Geometric Dissections
 Now Swing and Twist

Greg N. Frederickson

Dept. of Computer Science
Purdue University
West Lafayette, Indiana

An equilateral triangle to a square:

Dissection (4 pieces)
[Henry Dudeney (or Charles McElroy?) 1902]:

2

Strip of equilateral triangles

"I add an illustration showing the puzzle in a rather curious practical form, as it was made in polished mahogany with brass hinges for use by certain audiences. It will be seen that the four pieces form a sort of chain, and that when they are closed up in one direction they form the triangle, and when closed in the other direction they form the square."

$+$ Strip of squares	Outline Introduction Swing-hinged dissections from Tessellations T-Strips Completing the tessellation Polygon structure Twist-hinged dissections from Converting swing hinges Parallelogram twist Completing the pseudo-tessellation Conclusion
Some History Standard Dissections	Swing-Hinged Dissections Philip Kelland 1864 ? Henry Taylor 1905 Henry Dudeney 1907 Robert Yates 1949 Harry Lindgren 1960 \ldots Akiyama + Nakamura 1998,2000 GNF $1997-2000$ Twist-Hinged Dissections Erno Rubik 1983 E. Lurker, Wm. Esser 1984,1985 GNF $1999-2000$

Based on my recent book (2002):

http://www.cs.purdue.edu/homes/gnf/book2.html

Also see my first book (1997):

http://www.cs.purdue.edu/homes/gnf/book.html

Swing Hinged Dissections From

Superposing Tessellations

A regular dodecagon to a square:

Swing-hingeable dissection (8 pieces)
[GNF, 1997]:

Swing-hinged pieces: dodecagon to square

Creating a hinged tessellation element for a dodecagon:

Tessellation of dodecagons

A symmetry point of a tessellation is a point about which there is rotational symmetry.

Let \mathcal{T}_{1} and \mathcal{T}_{2} be superposed so that points of intersection between line segments are at symmetry points.

The superposition is proper intersecting if \mathcal{T}_{1} and \mathcal{T}_{2} share no line segments of positive length.

Theorem. Let \mathcal{T}_{1} and \mathcal{T}_{2} be two tessellations of hinged elements that have a superposition that is proper intersecting. Then the induced dissection is hingeable.

Swing Hinged Dissections From

Crossposing T-Strips

A regular hexagon to a Greek cross:

Swing-hingeable dissection (8 pieces) [GNF, 1999]:

Swing-hinged pieces: hexagon to cross

Cyclicly hinged

Twinned strip element for a hexagon:

Twinned strip element for a Greek cross:

An anchor point is a point of 2-fold rotational symmetry shared by two consecutive elements in the T-strip.

Theorem. Let \mathcal{S}_{1} and \mathcal{S}_{2} be two strips of hinged elements. If \mathcal{S}_{1} and \mathcal{S}_{2} are crossposed so that points of intersection between line segments are where
two anchor points coincide,
an anchor point falls on a strip boundary, or two strip boundaries cross,
then the induced dissection is hingeable.

Swing-hingeable dissection (7 pieces) [GNF, 1999]:

Swing-hinged pieces: octagon to a square

A hexagram to two regular hexagons:

Swing-hinged dissection (6 pieces) [GNF, 1999]:

Twist Hinges - An Example

Ellipse to a heart
[William Esser, III, 1985]:
(similar to Ernst Lurker, 1984)

twist hinge

- on the interior of a shared edge
- rotation perpendicular to the edge

Twist Hinged Dissections from

Converting Swing Hinges

Return to equilateral triangle to square:

Use isosceles triangles at hinge points:

Two pieces that are connected by a swing hinge are hinge-snug if they are adjacent along different line segments in each of the figures formed, and each such line segment has one endpoint at the hinge.

Theorem. Let \mathcal{D} be a swing-hingeable dissection such that each pair of pieces connected by a hinge is hinge-snug. We can then replace each swing hinge with a new piece and two twist hinges, so that the resulting dissection \mathcal{D}^{\prime} is twist-hingeable.

Twist-hingeable dissection (7 pieces) [GNF, 1999]:

Twisting: intermediate configurations

33

Return to a hexagram to two hexagons:

Use an isosceles triangle at each hinge point:

Copy the isosceles triangles:

Twist-hingeable (6 pieces) [GNF, 1999]:

A hinged assemblage is hinge-reflective if when we flip all pieces in this hinged assemblage on to their other side, then there is no effective change to the whole hinged assemblage.

Theorem. Let hinged dissection \mathcal{D} have two hinge-snug pieces, such that the hinged assemblage on one side of the swing hinge is hingereflective. Then we can modify the two pieces and replace the swing hinge with a twist hinge.

Twist Hinged Dissections From

Parallelogram Twist

Change length of parallelogram:

Twist-hingeable Dissection (4 pieces) [GNF, 1999]:

Theorem. The P-twist can convert a parallelogram with sides a and $b \leq a$ and nonacute angle θ to any parallelogram with the same nonacute angle and a side from a up to, but not including, $a+\sqrt{a^{2}+b^{2}-2 a b \cos \theta}$.

In particular, the P-twist works for rectangles. $\left(\theta=90^{\circ}\right)$

Twist Hinged Dissections From

Completing the Pseudo-Tessellation

41

Return to octagon to square:

Tessellation of octagons and little squares

$+$
Tessellation of big and little squares

Overlaying octagon and square:

Twist-hinged dissection (9 pieces) [GNF, 1999]:

Let $\{p\}$ be a regular polygon with p sides.

Theorem. Completing the pseudo-tessellation gives a ($2 p+1$)-piece twist-hingeable dissection of a $\{2 p\}$ to a $\{p\}$.

hexagon to triangle
octagon to square
decagon to pentagon

Let $\{p / q\}$ be a star with p points (vertices), where each point is connected to the q-th points clockwise and counterclockwise from it.

Theorem. Completing the pseudo-tessellation gives a ($2 p+1$)-piece twist-hingeable dissection of a $\{p / q\}$ to a $\{p\}$ whenever $p \geq 3 q-1$.
$\{5 / 2\}$ to pentagon
\{6/2\} to hexagon
$\{7 / 2\}$ to heptagon
\{8/2\} to octagon
$\{8 / 3\}$ to octagon

Improve hexagram to hexagon:

Tessellation of hexagrams and triangles

48

Add twists onto a hexagram to a hexagon:

Twist-hinged dissection (10 pieces) [GNF, 2000]:

A surprise by Gavin Theobald! - one more isosceles triangle:

Twist-hinged dissection (9 pieces) [Gavin Theobald, 2002]:

50

General Thoughts

Hardness Issues

Theorem. (Hearn, Demaine, Frederickson)

Given a dissection, a hinging, and two convex hinged configurations, it is PSPACE-hard to determine whether it is possible to move from one configuration to the other.
(By reduction from the PSPACE-complete problem of nondeterministic constraint logic)

Is a twist-hingeable dissection possible?

Conclusion

Hinged dissections:

- explore interaction of geometry + motion
- give insight into symmetry + tessellations
- synthesize aspects of CS, MATH, + ME
- provide enrichment in math education
- are lots of fun!

What's Next?

Piano-Hinged Dissections: Time to Fold
completed manuscript,
320 pages, August 2004.

To use piano hinges,
"2-D" dissections need two levels:

Two pieces side by side (on the same level):

One piece on top of the other (on different levels):

Fold-hinged dissection (20 pieces)
[GNF, 2001]:

62

View of fold-hinged pieces for the pentagram:

Note: Will NOT fold to a planar net!

Theorem. For any natural number n, there is an $(8 n+4)$-piece piano-hinged dissection of two $\{(2 n+1) / n\} \mathrm{s}$ to a $\{(4 n+2) /(2 n-1)\} \mathrm{s}$.

There are many lovely examples
of piano-hinged dissections

- but that's another talk which will have to wait until next time!

Appreciation To:

Walt and Chris Hoppe -
Laser cutting wood and plexiglas models for the overhead projector

Wayne Daniel -
Crafting precise wooden models with real hinges

