

Concept Exploration and Refinement (CE&R) Concept Area 1 (CA-1) Mid-Term Review

December 1, 2004 Advanced Programs Group Orbital Sciences Corporation

Looking for the solution without listening to the problem

is working in the dark

CA-1 Midterm Agenda

Exploration Objectives

Architecture Overview/Definition

System & Element Requirements

Trade Studies & Analysis for Super System & CEV

Technology Requirements

Exploration Programmatic and Technical Risk Assessment

Exploration Objectives

The Primary Governing Document

Goal and Objective

The fundamental goal of this vision is to <u>advance</u> <u>U.S., scientific, security, and economic interests</u> through a robust space exploration program. In support of this goal, the united states will:

 <u>Implement a sustained and affordable human and</u> <u>robotic program</u> to explore the solar system and beyond;

-<u>Extend human presence across the solar system</u>, starting with a human return to the moon by the year 2020, in preparation for human exploration of Mars and other destinations;

-<u>Develop the innovative technologies</u>, knowledge, and infrastructures both to explore and to support decisions about the destinations for human exploration; and

–Promote international and commercial participation in exploration to <u>further U.S. scientific, security and</u> <u>economic interests.</u>

The Recommendations for Implementation

Exploration campaign must be aligned with the findings of the commission to "inspire, innovate, and discover."

- "... Managed as a significant national priority..."

– "NASA's relationship to the private sector, its organizational structure, business culture, and management processes - all largely inherited from the Apollo era - must be decisively transformed to implement the new, multi-decadal space exploration vision.

 "The successful development of identified enabling technologies will be critical to attainment of exploration objectives within reasonable schedules and affordable costs."

- "... Regular, visible demonstrations of ongoing progress and success;"

- "... An affordable plan that does not require huge peaks in annual funding..."

Report of the President's Commission on Implementation of United States Space Exploration Policy

A Journey to Inspire, Innovate, and Discover

June 2004

Exploration Systems Flow

Exploration Vision is Being Decomposed to System Hardware

Preliminary Mission Categories to Meet Objectives

Assembly

Missions With a *Primary* Objective of Major Infrastructure Assembly Performed by Humans or Robots

Human

Missions With a *Primary* Objective of Demonstrating Short- or Long-Term Human Habitation of a Destination Beyond LEO. Includes the Science Conducted by Humans in Parallel With the Habitation Demonstration

Missions Are Being Developed to Ensure That All Agendas Will Be Satisfied

Mapping Functions to Missions

	Program Level 0							Tran	sport						$\left \right\rangle$		
	System Level 1			Transport Crew													
ID	Category and Mission	Segment Level 2	Transfer Crew to Launch Pad	Launch Crew from E to EV	Transfer Crew from EV to Orbiting Station	Transfer Crew from EV to DV	Transfer Crew from DV to DS	Provide Surface Transport	Provide Surface EVA	Provide In-Space EVA	Transfer Crew from DS to DV	Transfer Crew from DV to EV	Transfer Crew from EV to ES	Transfer Crew from CM to			
Asser	nbly	-													λ		
A1	Lunar Assembly Missions		Х	Х		Х	Х	Х	Х		Х	Х	Х	Х	$\left \right\rangle$		
A2	Lunar Orbit Assembly Missions		Х	Х		Χ				Х		х	Х	X			
A3	Mars Assembly Missions		Х	Х		Х	Х	Х	Х		Х	Х	Х	X	\backslash		
A4	Mars Orbit Assembly Missions		Х	Х		X				Х		Х	Х	x /			
A5	Earth Orbit Assembly Missions		Х	Х	Х					Х			Х	X			
Huma	n																
H1	Short-Duration Lunar Habitation		Х	Х		X	Х	Х	Х		Х	Х	Х	x	Ν		
H2	Long-Duration Lunar Habitation		Х	Х		Χ	Х	Х	Х		Х	Х	Х	X	$\left \right\rangle$		
H3	Short-Duration Mars Habitation		Х	Х		Х	Х	Х	Х		Х	Х	Х	X			
H4	Long-Duration Mars Habitation		Х	Х		X	Х	Х	Х		Х	Х	Х	X			
H5	Deep Space/Other Destination Habitation					X	Х	X	¥		X	Х	X	X	/		
	69	Fı	unct	ions	s Ma	ppe	d to	37	Mis	sio	ns						

Mapping Functions to Hardware

	Program Level 0	Transport													
	System Level 1					T	ransp	ort Cre	ew						
	Segment Level 2 Functions	Transfer Crew to Launch Pad	Launch Crew from E to EV	Transfer Crew from EV to Orbiting Station	Transfer Crew from EV to DV	Transfer Crew from DV to DS	Provide Surface Transport	Provide Surface EVA	Provide In- SpaceEVA	Transfer Crew from DS to DV	Transfer Crew from DV to EV	Transfer Crew from EV to ES	Transfer Crew from CM to Vehicle/Ship		
ID	Architecture Element													7	
CEV	Crew Exploration Vehicle (CEV)		х		Х						Х	х	X		
SEM	Space Exploration Module		Х		Х						х	Х			
HRLV	Human-Rated Launch Vehicle		х											\mathbf{A}	
EELV	Evolved Expendable Launch Vehicle														
MCS	Modular Containment Systems														
LL	Lunar Lander					Х				Х				_ /	
PF	Processing Facilities		Х											_/	
C3	C3 Facilities		Х		Х	Х	Х			Х	Х	х	Х	7	
EGSF	Earth Ground Support Facilities		Х										x /	,	
LH	Lunar Habitat														
S	Storage Facilities									Х					
SE	Science Equipment														
UR	Unpressurized Rovers						Х								
PR	Pressurized Rovers						Х								
CF	Communications Facilities						Х			Х					
RUI	Resource Utilization Infrastructure														
NPF	Nuclear Power Facility													_ /	
CS	Communications Satellites		x		Х	Х	Х			Х	Х	Х		_ /	
NS	Navigational Satellites				х	Х	Х			X	Х	Х		_/	

- Ensures That We the Contractor Fully Understand What System Must Do
- Reveals That the Vision Starts Now... Not When Hardware Begins Flying

Campaign Overview & Mission Definitions

Orbital's Primary Ground Rule

Missions and Operations Drive the Concept Refinement Process

Mission Operations Flow Extended Duration Lunar Habitation

B-3

Missions Generate Functions

B-4

Mission Operations Flow Long Duration Lunar Habitation

Mission Operations Flow Deploy Assets to Lunar Surface

B-6

Mission Operations Flow Lunar Surface Assembly

Exploration Campaign Overview Initial Lunar Missions

The Exploration System and Updates

Earth Ground Systems

In-Space Systems

Robotic and Science Systems

Exploration Surface Infrastructure

Cargo Transport Systems

Crew Transport Systems

Exploration System Crew Transfer System (CTS) Segment

Crew Module Functions

The CM provides crew habitation from launch to lunar orbit and return to the earth surface. The CM will rendezvous and dock with the Lunar Lander in lunar orbit. The CM will operate uncrewed in lunar orbit while the crew is on the moon. In addition, the CM provides the communication and navigation assets to transfer data/voice/video to other mission assets and the ground.

Launch Abort System Functions

The LAS provides the abort capability during Earth ascent up to 200,000 ft after which SEM provides high altitude abort capability.

Space Exploration Module Functions

The SEM provides the propulsive capability to transfer the CM or Lunar Lander from LEO to lunar orbit and return to Earth. The SEM also provides additional consumables and power to the CM.

Heavy Lift Launch Vehicle Functions

The HLLV provides the necessary lift capability to launch the CM, SEM, Lunar Lander and other mission elements into LEO.

Lunar Lander Functions

The LL provides crew habitation from lunar orbit to the lunar surface and return to lunar orbit. The LL provides surface EVA capability for the crew. The LL provides the communication and navigation assets to transfer data/voice/video to other missions assets and the ground.

Lunar Habitation Mission System Elements

Habitation Mission Alternatives

- Multiple Outpost Capability: TBD Day Capable Outpost Anywhere
 on Lunar Surface
 - Outpost at Next Site of Interest or Continue at Previous Site
 - Earth is Logistics Hub
- Lunar Logistics Base: Establish Single Lunar Base and Provide for Distributed Exploration Capability
 - Rovers for Local Exploration
 - Lander "Hops" for More Distant Exploration
 - Moon is Logistics Hub
- Lunar Orbiter: Provide 90 Day Capable Lunar Orbiter With Surface Excursion Capability Anywhere on Lunar Surface
 - Multiple Short Excursions to Lunar Surface (2 Crew?)
 - LLO Is the Logistics Hub

Exploration Philosophies to Be Evaluated

- Minimum Effort to Attain Spiral Objectives
 - Do Not Establish Permanently Occupied Lunar Base
 - Plan to End Substantial Lunar Operations So Funds Can Be Used for Spiral 4
- Minimum Number of Launches to Meet Exploration Vision
 - Operations, Feasibility, and Cost Limit Annual Launches to About 10-12 HLLVs
 - Define Exploration Campaign With This Constraint
- Permanently Crewed Lunar Outpost
- Mars Mission Analog Using Lunar Orbiter and Surface Habitat

Logistics Hub Trade

Preliminary Evaluation of Logistics Hub

- Extends NASA Work in This Area
- Objective is Complete Lunar Coverage
- Must Provide Operational Flexibility
- Must Account for Cost Considerations

System and Element Requirements

Exploration Requirements -Decomposition and Maturation

Exploration Vision is being Decomposed to Requirements

Vision to Missions to Requirements

NASA	NASA shall conduct human lunar expeditions to further science,
1013	NASA shall conduct the first extended human expedition to the lunar
	surface as early as 2015, but no later than the year 2020, in preparation
L1 1.2	for human exploration of Mars and other destinations.

(NASA Level 0 May 2004)

Orbital Gradually increase human lunar stay times to understand conditions for crew health, safety and performance for exploration of Mars and other destinations

Orbital
Mission

H1 Extended Duration Lunar Habitation: Human lunar mission (3-14 days duration) to demonstrate technologies supporting human exploration of space

Orbital Train

Transport Crew from Earth to Destination Surface Transport Crew from Destination Surface to Earth

Orbital L0 Requirement

The Exploration Program shall conduct human lunar expeditions as early as 2015, but beginning no later than the year 2020.

	Orbital L1	The CTS shall provide a deliver four crew from the	Crew Exploration Vehicle (CEV) to Earth's surface to the Moon and return
Related Trades:	Requirement	them to Earth.	
Exploration Crew Size In-Space Crew Transport		Orbital L2	The CEV shall transfer four crewmembers from Earth to the Moon and safely return them.
Lunar Lander Functionality Lunar Base Location		Requirement	The CEV shall be capable of returning four de- conditioned crewmembers from the Moon to Eart

C-3

ESS Technical and Programmatic Driving Requirements

- Technical
 - -Crew Size ESS0160, ESS0250
 - -Lunar Mission Duration ESS0140, ESS0150, ESS0260
 - -Lunar Mission Location ESS0140, ESS0150, ESS0260
 - -Flight Rate ESS0170, ESS0180
 - -Monthly Lunar Mission Opportunity ESS0190, ESS0300
 - -Spiral 2 Definition States No Pre-Deployed Surface Systems on Lunar Surface (ESS0160 Rationale, Glossary)
- Programmatic
 - -2014 CEV IOC EPR0520
 - -2010 CEV Flight Test EPR0540
 - -2015-2020 Human Lunar Mission EPR0510
 - -Separate Crew from Cargo EPG0830

CTS Spiral 1, 2, 3 Driving Requirements

CVS0030A - This high level of ascent success probability forces the use of Shuttle-derived or Saturn-derived launch systems (versus EELV launch systems).

CTS0125H - This forces an airlock (of full cabin depressurization capability) onto the CTS, as opposed to only having EVA capability from lunar lander (i.e. 2 systems that must provide EVA capability).

- CTS0130G This would also force the CTS to have an airlock if CTS0125H was not already a requirement.
- CTS0360G During Spiral 3 this requires the same interface mechanism to be used for in-space docking as for ground (on-surface) docking of Exploration elements. This may not be feasible.
- CEV0250G This forces the CEV propulsion system(s) and their consumables to be used rather than allowing use of another element's systems (e.g, lunar lander thrusters or consumables).

Requirement Sensitivities

ESS0160 - conduct human exploration on the lunar surface with 4 crew members (TBR-12).

ESS0250 - ..., and an objective of 6 crew members (TBR-15).

ESS0140 - The ESS shall conduct extendedduration human exploration missions (threshold of 4 days, with an objective of 14 days) to any designated location in the polar region of the Moon (TBR-1).

Mass Sensitivity to Requirements Drivers

Feedback on EMSD Requirements

- ESS Technical
 - ESS0260 Mission Duration (42 to 98 Days) Looks Reasonable for Lunar Exploration, but is Insufficient as a Mars Precursor
 - ESS0260 Specifying Lunar South Pole for Spiral 3 is Likely Premature Or Requiring Global Lunar Access in Spiral 2 is Unnecessary.
 - ESS0650 Orbital Debris Restrictions for Earth Orbit Should Have Similar Orbital Debris Requirements for Lunar and Trans-lunar Orbits
- ESS Programmatic
 - EPR0520 Contractor Architecture Will Determine When Test Flights Should Be Performed
 - EPR0560 These Interfaces Should Be Generic Enough to Include Docking/mating and Both In-space and On-surface
 - EPR0620 There Is No Equivalent Program Requirement Like This for Advancing the U.S. Economic and Security Interests
- Glossary
 - Need Definition of Cargo in Context of Separation of Crew and Cargo Guideline (EPG0830)

Trade Studies and Analysis for Super System and CEV

- Level of ISRU Reliance
- Exploration Logistics Hub Location
- Mars Exploration Approach
- Abort and Safe Haven Options
- Number of Launches Required to Demonstrate Spiral Capability

Abort and Safe Haven Trades

Issues and Design Drivers for Moon and Mars Ascent Abort Are Not Well Understood Despite Design Experience For Earth.

C-10

Lunar Base Location Trade

- Determine Fixed Location on Lunar Surface for Long Duration Missions
- Trading Three Alternate Locations Against Baseline Mare Tranquilitatis
 - Alternates: Aristarchus, Oceanus Procellarum, South Pole Aikin Basin
- Current Trade Status

Balancing Safety Concerns for Landing Against Increased Science and Technology Demonstration

- -Key Discriminators
 - Conditions for Safe Landing
 - -Terrain
 - Lighting
 - Approach
 - Anytime Return

Lunar Base Location Versus Ascent Abort/Safe Haven Trades

Technology Requirements

Technology Requirements Human Habitation Missions

		Exploration Missions											ratio	n Sy	/sten	ns	Spira			
Enabling Technology Requirements		Assembly		Human		Supp. Science		Dep	Deployment		(Crew)	(Cargo)	SIS	GS	S	SS	iral 1	iral 2	iral 3	ROM Dev Risk vs
		A2	A5	H1	H2	S 2	S 3	D1	D2	D7	CTS	CTS (ш		R	Spi	Spi	Spi	IOC Date
Automated rendezvous and docking	х	X	X	х	X		х	х	х		х	х			х	х		х	Х	Min
Autonomous/Remote controlled crane/surface systems	×				×		x	х					x						х	Min
Closed-loop life support	Х				Х								Х						Х	Min
Consumables transfer (air/water)	х				X						х	х	х	х	х				х	Min
Cryogenic fluid management	Х			Х	X	Х					Х		Х	Х	Х				Х	Min
Docking mechanism - universal androgynous housing	x			x	x	х	x	х	x		х	x			x			x	х	Min
Information management system	х	X	X	х	X	х	х	х	х	х	х	X	X	х	х	х	х	х	Х	Min
Helmet mounted heads-up display	х			х	X						х							х	Х	Min
Lightweight human-rated TPS	х			х	X						х						х	x	х	Min
Long duration science equipment					X	х	х						х		х	х			х	Min
Lunar (L1) communications relay satellite	х	X		х	X			х	х						х					Min
Lunar landing aids	Х			X	V		X	Х				X	X			Х		X	X	Min
																1				

Enhancing Technologies

		Exploration Missions											ratio	n Sy	sten	ns	Spiral			
Enhancing Technologies		Assembly			Human		Supp. Science		Deployment			(0)								ROM Dev
		A2	A5	H1	H2	S 2	\$3	D1	D2	D7	CTS (Crev	CTS (Crei CTS (Carg		EGS	SI	RSS	Spiral 1	Spiral 2	Spiral 3	Risk vs IOC Date
Nuclear power (propulsion)	Х				Х			Х				Х							Х	Mod
Composite pressure vessels				Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х	Х	Х	Min
Automated planning s/w	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х		X	X	Х			Х	Х	Min
Air bags (soft landing-Earth)	Х	Х	X	Х	Х						Х			X			Х	Х	X	Min
Inflatable structures	Х			Х	Х			Х					Х		Х			Х	Х	Min
Closed-loop life support (Greenhouse/Food Production)	х				Х			×					х						Х	Min
ISRU				Х	Х								Х					Х	Х	Min
Landing platform	Х			Х	Х			Х			Х	Х	Х						Х	Min
Pressurized mobility	Х			Х	Х								Х						Х	Min
New Earth-based crawlers	Х	Х	X	Х	Х	Х	Х	Х	Х	Х				Х			Х	Х	Х	Min
Lunar GPS	Х			Х	Х			Х					X		Х	Х		Х	Х	Min
Lunar surface pressurized garage					х								х						Х	Min

High Priority Technologies

- Enabling
 - Autonomous Rendezvous
 Systems
 - Nuclear Power Generation
 - Space Radiation Protection
 - -Mico-Meteoroid Protection
 - Lightweight Ablator TPS
 - Integrated Vehicle Health
 Management Systems

- Enhancing
 - -ISRU
 - Nuclear Propulsion
 - Inflatable Structures
 - Closed Loop Life Support (Greenhouse/Food Production)

Exploration Programmatic and Technical Risk Assessment

Assessment of Significant Risks

Technology Readiness

Human Space Flight Safety

Mission Success Criteria

		Ph	ase			Cate	gory			Spi	iral
Risk #	Spiral 1 and 2 Risk Titles	Development	Operational	Programmatic	Technical (Safety)	Cost	Schedule	Operations	Sustainability/ External	1	2
E01	Moon/Mars Systems and Operations Incompatibility	Х	Х					Х			Х
C07	Spiral 1 Launch Failure	Х		Х		Х	Х			Х	
C12	Industry Laborforce Limits for Supporting Two CEV Teams	Х		Х					Х	Х	
C11	ISS Requirements Creep	Х		Х						Х	
C06	Requirements Management Between Spirals	Х		Х						Х	
C09	Impact of Other Launch Vehicle Failure (EELV/Shuttle)	Х	Х				Х			Х	Х
C10	Stakeholder Buy-in	Х	Х						Х	Х	Х
C08	CEV Deorbit Propulsion Module Cost	Х				Х				Х	
C16	Autonomous Rendezvous and Docking Robustness and Reliability		Х		Х			Х		Х	Х
C15	Micro Meteoroid Damage Protection Robustness and Reliability		Х		Х			Х		Х	Х
C14	Space Radiation Protection Robustness and Reliability		Х		Х			Х		Х	Х
C13	TPS Robustness and Reliability		Х		Х			Х		Х	Х
C05	Development of Autonomous Rendezvous Technologies	Х			Х					Х	Х
C04	Development of Improved Micro Meteoroid Damage	Х			Х					Х	Х
C03	Development of Space Radiation Protection	Х			Х					Х	Х
C02	Development of Thermal Protection Oescent Safety	Х								х	
			•				\sim	_		/	/

C-18

<u>Orbizal</u>

A Strategy for Spiral Transitions Is Needed

Architecture FOM Assessment

Safety and Mission Success

- 7 of 9 Abort Modes Identified are architecturally executable
- 41 Critical Events Identified and Ranked for the H1 lunar Mission using 2-Launch HLLV Lunar Orbit Rendezvous Scenario
- TBD Inter-Element Design Redundancies Being Evaluated Based on Top-Level FMECA and Safety Analyses Results with Focus on Preventing / Minimizing LOC
- TBD Hours to Return to Earth (Mission Abort)

• Orbital's Architecture Requires About 76% of NASA's Planned Budget

Effectiveness and Extensibility

- System Applicability/Evolvability to Mars
 - Systems Evolvable for Mars Missions
 - HLLV, CM, SEM
 - Technologies Evolvable for Mars Missions
 - Closed-loop Life Support, Nuclear Power, Autonomous Rendezvous, Cryogenic Fluid Management, Information Management, Lightweight Ablator TPS, In-space Navigation, Radiation Shielding
- System Complexity
 - 17 Interfaces Among Spiral 2 Elements
 - 7 Simple, 6 Intermediate, 4 Complex
- Mission Complexity
 - 6 Major Elements (4 Unique), 2 Dockings, 19 Day Mission (10 days on Surface)

Development Risk and Schedule

- Only 3 <u>New</u> Technologies Required for Spiral 2 Missions
 - Precision Lunar Landing
 - -LOX/Methane Propulsion
 - Space Radiation Protection
- No <u>High Risk</u> Technologies Required for Spiral 2 Missions

– Only 7 Technologies < TRL 6 Today</p>

- All Can Be TRL 6 by 2008 FSD Start
- 2014 IOC is Not Threatened by Technology Development Risk
 - 7 Moderate, 43 Minimum Risk Developments
- 2014 IOC is Not Threatened by System Development Risk
 - -CEV
 - HLLV

Summary

What We Accomplished

- Mapped the Vision to Objectives, Missions, Functions, Requirements, and Elements
- Started Manifesting the Exploration Campaign Missions

What We Learned/Observed

- Coupling of Lunar Base Selection and Lunar Abort/Safe Haven Capability
- It's Primarily a Transportation and Logistics Problem
- Lunar/Mars Operations Need to Be Compatible and Traceable
- Need a Budget Strategy at Spiral Transitions to Ensure Sustainability

What Problems We Are Still Working

- Establish Strong Link Between the Exploration Architecture and U.S. Science, Security and Economic Interests
- Define Requirements for the Other Architecture Segment and Elements
- Evaluate More Efficient Methods of Conducting the Exploration Missions