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Diffusion coefficient of a particle diffusing near the interface of two
immiscible liquids varies when the particle crosses the interface. We show
how the problem of lateral diffusion in such a system can be reduced to
that of finding the distribution of the cumulative residence time spent by
the particle in one of the layers. The latter problem can be solved with
relative ease since the distribution is determined by the one-dimensional
motion in the direction normal to the interface. The approach is utilized
to find an exact solution for the Fourier–Laplace transform of the lateral
propagator, the effective medium approximation for this propagator, and
the time-dependent behavior of the lateral diffusion coefficient in several
special cases.

PACS numbers: 82.20.Fd, 05.40.–a

1. Introduction

Lateral diffusion in multilayer media plays an important role in different
biophysical problems [1–8]. Specific feature of lateral diffusion in such media
is that the lateral diffusion coefficient changes when the particle goes from
one layer to the other. In the present paper I continue our analysis of
lateral diffusion in multilayer media initiated in Ref. [9]. The major idea of
the approach developed in that reference is to reduce the problem of lateral
diffusion to that of finding the distribution of the cumulative residence times
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spent by the particle in different layers. The latter problem can be solved
with relative ease since the distribution is determined by the one-dimensional
motion of the particle in the direction normal to the layers.

Our analysis in Ref. [9] is mainly focused on a situation in which neigh-
boring layers are separated by membranes, and transitions between them
can be described by a kinetic scheme. This scheme is used to find the distri-
bution of the cumulative residence times. In the absence of the separating
membranes (i.e., formally when permeability of the membranes tend to in-
finity) the formalism based on the kinetic scheme fails, and another approach
should be used to find the distribution of the cumulative residence times and
then the lateral propagator and the lateral diffusion coefficient.

This is the subject of the present paper. In the next section we show
how this can be done for two semi-infinite layers of immiscible liquids when
a diffusing particle starts from the interface. One of the main results of
this section is an exact solution for the Fourier–Laplace transform of the
lateral propagator given in Eq. (9). This is derived using the expression
for the Fourier–Laplace transform of the propagator in terms of the double
Laplace transform of the probability density of the cumulative residence
time in Eq. (5) and the expression for the double Laplace transform of this
probability density in Eq. (8), which is derived in Appendix. The result
in Eq. (9) is then used to find the effective medium approximation for the
lateral propagator, Eq. (12), and the expression in Eq. (11), which gives the
effective lateral diffusion coefficient as a function of the particle diffusion
coefficients in the two layers. Some of the results obtained in Section 2 are
generalized in Section 3, where we also discuss the relation between lateral
and normal diffusion of the particle.

This paper deals with fluctuations of the diffusion coefficient due to the
particle transitions between the two layers with different viscosities. It is
worth noting that a more general problem of diffusion of Brownian particles
in a fluid with fluctuating viscosity has been studied recently by Talkner and
his colleagues Luczka, Hanggi, and Rozenfeld [10, 11].

2. Formalism

Consider a diffusing particle that starts from the interface of two semi-
infinite layers of immiscible liquids (Fig. 1). The system of coordinates is
chosen so that the particle starts from the origin, and the interface corre-
sponds to the plane z = 0. Layers with positive and negative values of the
z-coordinate will be referred to as layers 1 and 2, respectively. The parti-
cle diffusion coefficients in the two layers are denoted as D1 and D2. For
certainty we assume that D1 > D2.
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Fig. 1. Schematic representation of two semi-infinite layers of immiscible liquids.

The plane z = 0 corresponds to the separating interface.

The lateral propagator at time t depends on how much time the particle
has spent in each layer. If the cumulative residence time spent by the particle
in layer 1 is τ and the corresponding time spent in layer 2 is (t − τ), the
lateral propagator is

g(x|τ, t − τ) =
exp

(

− x2

4[D1τ+D2(t−τ)]

)

√

4π[D1τ + D2(t − τ)]
. (1)

Time τ is a random variable. Its distribution is determined by diffusion
along the z-coordinate. Let f(τ |t) be the probability density for time τ on
condition that the total observation time is t. The lateral propagator at
time t is the propagator in Eq. (1) averaged over τ

g(x, t) =

t
∫

0

g(x|τ, t − τ)f(τ |t)dτ . (2)

The Fourier transform of this propagator is given by

g(k, t) =

∞
∫

−∞

eikxg(x, t)dx =

t
∫

0

e−k2[D1τ+D2(t−τ)]f(τ |t)dτ . (3)

Introducing the double Laplace transform of the probability density f(τ |t)

f̂(λ|σ) =

∞
∫

0

e−σtdt

t
∫

0

e−λτf(τ |t)dτ , (4)

we can write the Laplace transform of the propagator in Eq. (3) in the form

ĝ(k, s) =

∞
∫

0

e−stg(k, t)dt = f̂(λ = (D1 − D2)k
2|σ = s + D2k

2) . (5)
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This expression shows that the Fourier–Laplace transform of the lateral
propagator is the double Laplace transform of the probability density f(τ |t)
with correctly chosen values of the transform parameters, λ = (D1 − D2)k

2

and σ = s + D2k
2.

Thus the problem of finding the lateral propagator can be reduced to
that of finding the transform f̂(λ|σ), which is a one-dimensional problem
that can be solved with relative ease. To find this transform assume that
being in layer 1 the particle annihilates with the rate λ. Then the particle
survival probability, Sλ(t), is given by

Sλ(t) =

t
∫

0

e−λτf(τ |t)dτ . (6)

The double transform of interest is the Laplace transform of the survival
probability

f̂(λ|σ) =

∞
∫

0

e−σtSλ(t)dt = Ŝλ(σ) . (7)

The Laplace transform Ŝλ(σ) is found in Appendix A. Using this transform
we obtain

f̂(λ|σ) = Ŝλ(σ) =

√
D1σ +

√

D2(λ + σ)
√

σ(λ + σ)
[

√

D1(λ + σ) +
√

D2σ
] . (8)

Since the transform f̂(λ|σ) is known, we can find the propagator in
Eq. (5), which can be written in the form convenient for further discussion

ĝ(k, s) =
1

s + k2

√
D3

1
(s+D2k2)+

√
D3

2
(s+D1k2)√

D1(s+D2k2)+
√

D2(s+D1k2)

. (9)

One can see that ĝ(0, s) = 1/s as it should be because of the probability con-
servation. Retaining the lowest order terms in small-s and small-k expansion
we obtain the effective medium approximation for the propagator

ĝEM(k, s) =
1

s + Deffk2
, (10)

where Deff is the effective diffusion coefficient given by

Deff =
D

3/2
1 + D

3/2
2

D
1/2
1 + D

1/2
2

. (11)
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Inverting the Fourier–Laplace transform in Eq. (10) we obtain

gEM(x, t) =
1√

4πDeff t
exp

(

− x2

4Defft

)

(12)

which is the effective medium approximation for the lateral propagator in
the x-, t-variables.

Effective diffusion coefficient in Eq. (11) has a transparent physical inter-
pretation. To show this we introduce the average time spent by the diffusing
particle in layer 1, τ̄ (t). Formally this time is defined by

τ̄(t) =

t
∫

0

τf(τ |t)dτ . (13)

The Laplace transform of this time can be written in terms of the double
transform f̂(λ|σ)

L {τ̄(t)} =

∞
∫

0

e−σtτ̄(t)dt = − ∂f̂(λ|σ)

∂λ

∣

∣

∣

∣

∣

λ=0

. (14)

Using the expression for f̂(λ|σ) in Eq. (8) we obtain

L {τ̄(t)} =
D

1/2
1

(

D
1/2
1 + D

1/2
2

)

σ2
. (15)

Inverting this transform we find

τ̄(t) =
D

1/2
1

D
1/2
1 + D

1/2
2

t . (16)

This allows us to write Deff in Eq. (11) in the form

Deff =
1

t
[D1τ̄(t) + D2(t − τ̄(t)] (17)

which represents Deff as a weighted sum of D1 and D2 with the weight factors
given by the fractions of the observation time that the diffusing particle has
spent in each layer.

When the particle starts from the interface of two semi-infinite layers, the
lateral diffusion coefficient is independent of time and given by the expression
in Eq. (11) for the entire range of time from zero to infinity. To see this,
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one can use the propagator in Eq. (9) to find the Laplace transform of the
mean-squared displacement 〈x2(t)〉 which is given by

L
{

〈x2(t)
}

= − ∂2ĝ(k, s)

∂k2

∣

∣

∣

∣

k=0

=
2Deff

s2
(18)

with Deff given in Eq. (11). Inverting this, one finds that 〈x2(t)〉 = 2Deff t
for all times.

In general, diffusion coefficients in non-uniform media are functions of
time. For example, when the particle starts not from the interface, its dif-
fusion coefficient is equal to the diffusion coefficient in the initial layer at
short times and approaches Deff as t → ∞. As another example consider the
case of layers of finite thickness, L1 and L2, respectively. Here the diffusion
coefficient of the particle, which starts from the interface, changes from Deff

in Eq. (11) at short times (when the particle does not feel that the layers
have finite thickness) to the long-time asymptotic value D∞ given by

D∞ =
D1L1 + D2L2

L1 + L2
. (19)

This is analogous to the expression for Deff in Eq. (17) in the sense that it
gives D∞ as a weighted sum of D1 and D2. Moreover, the weight factors,
L1/(L1 + L2) and L2/(L1 + L2), are the equilibrium probabilities of finding
the particle in each layer and, hence, fractions of the long observation time,
which the particle spends in the layers. We discuss transient behavior of the
diffusion coefficient in the next section.

3. Generalizations and discussion

In this section we discuss three generalizations of the results derived in
Section 2. We begin with the case when the particle starts not from the
interface. Suppose, it starts in layer 1 at distance z0 from the interface.
We derive the lateral diffusion coefficient of the particle as a function of
time. The result can be obtained following the way discussed in Section 2.
Instead we use another approach which is simpler because it deals with the
mean-squared displacement, 〈x2(t|z0)〉, and not with the propagator.

Let ϕ(t|z0) be the probability density of the first passage time from
z0, z0 > 0, to the interface

ϕ(t|z0) =
z0√

4πD1t3
exp

(

− z2
0

4D1t

)

. (20)

Then

Φ(t|z0) =

∞
∫

t

ϕ(t′|z0)dt′ = erf

(

z0√
4D1t

)

, (21)
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where erf(z) is the error function [12], is the probability that the particle
has spent the observation time t in layer 1. Using these two functions we
can write the mean-squared displacement as

〈x2(t|z0)〉 = 2D1tΦ(t|z0) + 2

t
∫

0

ϕ(t′|z0)[D1t
′ + Deff(t − t′)]dt′ (22)

and explicitly

〈x2(t|z0)〉 = 2Deff t + 2(D1 − Deff)

t
∫

0

erf

(

z0√
4D1t′

)

dt′ . (23)

We define the time-dependent diffusion coefficient, D(t|z0), by

D(t|z0) =
1

2

d〈x2(t|z0)〉
dt

. (24)

Substituting here 〈x2(t|z0)〉 given in Eq. (23) we obtain

D(t|z0) = Deff + (D1 − Deff)erf

(

z0√
4D1t

)

. (25)

This describes transient behavior of the lateral diffusion coefficient, which
varies from D1 to Deff as t goes from zero to infinity.

Now we generalize the results obtained in Section 2 to the case of finite
thickness of the layers. We denote the thickness by L1 and L2 and assume
that the planes z = L1 and z = −L2 may be considered as reflecting bound-
aries. We also assume that the particle starts from the interface at z = 0.
We again can find the double Laplace transform of the probability density
of the cumulative residence time in layer 1 following the way discussed in
Appendix. This leads to

f̂(λ|σ)=

√
D1σ coth

(
√

σ
D2

L2

)

+
√

D2(λ + σ) coth
(√

λ+σ
D1

L1

)

√

σ(λ+σ)
[

√

D1(λ+σ) coth
(
√

σ
D2

L2

)

+
√

D2σ coth
(√

λ+σ
D1

L1

)] .

(26)

When L1 and L2 tend to infinity this f̂(λ|σ) takes the asymptotic form given
in Eq. (8).

The double Laplace transform in Eq. (26) can be used to find the Fourier–
Laplace transform of the propagator by means of Eq. (5). Then the trans-
form of the propagator, in its turn, can be used to find the Laplace transform
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of the time-dependent diffusion coefficient, D(t), by the relation

D̂(s) = −1

2

∂3ĝ(k, s)

∂k2∂s

∣

∣

∣

∣

k=0

. (27)

This leads to

D̂(s) =
D

3/2
1 tanh

(
√

s
D1

L1

)

+ D
3/2
2 tanh

(
√

s
D2

L2

)

s
[

D
1/2
1 tanh

(
√

s
D1

L1

)

+ D
1/2
2 tanh

(
√

s
D2

L2

)] . (28)

The particle does not feel the presence of the boundaries at short times,
and its lateral diffusion coefficient is equal to Deff given in Eq. (11). One

can see this from Eq. (28) since D̂(s) = Deff/s as s → ∞. The diffusion
coefficient approaches its asymptotic value D∞ given in Eq. (19) as t → ∞.

This follows from the small-s behavior of D̂(s) in Eq. (28), D̂(s) ≈ D∞/s
as s → 0. Inverting the transform in Eq. (28) numerically one can find
transient behavior of D(t) over the entire range of time.

The formalism developed in Section 2 can be generalized to the case
when the particle annihilates with the rates γ1 and γ2 in layers 1 and 2,
respectively. In this case the propagator in Eq. (1) should be replaced by

g(x|τ, t − τ) =
exp

(

− x2

4[D1τ+D2(t−τ)] − γ1τ − γ2(t − τ)
)

√

4π[D1τ + D2(t − τ)]
. (29)

The Fourier–Laplace transform of this propagator averaged over τ again can
be expressed in terms of the double Laplace transform of f(τ |t). The result
is

ĝ(k, s) = f̂(λ = (D1 − D2)k
2 + γ1 − γ2|σ = s + D2k

2 + γ2) , (30)

where f̂(λ|σ) is given in Eq. (8). Taking small-s and small-k limit of this
propagator and inverting the result we obtain the effective medium approx-
imation for the propagator

gEM(x, t) =
1√

4πDeff t
exp

(

− x2

4Deff t
− γefft

)

. (31)

Here γeff is the effective annihilation rate given by

γeff =
1

t
[γ1τ̄(t) + γ2(t − τ̄(t)] =

γ1D
1/2
1 + γ2D

1/2
2

D
1/2
1 + D

1/2
2

, (32)
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where we have used the result for the average residence time τ̄(t) given in
Eq. (16). The propagator in Eq. (31) is a generalization of the propagator
in Eq. (12) to the case of diffusion in absorbing media.

Finally, we compare lateral diffusion of the particle with that in the
direction normal to the interface separating two semi-infinite layers of im-
miscible liquids (Fig. 1) assuming that the particle starts from the interface.
The particle propagator in the direction normal to the interface, Gz(z, t), is
given by

Gz(z, t) =
exp

(

− z2

4D1t

)

H(z) + exp
(

− z2

4D2t

)

H(−z)
√

πt
(√

D1 +
√

D2

) , (33)

where H(z) is the Heaviside step function. Note that the average time
spent by the particle in layer 1, τ̄(t), given in Eq. (16) can be found using
the propagator in Eq. (33) by the relation [13]

τ̄(t) =

t
∫

0

dt′
∞

∫

0

Gz(z, t′)dt′ =
D

1/2
1

D
1/2
1 + D

1/2
2

t . (34)

In contrast to the lateral diffusion the average displacement in normal di-
rection, 〈z(t)〉, is not equal to zero and is given by

〈z(t)〉 =

∞
∫

−∞

zGz(z, t)dz =
2√
π

(

D
1/2
1 − D

1/2
2

)√
t . (35)

However, the second moments of the displacement in both directions are
equal to

〈z2(t)〉 =

∞
∫

−∞

z2Gz(z, t)dz = 2Deff t = 〈x2(t)〉 . (36)

One can easily find and compare higher moments of the displacement in
both directions using the propagators in Eqs. (9) and (33).

In summary, in this paper we analyze lateral diffusion near the interface
of two immiscible liquids. The approach we use is based on the reduction
of the problem of lateral diffusion to that of finding the distribution of the
cumulative residence time spent by the diffusing particle in one of the layers.
The latter problem can be solved with relative ease since the distribution is
determined by the one-dimensional motion of the particle in the direction
normal to the layers.
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Appendix A

The Laplace transform of the survival probability Sλ(t)

To find the Laplace transform of the survival probability Sλ(t) consider
the particle diffusion along the z-coordinate assuming that the particle an-
nihilates with the rate λ when z > 0. The particle survival probability Sλ(t)
can be written in terms of its Green’s function, Gλ(z, t), which satisfies

∂Gλ

∂t
=

∂

∂z

{

[D1H(z) + D2H(−z)]
∂Gλ

∂z

}

− λH(z)Gλ , (A.1)

where H(z) is the Heaviside step function. The Green’s function vanishes
as |z| → ∞ and approaches δ(z) as t → 0. The survival probability is given
by

Sλ(t) =

∞
∫

−∞

Gλ(z, t)dz . (A.2)

The Laplace transform of the propagator

Ĝλ = Ĝλ(z, σ) =

∞
∫

0

e−σtGλ(z, t)dt (A.3)

satisfies

σĜλ − δ(z) =
d

dz

{

[D1H(z) + D2H(−z)]
dĜλ

dz

}

− λH(z)Ĝλ . (A.4)

Solving this equation we find

Ĝλ =
exp

(

−
√

λ+σ
D1

z
)

H(z) + exp
(
√

σ
D2

z
)

H(−z)
√

D1(λ + σ) +
√

D2σ
. (A.5)
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Using this solution we obtain

Ŝλ(σ) =

∞
∫

−∞

Ĝλ(z, σ)dz =

√
D1σ +

√

D2(λ + σ)
√

σ
√

λ + σ
[

√

D1(λ + σ) +
√

D2σ
] . (A.6)

This allows us to find the double transform f̂(λ|σ) given in Eq. (8).
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