

Evaluation of the Tone Fan Noise Design/ Prediction System (TFaNS) at the NASA Glenn Research Center

L. Danielle Koch Glenn Research Center, Cleveland, Ohio Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peerreviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized data bases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at *http://www.sti.nasa.gov*
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076

Evaluation of the Tone Fan Noise Design/ Prediction System (TFaNS) at the NASA Glenn Research Center

L. Danielle Koch Glenn Research Center, Cleveland, Ohio

National Aeronautics and Space Administration

Glenn Research Center

December 1999

Acknowledgments

I would like to recognize Dr. Edmane Envia for his kind guidance in preparing this report and for use of pertinent graphics, data, and analysis results.

Available from

NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076 Price Code: A03 National Technical Information Service 5285 Port Royal Road Springfield, VA 22100 Price Code: A03

Evaluation of the <u>Tone Fan</u> <u>Noise Design/Prediction System</u> (TFaNS) at the NASA Glenn Research Center

L. Danielle Koch National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135

Abstract

Version 1.4 of TFaNS, the Tone Fan Noise Design/Prediction System, has recently been evaluated at the NASA Glenn Research Center. Data from tests of the Allison Ultra High Bypass Fan (UHBF) were used to compare to predicted farfield directivities for the radial stator configuration. There was good agreement between measured and predicted directivities at low fan speeds when rotor effects were neglected in the TFaNS calculations. At higher fan speeds, TFaNS is shown to be useful in predicting overall trends rather than absolute sound pressure levels.

Introduction

The interaction of fan wakes with downstream stator vanes is a significant source of tone noise in modern turbofan engines. Accurate fan noise prediction codes are invaluable tools for engineers working to minimize tone noise through changes in blading and duct geometry. Until noise predictions can be generated quickly using computational aeroacoustic methods, system predictions that couple results from source and radiation codes are currently the design engineer's only alternative to more simple approaches. TFaNS, the Tone Fan Noise Design/Prediction System, is one such code that has recently been evaluated at the NASA Glenn Research Center and results of that evaluation will be presented here.

TFaNS was developed by Pratt and Whitney under contract to the NASA Glenn Research Center. It is a suite of coupled codes for computing upstream and downstream propagating sound pressure levels, as well as far-field directivities. TFaNS consists of five main computer codes: AWAKEN: CFD/Measured Wake Postprocessor Version 1.0, SOURCE3D: Rotor Wake/Stator Interaction Code Version 2.5, Eversman Inlet Radiation Code Version 3.0, Eversman Aft Radiation Code Version 3.1, and CUP3D: Fan Noise Coupling Code Version 2.1.

SOURCE3D is a modified version of the BBN/V072 Rotor Wake/Stator Interaction Code. Both codes are well documented in References 1-5. Both SOURCE3D and V072 model the blades as twisted flat plates and the duct as a constant area annulus. V072 assumes axial flow through the duct while SOURCE3D can include solid body swirl in the region between the rotor and the stator. Unlike V072, SOURCE3D creates rotor and stator acoustic properties files, which are needed as input into the CUP3D program. The acoustic properties files contain rotor and stator scattering coefficients and source vector mode amplitudes for noise emanating from the stator (References 6-7).

Both of the Eversman Radiation Codes have also been modified to work within TFaNS. The TFaNS version of the inlet and aft radiation codes are able to run multiple modes and harmonics assuming unit mode amplitude input. Acoustic properties files are also output for use in the CUP3D program. The Eversman Radiation Codes are well documented, and the reader is advised to look to Reference 2 for more detailed information.

The two remaining codes are unique to TFaNS. CUP3D is a program that will couple the results from isolated blade row and radiation codes. AWAKEN is a tool that will create the SOURCE3D input file if the user chooses to input wake data from either CFD predictions or from measurements rather than using the wake models available in the SOURCE3D program.

The evaluation conducted at the NASA Glenn Research Center compares results from the latest version of TFaNS (Version 1.4) to experimental data collected from the Allison Ultra High Bypass Fan (Reference 8). Three conditions were studied: approach, cutback, and takeoff. Comparisons were also made to predictions made earlier by Envia and Nallasamy (Ref. 9) and to results from the previous version of TFaNS (Version 1.3).

Modeling

The Ultra High Bypass Fan, a low tip speed fan stage designed by Allison for NASA Glenn Research Center, was used in this study. This fan had four stator configurations and experiments were conducted to study the effect of swept and leaned stator vanes. For the study presented here, only the baseline configuration with radial vanes in the forward position was modeled with TFaNS. A schematic of this baseline configuration can be seen in Figure 1, which also shows the bounds of the computational domains. Coordinates defining the flowpath were taken from Table I and from Figures 39 and 40 of Reference 10.

Care was taken in creating the input files for SOURCE3D and the inlet and aft radiation programs. To simplify the duct geometry as required by the SOURCE3D code, the real duct geometry was modeled as a constant area annulus. The inner and outer radii of that annulus were set equal to the values of the stator leading edge hub and tip positions, respectively. This was the most reasonable choice considering the significant area change along the flowpath and the fact that the source region was located at the stator leading edge.

Interface planes upstream and downstream of the rotor and stator must be specified within the SOURCE3D input file in order to create the acoustic elements needed by CUP3D. An arbitrary reference plane was established at the stator leading edge and the duct radius there, used in non-dimensionalization, was 11.00 inches. Interface Plane 1 was chosen to be 1.00 inch upstream of the rotor leading edge. Interface Plane 2, located between the rotor and the stator, was 1.397 inches upstream of the stator leading edge, and Interface Plane 3 was chosen to be downstream of the stator trailing edge, 2.734 inches from the reference plane (Figure 1).

Two inlet and one exhaust mesh were created for the forward and aft radiation portions of this problem. The input plane for the first inlet mesh was coincident at Interface Plane 1 described above (Figures 2a, 2b, and 2c). This mesh was used for cases for which the presence of the rotor acoustic element was taken into account. The input plane for the second inlet mesh was coincident at Interface Plane 2 and was used for cases coupled without the rotor acoustic element (Figures 3a, 3b, and 3c). Only one exhaust mesh was used in all coupling cases, and the input plane for this mesh was coincident at Interface Plane 3 (Figures 4a, 4b, and 4c).

Figure 1. Ultra High Bypass Fan Baseline Configuration and Computational Domain Boundaries

Figure 2a. Inlet Mesh with Input Plane Upstream of the Rotor Leading Edge; Detail of Mesh Within the Duct

Figure 2b. Inlet Mesh with Input Plane Upstream of the Rotor Leading Edge; Detail of Mesh Near the Duct

Figure 2c. Inlet Mesh with Input Plane Upstream of the Rotor Leading Edge; Detail of the Farfield Mesh

Figure 3a. Inlet Mesh with Input Plane Between the Rotor and the Stator; Detail of Mesh Within the Duct

Figure 3b. Inlet Mesh with Input Plane Between the Rotor and the Stator; Detail of Mesh Near the Duct

Figure 3c. Inlet Mesh with Input Plane Between the Rotor and the Stator; Detail of the Farfield Mesh

Figure 4a. Exhaust Mesh with Input Plane Downstream of the Stator Trailing Edge; Detail of Mesh Within the Duct

Figure 4b. Exhaust Mesh with Input Plane Downstream of the Stator Trailing Edge; Detail of Mesh Near the Duct

Figure 4c. Exhaust Mesh with Input Plane Downstream of the Stator Trailing Edge; Detail of the Farfield Mesh

Results

Comparisons of predicted sound pressure level sideline directivities to measurements are shown in Figures 5-7. Results from CUP3D had to be post-processed since noise at a constant radius rather than at a specified sideline are normally written to the output file. Two sets of data are shown in each of the plots—tone data and the broadband noise level at 2 BPF measured at a sideline 88 inches from the fan centerline. All predictions should be clipped at the broadband levels indicated since tone noise below these levels are unrealistic. Comparisons are presented for three operating conditions: takeoff, cutback, and approach. The rotor speed for each case is 9013 rpm, 7291 rpm, and 5206 rpm, respectively.

The graphs in Figure 5 compare the 2 BPF measurements, the predictions from Envia and Nallasamy reported in Reference 9, and the TFaNS (Version 1.4) predictions. The predictions by Envia and Nallasamy are labeled "V072 + Eversman" in the graphs since they were generated by combining the results from V072 and the stand-alone versions of the Eversman radiation codes. The effects of the rotor were neglected in these TFaNS (Version 1.4) calculations.

Comparison of the three graphs in Figure 5 show that the best agreement between the data and the predictions occurs at the approach condition. As fan speed is increased, both sets of calculations progressively overpredict the farfield noise. This degradation is due mainly to the inadequacy of the source model within the V072 and TFaNS programs. The simple model used does not represent the effects of the transonic flowfield at the Differences between the two higher rotor speeds. predictions are a result of the ways in which the radiated source is coupled. TFaNS combines the inlet and aft radiated noise internally. Noise reflected from rotor and stator elements are included when the radiated source is coupled. These reflections are neglected when the V072 results are coupled.

Figure 6 shows the comparison between the data and results obtained from TFaNS Versions 1.3 and 1.4. Corrections to the coding account for the improvements seen between the predictions from Versions 1.4 over Version 1.3, which employ identical physical models of the problem. Changes to the code improved the predictions particularly at approach conditions, with smaller differences seen at the higher tip speeds.

Finally, Figure 7 shows a comparison between the data and three different cases run with TFaNS (Version 1.4). Those cases labeled "w/o Rotor" are solutions obtained without including the rotor acoustic properties files in the coupling scheme. The input plane for the inlet radiation

Figure 5. Comparison of Predicted and Measured Farfield Sound Pressure Levels at Takeoff, Cutback, and Approach Conditions: TFaNS vs. Reference 9 Predictions

Figure 6. Comparison of Predicted and Measured Farfield Sound Pressure Levels at Takeoff, Cutback, and Approach Conditions: TFaNS Version 1.3 vs. Version 1.4

Figure 7. Comparison of Predicted and Measured Farfield Sound Pressure Levels at Takeoff, Cutback, and Approach Conditions: Swirl Effects

code for these cases lies between the rotor and the stator (Figure 3). The remaining two cases were run incorporating the rotor acoustic properties files in the program. CUP3D. The first of these cases did not include solid body swirl in the region between the stator and the rotor and is labeled "w/o Swirl." As the name implies, the case labeled "w/ Swirl" does include swirl as solid body rotation in this region. For both of the cases including rotor effects, the input plane for the inlet radiation code was located upstream of the rotor leading edge (Figure 2). As seen before in Figures 5 and 6, agreement between the calculations and the data is best at the approach conditions and progressively deteriorates as rotor speed is increased. Inclusion of the rotor, with or without swirl, does not improve the agreement between the data and the predictions for any of the fan speeds studied.

Similar findings were presented by Topol in Reference 7 for the 22" Advanced Ducted Propeller (ADP) tested in the NASA Glenn 9 x 15 Wind Tunnel. Topol gives several explanations for the weak agreement between the data and the predictions from TFaNS Version 1.4 that include rotor effects. While 2D aerodynamics can be successfully combined with 3D acoustics in the SOURCE3D program for low rotor speeds, this technique breaks down as frequencies increase. The mismatch causes inaccuracies in the rotor transmission and scattering coefficients, resulting in inflated noise predictions. Noise is overpredicted in part, too, by limitations in the panel method used to calculate the unsteady pressure distribution on the rotor blade. As described in detail in Appendix I of Reference 7, the number of panels needed to accurately calculate the blade unsteady surface pressure distribution becomes prohibitive as the relative freestream Mach number approaches the sonic condition.

Conclusions

The evaluation of Version 1.4 of TFaNS at NASA Glenn Research Center has shown that TFaNS is a useful noise prediction code particularly at low rotor tip speeds. Recent changes to the code have improved prediction accuracy at low speeds, if the influence of the rotor is omitted from the coupling scheme. At higher tip speeds, TFaNS (Version 1.4) may still prove to be useful in predicting overall trends, although absolute noise levels calculated may be higher than measurements may show.

References

- D. A. Topol, "Development and Evaluation of a Coupled Fan Noise Design System," 1997, AIAA 97–1611.
- D. A. Topol and W. Eversman, "TFaNS Tone Fan Noise Design/Prediction System Vol. II: User's Manual, TFaNS Vers. 1.4," 1998, NASA CR-208883.
- H. D. Meyer, "Source Methodology for Turbofan Noise Prediction (SOURCE3D Technical Documentation), 1997, NASA CR–208877.
- D. A. Topol and D. C. Mathews, "Rotor Wake/Stator Interaction Noise Prediction Code, Technical Documentation and User's Manual," 1993, NASA Contract NAS3–25952.
- 5. H. D. Meyer and E. Envia, "Aeroacoustic Analysis of Turbofan Noise Generation," 1996, NASA CR-4715.
- D. A. Topol, "TFaNS Tone Fan Noise Design/Prediction System Vol I: System Description, CUP3D Technical Documentation and Manual for Code Developers," 1998, NASA CR–208882.
- D. A. Topol, "TFaNS Tone Fan Noise Design/Prediction System Vol III: Evaluation of System Codes," 1998, NASA CR–208884.

- R. P. Woodward, D. M. Elliott, C. E. Hughes, and J. J. Berton, "Benefits of Swept and Leaned Stators for Fan Noise Reduction," 1998, NASA TM—1998-208661.
- E. Envia and M. Nallasamy, "Design Selection and Analysis of a Swept and Leaned Stator Concept," 1998, NASA TM—1998–208662.
- W.N. Dalton, D. B. Elliott, and K. L. Nickols, "Design of a Low Tip Speed Fan for Noise Suppression," 1999, NASA CR–208682.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of infr	ormation is estimated to average 1 hour per n	esponse, including the time for revie	ewing instructions, searching existing data sources
gathering and maintaining the data needed and collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 2220	d completing and reviewing the collection of in for reducing this burden, to Washington Head 02-4302, and to the Office of Management an	formation. Send comments regard quarters Services, Directorate for In d Budget, Paperwork Reduction Pro	formation Operations and Reports, 1215 Jefferson ject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED
	December 1999		
4. ITLE AND SOBITLE Evaluation of the Tone Fan 2 NASA Glenn Research Cen	Noise Design/Prediction System ter	n (TFaNS) at the	WIL 522 81 11 00
6. AUTHOR(S)			WU-322-81-11-00
L. Danielle Koch			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			B. PERFORMING ORGANIZATION REPORT NUMBER
National Aeronautics and Space Administration			
John H. Glenn Research Center at Lewis Field Cleveland, Ohio 44135–3191			E-12011
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING
			AGENCY REPORT NUMBER
Washington, DC 20546–0001			NASA TM—1999-209655
11. SUPPLEMENTARY NOTES			
Responsible person, L. Dan	ielle Koch, organization code 59	040, (216) 433–5656.	
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT	1	12b. DISTRIBUTION CODE
Unclassified - Unlimited			
Subject Categories: 07, 64 and 71Distribution: Nonstandard			
This publication is available from the NASA Center for AeroSpace Information, (301) 621–0390.			
13. ABSTRACT (Maximum 200 words	s)	·	
Version 1.4 of TFaNS, the T Research Center. Data from farfield directivities for the directivities at low fan speed is shown to be useful in pred	Yone Fan Noise Design/Prediction In tests of the Allison Ultra High radial stator configuration. There is when rotor effects were negle dicting overall trends rather than	on System, has recently b Bypass Fan (UHBF) wer e was good agreement be cted in the TFaNS calcul a absolute sound pressure	een evaluated at the NASA Glenn re used to compare to predicted atween measured and predicted ations. At higher fan speeds, TFaNS levels.
14. SUBJECT TERMS			15. NUMBER OF PAGES
Noise; Acoustics; Fan; Rotor; Stator			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	AU3 FION 20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	
NSN 7540.01.280.5500			Standard Form 298 (Rev. 2-89)