# Status of the U.S. Plutonium Disposition Program

#### L. J. Ott Oak Ridge National Laboratory

#### **Presented to**

#### OECD/NEA Expert Group on Reactor-Based Plutonium Disposition May 15-16, 2003

**OAK RIDGE NATIONAL LABORATORY** U. S. DEPARTMENT OF ENERGY



ORNL 2003-141C EFG

## **Outline of Presentation**

- Status of U.S. Plutonium Disposition
  Program
- Update on DOE MOX Fuel (Pu from weapons components) Irradiation Experiment



**OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY** 

ORNL 2003-160C EFG

## **Preferred Domestic U.S. Option\***

- MOX-based reactor disposition with high quality Pu (some material, formerly slated for immobilization, purified in enhanced MOX Fuel Fabrication Facility)
  - All 34 MT of U.S. plutonium to be converted to MOX and irradiated
  - No immobilization [Plutonium Immobilization Plant (PIP) canceled]
  - Total life cycle cost implemented over 20 years: ~\$3.84 billion
    - Pit Disassembly and conversion Facility (PDCF): ~1.69 billion
    - MOX FFF: ~\$2.15 billion
  - Savings of ~\$2-3 billion from March 2001 cost report
    - Elimination of PIP
    - Optimized PDCF
    - Shortened operating lifetimes
  - Peak yearly funding reduced by sequential construction of MFFF and PDCF
  - Results in removal from SRS of **all** surplus defense plutonium
  - Facilitates closure of Rocky Flats Plant by 2006 and removal of Pu from other DOE sites

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

\*NNSA report submitted to Congress February 15, 2002



## **U.S. Pu Disposition Program**

- Pit Disassembly and Conversion Facility
  - To be built at the SRS
  - Completion of design: 2004
  - Equipment procurement and site preparation: 2005-2006
  - Start of construction: 2006
  - Startup: 2009
  - Industrial-scale operation: 2010-2017
- MOX Fuel Fabrication Facility
  - To be built at the SRS (DOE's January 2000 ROD)
  - A consortium of Duke, COGEMA, Stone & Webster (DCS) will design, construct, and operate the facility
  - Completion of design 2003
  - Start of construction 2004
  - Start-up 2007
  - Industrial-scale operation 2008
- MOX fuel qualification
- MOX FFF licensing



## **U.S. Pu Disposition Program**

#### **MOX Fuel Fabrication Facility (MFFF)**

- Quality Assurance (QA) plan
  - Submitted by DCS June 2000
  - Approved by NRC October 2001
  - Revision 3 submitted by DCS March 2002
  - Revision 3 approved by NRC January 2003
- Environmental Report (ER)
  - Submitted by DCS December 2000
  - NRC public scoping meetings April 2001
  - NRC EIS scoping document issued August 2001
  - Updated ER submitted by DCS July 2002
  - NRC issued draft EIS for public comment February 2003
  - Target date for final EIS September 2003
- Construction Authorization Request (CAR)
  - Application submitted by DCS February 2001
  - Draft SER issued April 2002
  - Updated CAR submitted by DCS October 2002
  - Target date for final SER September 2003
  - Target date for licensing decision September 2003
  - Start of construction (if authorized) October 2003



## U.S. Pu Disposition Program MOX Fuel Qualification

- FANP as subcontractor to DCS
- July 2000, MOX fuel qualification plan (FQP) submitted to NRC
- July 2000, MOX LA project at LANL canceled
- April 2001, revised FQP submitted to NRC
- Lead Assemblies (LA)
  - Fabricate LAs in Europe with U.S. PuO<sub>2</sub>
  - Insertion in McGuire NPP in Spring 2005



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

ORNL 2003-145C EFG

## **U.S. Pu Disposition Program**

- Estimated life cycle costs for PDCF and MFFF are ~\$3.8 billion (including credits for LEU fuel displaced by MOX fuel)
- Revised approach
  - Focus on MOX/irradiation key to bilateral agreement with R.F.
  - Sequential design and construction of major U.S. facilities
    - Proceed with MFFF design
    - Followed by PDCF design
  - Completes disposition mission within original timeframe and supports U.S./R.F. agreement



## **RF Design for MOX Fuel Facility Being Integrated with DCS Design Efforts**

- Build-to-print design concept was accepted by RF in Fall of 2002
- Current efforts (TVEL/ORNL/DCS contract) are focused on obtaining a licensed RF MFFF design patterned after the DCS plant\*

\*which is patterned after the French MELOX plant



#### NRC Has Established a Website Containing Current Information on Licensing Activities for the MFFF

- August 2000, NUREG-1718 (Standard Review Plan for MFFF) issued by NRC
- March 2002, NRC web-site for MOX licensing activities http://www.nrc.gov/materials/fuel-cycle-fac/mox/licensing.html
- Links for
  - License applications
  - NRC staff guidance documents
  - MOX fuel newsletter
  - Frequently asked questions
  - Upcoming meetings
  - Mechanism for providing public comment
  - Additional information



## **Summary of U.S. Program Status**

- All facets of U.S. Disposition Program (MFFF, fuel qualification, etc.) appear to be on schedule
- No significant changes in scope or direction of program





#### **Update** on Mixed-Oxide (MOX) Fuel Irradiation Demonstration for the U.S. Department of Energy Fissile Materials Disposition Program (FMDP)

Purpose: Demonstrate Satisfactory Performance of MOX Fuel Fabricated From Weapons Components. Focus on Evaluation of Possible Impacts of Source Material Impurities – Principally Gallium.

Background: Weapons-Derived Plutonium Differs From Reactor-Grade Material in Isotopic Content. Also, the Level of Impurities (Additives For Weapons Purposes) Differs from European Experience.

- Plutonium From Dismantled Weapons Components (High Concentration of <sup>239</sup>Pu)
- Fuel Pellets Made at Los Alamos to PWR Dimensions
- Fuel Pins and Test Assembly Designed at ORNL
- Assembled and Irradiated at the Advanced Test Reactor (ATR) at Idaho
  - Eleven Fuel Pins Irradiated
  - 9.5 inch Rod Length 15 Pellets per Rod (6 inch Active Fuel Length)
- Periodic Post-Irradiation Examinations (PIE) at ORNL Hot Cells (Building 3525)



## PIEs Completed on 8 of 11 Irradiated Capsules

- ~8.6 GWd/MT burnup
  - Final report; ORNL/MD/LTR-172, November 1999
- ~21 GWd/MT burnup
  - Final report; ORNL/MD/LTR-199, December 2000
- ~30 GWd/MT burnup
  - Final report; ORNL/MD/LTR-212, Vol. 1, October 2001
  - "Implications of the PIE Results...," ORNL/MD/LTR-212, Vol. 2, November 2001
- ~40 GWd/MT burnup
  - Final report; ORNL/MD/LTR-241, Vol. 1, June 2003
  - "Implications of the PIE Results...," ORNL/MD/LTR-241, Vol. 2, July 2003



## Linear Heat Generation Rates (LHGRs) in the MOX Test Irradiation Exceed the U.S. PWR Average

U.S. PWRs:

- Average power: 17-22 kW/m
- Peak axial power in average power rod: 21-28 kW/m

**Disposition Mission Fuel:** 

• < 20 kW/m

WG MOX Tests:

Average as-run LHGRs (kW/m)for withdrawn capsules

|         | Irradiation<br>Phase | EFPDs | 8.6 GI | Nd/MT | 21 GV | Vd/MT | 30 GI | Nd/MT | 40 G  | Wd/MT |
|---------|----------------------|-------|--------|-------|-------|-------|-------|-------|-------|-------|
| Capsule |                      |       | 1      | 8     | 2     | 9     | 3     | 10    | 4     | 13    |
|         | I.                   | 154.9 | 27.03  | 27.10 | 26.02 | 26.54 | 25.75 | 26.48 | 19.23 | 19.36 |
|         | П                    | 227.7 |        |       | 26.87 | 27.13 | 26.51 | 27.23 | 29.49 | 29.89 |
|         | III-Part 1           | 232.4 |        |       |       |       | 17.72 | 18.27 | 18.60 | 18.80 |
|         | IV-Part 1            | 289.1 |        |       |       |       |       |       | 16.99 | 17.09 |
| FGR (%) |                      |       |        |       | 1.33  | 1.89  | 1.47  | 2.29  | 7.63  | 8.46  |

- Many more thermal cycles than normal commercial experience
- Capsules 4 and 13: 3 cycles in Phase II (84.8 EFPDs) at LHGRs of 32.8–35.4 kW/m



## Test Capsules 5, 6, and 12

- Irradiation to be completed in January of 2004
  - Capsule 5
    - ~1465 EFPDs and ~49.8 GWd/MT burnup
  - Capsules 6 and 12
    - ~1310 EFPDs and ~50.4 GWd/MT burnup
- Average as-run LHGRs (kW/m) for 50 GWd/MT capsules

|         | Irradiation |       |       |       |       |
|---------|-------------|-------|-------|-------|-------|
|         | Phase       | EFPDs |       |       |       |
| Capsule |             |       | 5     | 6     | 12    |
|         | l I         | 154.9 | 19.95 | —     | —     |
|         | II          | 227.7 | 23.12 | 24.98 | 25.30 |
|         | III-Part 1  | 232.4 | 17.85 | 19.00 | 19.23 |
|         | III-Part 2  | 113.1 | 13.29 | 20.81 | 21.23 |
|         | IV-Part 1   | 289.1 | 13.58 | 17.78 | 17.94 |
|         | IV-Part 2   | 110.2 | 16.56 | 19.02 | 19.25 |
|         | IV-Part 3*  | 337.4 | 13.04 | 14.28 | 14.38 |

\*4 of 8 cycles are based on projected values



#### The MOX Test Irradiation Is Ideal for Revealing Any Effects of Gallium Because There Is No Masking by Hydride-Induced Clad Damage

- Without hydrides, have only effects of fast flux
  - Similar to cold-working
  - Irradiated clad should withstand uniform strain of 3%–5%
- MOX test claddings
  - Have no hydrides
  - Prototypic integrated fast flux
  - 0.6 to 4.8 ppm gallium in fuel
  - Clad tensile stress (in ORNL hot cells)



**OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY** 

ORNL 2003-154C EFG

#### **ORNL Has Developed an Improved Loading Concept for Ductility Testing of the MOX Irradiation Cladding Specimens**

- Compression of a polyurethane plug fitted inside a short cladding ring specimen
  - Forces expansion similar to swelling of fuel
  - Produces essentially uniform wall stress
- Several specimen prep/testing simplicities
  - No specimen machining
  - Strain is uniform around clad ring
  - Circumferential strain is simply the diameter increase divided by the initial diameter

Force Ram **Polyurethane** Plug Zirc Specimen **Support Post** 



#### **Strain Is Measured Continuously Via Proximity Probes that Do Not Touch the Specimen**



**OAK RIDGE NATIONAL LABORATORY** U. S. DEPARTMENT OF ENERGY



ORNL 2003-156C EFG

## **Component Assembly Is Straightforward and Readily Adaptable for Use With Hot-Cell Manipulators**



#### **OAK RIDGE NATIONAL LABORATORY** U. S. DEPARTMENT OF ENERGY



ORNL 2003-157C EFG

## Conditions at the Pellet-Clad Interface Are of Interest for the 40 GWd/MT PIE



Fuel Pin 16 – Pellet 15 – Upper Surface – Mount 6225

**OAK RIDGE NATIONAL LABORATORY** U. S. DEPARTMENT OF ENERGY



ORNL 2003-158C EFG

### Pellet-Clad Interface 4:00 ↔ 5:30



Fuel Pin 16 – Pellet 15 – Upper Surface – Mount 6225





ORNL 2003-159C EFG

#### This WG-MOX Fuel Exhibits Normal Swelling, Densification, and Fission Gas Release.

**Important Findings:** 

- 1. Outward clad creep due to lack of external coolant pressure.
- 2. Slight difference between TIGR-treated and non-TIGR-treated MOX fuel performances. (clad creep and FGR)
- 3. Gamma scans and burnup analyses are in accordance with MCNP code predictions. Observed fuel swelling is as expected from CARTS and FRAPCON-3 code predictions.
- 4. The gas release fraction (implied from pressure and <sup>85</sup>Kr activity measurements) is slightly below expectations based on the European MOX experience.
- 5. Pellet densification is prototypic of commercial MOX fuel. (~2%)
- 6. Clad outward creep is about 0.015 mil per GWd/MT of burnup.
- 7. No evidence of gallium migration to the clad.
- 8. This test fuel prepared with weapons-derived plutonium is behaving as expected.

