, 22 (1941).
[15] U. Frisch, “Turbulence. The legacy of A. N. Kolmogo-

rov”, Cambridge University Press, 1995.
[16] B. I. Shraiman and E. D. Siggia, Phys. Rev. A 42, 3650

(1990).
[17] T. T. Clark and R. Ristorcelli, J. Fluid. Mech. 507, 213

(2004).
[18] D. A. Drew and S. L. Passman, Theory of multicompo-

nent fluids, Springer, N.Y., 1998.
[19] V. E. Zakharov and N. N. Filonenko, Dokl. Akad. Nauk

SSSR 170, 1292 (1966).
[20] G. Falkovich, V. S. Lvov, and V. E. Zakharov, Kol-

mogorov Spectra of Turbulence I, Springer, N.Y., 1992.
[21] A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett.

76, 3320 (1996); Physica D 135, 98-116 (2000).
[22] M. Berning and A. M. Rubenchik, Phys. Fluids 10, 1564

(1998).
[23] A. M. Obukhov, Izv. Akad. Nauk SSSR, Geogr. Geofiz.

13, 58 (1949).
[24] S. Corrsin, J. Appl. Phys. 22, 469 (1951).
[25] G. K. Batchelor, JFM 5, 113 (1959).
[26] R. H. Kraichnan, Phys. Fluids 11, 945 (1968).
[27] M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev,

Phys. Rev. E 51, 5609 (1995).
[28] R. Bolgiano, J. Geophys. Res. 64, 2226 (1959).
[29] A. M. Obukhov, Dokl. Akad. Nauk SSSR 125, 1246

(1959).


