\documentclass[11pt,a4rpaper]{article}
\usepackage[top=1.1in,bottom=1in,left=0.9in,headheight=14pt,right=0.9in]{geometry}
\usepackage{paralist,mdwlist,Sweave,amsmath,amsbsy,graphicx,alltt,fancyhdr,url}
\SweaveOpts{engine=R,eps=FALSE,width=10,height=6.5,strip.white=all}
\SweaveOpts{prefix=TRUE,prefix.string=figs/ex2,include=TRUE}
\setkeys{Gin}{width=\textwidth}
\DefineVerbatimEnvironment{Sinput}{Verbatim}
{formatcom={\vspace{-1.5ex}},fontshape=sl,
fontfamily=courier,fontseries=b, fontsize=\small}
\DefineVerbatimEnvironment{Soutput}{Verbatim}
{formatcom={\vspace{-2.5ex}},fontfamily=courier,fontseries=b,fontsize=\small}
\usepackage{fancyhdr}
\lhead{\sf Mixed-effects models workshop}\chead{\sf Exercises \#2}
\rhead{\sf 2009-07-01 (p. \thepage)}
\lfoot{\sf Lattice graphics}\cfoot{}\rfoot{}
\pagestyle{fancy}
\newcommand{\code}[1]{\texttt{\small #1}}
\newcommand{\R}{\textsf{R}}
<>=
options(width=80, show.signif.stars = FALSE)
library(lattice)
lattice.options(default.theme = standard.theme(color = FALSE))
set.seed(123454321)
@
\begin{document}
Load the \code{classroom} data frame that you saved in the previous
set of exercises and attach the \code{lattice} package.
<>=
load("classroom.rda")
library(lattice)
@
\begin{enumerate}
\item Create a histogram of the \code{mathkind} (mathematics score in
kindergarten) variable.
\begin{center}
<>=
print(histogram(~ mathkind, classroom,
xlab = "Kindergarten mathematics score"))
@
\end{center}
\item Create an empirical density plot of \code{mathkind}.
\begin{center}
<>=
print(densityplot(~ mathkind, classroom,
xlab = "Kindergarten mathematics score"))
@
\end{center}
\item Create an empirical density plot of \code{mathkind} by sex using
the optional argument \code{groups = sex}. It is probably a good
idea to suppress the points in the ``rug''. Remember to use
\code{auto.key} so you can tell which curve is which.
\begin{center}
<>=
print(densityplot(~ mathkind, classroom, groups = sex,
auto.key = list(columns = 2), plot.points = FALSE,
xlab = "Kindergarten mathematics score"))
@
\end{center}
\item Create an empirical density plot of \code{mathkind} with one
curve for minority students and one for non-minority students.
\begin{center}
<>=
print(densityplot(~ mathkind, classroom, groups = minority,
auto.key = list(columns = 2), plot.points = FALSE,
xlab = "Kindergarten mathematics score"))
@
\end{center}
\item Create a scatter-plot of
the \code{mathgain} versus the kindergarten score. Add a reference
grid and a scatterplot smoother curve with the optional argument
\code{type = c("g", "p", "smooth")}. Repeat this plot using \code{"r"}
instead of \code{"smooth"} to add a reference (or ``regression'')
line.
\begin{center}
<>=
print(xyplot(mathgain ~ mathkind, classroom,
type = c("g","p","smooth"),
ylab = "Change in mathematics score",
xlab = "Kindergarten mathematics score"),
split = c(1,1,2,1), more = TRUE)
print(xyplot(mathgain ~ mathkind, classroom,
type = c("g","p","r"),
ylab = "Change in mathematics score",
xlab = "Kindergarten mathematics score"),
split = c(2,1,2,1))
@
\end{center}
\item The negative correlation between \code{mathkind} and \code{mathgain}
<>=
with(classroom, cor(mathkind, mathgain))
@
is not surprising because \code{mathgain} is the grade 1 score minus
the kindergarten score. Create a new variable \code{math1} which is
the sum of \code{mathkind} and \code{mathgain}
<>=
classroom <- within(classroom, math1 <- mathkind + mathgain)
with(classroom, cor(mathkind, math1))
@
and plot \code{math1} versus \code{mathkind}. The version shown
below uses the optional argument \code{aspect="iso"} to ensure that a
unit change on the x axis corresponds to a unit change on the y axis.
\begin{center}
<>=
print(xyplot(math1 ~ mathkind, classroom,
type = c("g","p","smooth"), aspect = "iso",
ylab = "Grade 1 mathematics score",
xlab = "Kindergarten mathematics score"),
split = c(1,1,2,1), more = TRUE)
print(xyplot(math1 ~ mathkind, classroom,
type = c("g","p","r"), aspect = "iso",
ylab = "Grade 1 mathematics score",
xlab = "Kindergarten mathematics score"),
split = c(2,1,2,1))
@
\end{center}
\item Create a multi-panel scatterplot of \code{math1} versus
\code{mathkind} with separate panels for males and females.
\begin{center}
<>=
print(xyplot(math1 ~ mathkind|sex, classroom,
type = c("g","p","r"), aspect = "iso",
ylab = "Grade 1 mathematics score",
xlab = "Kindergarten mathematics score"))
@
\end{center}
\item Create a multi-panel scatterplot of \code{math1} versus
\code{mathkind} with separate panels for minority and non-minority
students.
\begin{center}
<>=
print(xyplot(math1 ~ mathkind|minority, classroom,
type = c("g","p","r"), aspect = "iso",
ylab = "Grade 1 mathematics score",
xlab = "Kindergarten mathematics score"))
@
\end{center}
\item Create a multi-panel scatterplot of \code{math1} versus
\code{mathkind} classified according to \code{sex} and \code{minority}
\begin{center}
<>=
print(xyplot(math1 ~ mathkind|minority*sex, classroom,
type = c("g","p","r"), aspect = "iso",
ylab = "Grade 1 mathematics score",
xlab = "Kindergarten mathematics score"))
@
\end{center}
\item Consider only the students in school 11. The study includes
students from nine different classrooms in that school.
<>=
xtabs(~ classid, classroom, schoolid == 11, drop = TRUE)
@
Create a dot-plot of the \code{mathgain} by classroom for students
in school 11 only.
\begin{center}
<>=
print(dotplot(classid ~ mathgain, classroom, subset = schoolid == 11,
xlab = "Gain in mathematics score",
ylab = "Grade 1 classroom (school 11 only)"))
@
\end{center}
Repeat the plot reordering the classrooms according to increasing
mean gain and joining the classroom averages.
\begin{center}
<>=
print(dotplot(reorder(classid,mathgain) ~ mathgain, classroom,
subset = schoolid == 11, type = c("p","a"),
xlab = "Gain in mathematics score",
ylab = "Grade 1 classroom (school 11 only)"))
@
\end{center}
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% End: