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Bending of floating flexible legs
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When long thin flexible solid objects, such as the legs of water striders, disposable
spoons and human hairs, are pressed against a liquid surface, they bend due to
interfacial and hydrostatic forces. To understand the phenomenon, we study the
bending of a sheet touching the liquid surface at an angle while clamped at the other
end, to find its deflection and the load that the sheet can support before sinking.
The theoretically predicted shapes of the sheet and the meniscus match well with
experiments. Our theory shows that flexible sheets can support more load than rigid
ones before sinking when the sheets are highly hydrophobic.

1. Introduction
Objects pushed against the free surface of liquid are either repelled from or drawn

into the liquid due to interfacial tension. The interfacial tension acts along the contact
line where the three phases of liquid/gas/solid meet, and the direction of the force
is determined by the contact angle, which measures the relative affinity of the solid
phase for the liquid to that for the gas. Tiny water-walking arthropods such as water
striders having superhydrophobic legs use the interfacial tension or capillary force to
stand on only tiptoes, to skate (Bush & Hu 2006) and to jump on the water surface
(Lee & Kim 2008). When the objects are long and flexible as observed in water strider
legs and hairs covering those legs (Bush, Hu & Prakash 2008), they deform under the
capillary and hydrostatic forces. One can find a more mundane example of a similar
kind when dining: a flexible spoon pushed onto soup surface is bent, requiring greater
downward force before piercing the free surface than a rigid one. One also finds that
it is extremely difficult to submerge individual hair in water due to its severe bending
upon contact with the liquid.

The deformation of elastic filaments due to interfacial tension, termed elasto-
capillarity, has been studied for several different situations. Cohen & Mahadevan
(2003) showed that various equilibrium morphologies such as kinks, rings and rackets
of carbon nanotubes and biological filaments arise due to competition between elastic
and interfacial effects. Bico et al. (2004) and Kim & Mahadevan (2006) investigated the
coalescence of vertical flexible lamellae induced by capillary rise. Flexible horizontal
beams have been shown to be deflected by a vapour bubble (Lee et al. 2007) and a
liquid drop (Kwon et al. 2008) confined between the beam and a substrate because of
the pressure jump across the gas/liquid interface caused by the surface tension effect.
Neukirch et al. (2007) considered the piercing and buckling of initially immersed
vertical elastic strips at the interface, where the perfectly wetting strip is compressed
by surface tension. Song & Sitti (2007) constructed an approximate numerical model
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Figure 1. Schematic of a flexible sheet pushed against a liquid surface at an angle α to the
vertical. The x-axis coincides with the undeformed sheet. The ξ and η coordinates denote the
horizontal and the vertical, respectively. When the contact angle is not too large, the meniscus
touching the down face is elevated (I), while the meniscus touching highly hydrophobic surfaces
is depressed (II).

to estimate the bending and supporting load of a cylindrical flexible leg of a robot
mimicking a water strider.

In seeking a physical understanding of the deformation of floating flexible filaments
of varying wettability before penetrating liquid, here we consider the bending of a
flexible sheet which pushes the free surface at an angle. We determine the deflection
of the sheet by considering the interfacial tension and hydrostatic forces acting on
the object. We calculate the maximum load that can be supported before the sheet
pierces the liquid. We also experimentally measure sheet shapes and interface profiles
to show that they agree quantitatively with our theory.

2. Theoretical formulation, solution and experimental corroboration
We consider a flexible sheet of length L, which pushes a liquid surface at an angle

α to the vertical as illustrated in figure 1. Since we are mainly interested in sheets
lifted by the liquid surface, the solid surfaces are assumed to be hydrophobic. The
sheet is clamped at one end x =0 while the other end at x = L is free. Starting from
a position where the sheet’s free end just touches the liquid surface, the clamped
end vertically descends a distance h0, leading to the descent of the free end by hf .
Until penetration occurs, the up face of the sheet remains dry while the down face is
wetted in the region xm � x � L. The equilibrium conditions require force and torque
be exerted at the clamped end to balance the surface tension force acting along the
contact lines at x = xm and x = L and the hydrostatic pressure force upon the wet
face. We first consider the force and moment equilibrium for a rigid sheet and then
formulate and solve the problem for a flexible sheet.

2.1. Rigid sheet

As a rigid sheet does not bend during its descent, h0 =hf . The location of the liquid
meniscus xm or the depression hm, given by hm = h0 − (L − xm) cos α, can be obtained
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by integrating the Young–Laplace equation

ρgη = σ
η′′

(1 + η′2)3/2
, (2.1)

where ρ is the liquid density, g the gravitational acceleration, η the elevation of
the liquid surface from the unperturbed free surface, σ the surface tension, and
η′ ≡ dη/dξ . Using the condition that η = −hm and η′ = cot(θm − α) at x = xm, where
θm is the contact angle at x = xm, we obtain

|hm| =
√

2lc[1 − sin(θm − α)]1/2, (2.2)

where the capillary length lc = (σ/ρg)1/2. It can be shown that hm < 0, i.e. the meniscus
is elevated from the unperturbed free surface, when (θm − α) < π/2, and that hm > 0,
i.e. the meniscus is depressed, when (θm − α) > π/2. Note that as the sheet is lowered
in a quasi-static manner, the meniscus touching the down face advances away from
the sheet’s free end, increasing the wet area. Therefore, θm always assumes the value
of the critical advancing contact angle θA,c, which was verified in our experiments
described below. The depression of the meniscus at the free end, hf , is given by

hf =
√

2lc[1 − sin(θf + α)]1/2, (2.3)

because η′ = − cot(θf + α) at x = L. Since h0 = hf for a rigid sheet, (2.3) relates the
descent distance h0 to θf . The contact angle at the free end θf increases as the sheet
lowers, and the up surface of the sheet starts to be wet when θf reaches θA,c (Gibbs
1906; Cho et al. 2007), which condition gives the maximum distance of descent and
the maximum load that the liquid surface can support before penetration.

Now we are ready to calculate the force and the moment applied at the clamped
end by virtue of the equilibrium conditions. The force equilibrium conditions in the
x- and y-directions respectively give

Fv cos α + Fh sin α + σ cos θm + σ cos θf = 0 (2.4)

and

Fv sinα − Fh cos α + σ sin θm − σ sin θf +

∫ L

xm

ρgη(x) dx = 0, (2.5)

where Fv and Fh denote the force per unit width in the vertical and horizontal
directions, respectively, and η(x) is the vertical position of the sheet given by η = (L−x)
cos α − h0. The last term on the left-hand side of (2.5) corresponds to the hydrostatic
pressure force acting on the wet down face. The moment equilibrium gives the moment
per unit width applied at the clamped end, M0:

M0 = σL sin θf − σxm sin θm −
∫ L

xm

ρgη(x)x dx. (2.6)

Eliminating Fh in (2.4) and (2.5), we obtain the the scaled force Fv:

Fv

σ
= −cos θm + cos θf

cos α
. (2.7)

Although Fv/σ appears to depend on the contact angles and α only, θf depends on h0

and thus the descent distance of the sheet determines the force. The maximum value
of the vertical force at the clamped end that the liquid surface can withstand before
penetration is obtained by substituting θA,c for θf : Fv,max/σ = −2 cos θA,c/ cosα. The
maximum distance that the sheet can be lowered before penetration is given by (2.3)
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when θf = θA,c. We discuss the results for rigid sheets together with those for flexible
sheets as described in the following.

2.2. Flexible sheet

Deflection of a flexible sheet alters the location of the meniscus touching the down face
and the angles between the menisci and the sheet, leading to changes in the direction of
the surface tension force and the hydrostatic force. We first estimate the perturbative
change in the sheet shape and the force supported by the interface using dimensional
and scaling analyses. The scaled characteristic sheet deflection δ/L must be a function
of some dimensionless parameters. In addition to the scaled descent distance h0/L,
there are two other dimensionless length scales in the problem: the scaled capillary
length lc/L and the scaled elastocapillary length lec/L, where lec =(B/σ )1/2, B being
the flexural rigidity per unit width of the sheet. We also expect a dependence on
the sheet inclination α. Thus we may write δ/L = f (h0/L, lc/L, lec/L, α, θ), where we
have added the contact angle θ to consider the orientation of the surface tension force.
Balancing the torque exerted on a flexible sheet, Bδ/L2, with the hydrostatic torque
(∼ρgh2

0L secα) yields δ/L ∼ (h0/lc)
2 secα/(lec/L)2. When lec/L → ∞, corresponding to

the rigid sheet, δ/L → 0. Using δ sinα ∼ h0 −hf , the descent distance of the free end is
scaled as hf /lc ∼ h0/lc −kλ, where k is a constant and λ=(h0/L)2(L/lc)

3(L/lec)
2 tan α.

The vertical forces due to the hydrostatic pressure on the flexible sheet and on the
rigid sheet are scaled as Fv,f ∼ ρgh2

f tanα and Fv,r ∼ ρgh2
0 tan α, respectively. Thus

the ratio of the vertical force on a flexible sheet to that on a rigid sheet becomes
Fv,f /Fv,r ∼ [1 − c(h0/L)(L/lc)

2(L/lec)
2 tan α]2, where c is a constant. To go beyond

these scaling estimates and fully consider the forces acting on the sheet, we formulate
and solve a free boundary problem as follows.

When δ/L 	 1, we may use a geometrically and physically linear theory of a sheet
to describe its transverse deformation y(x) (Landau & Lifshitz 1986):

By iv = H(x − xm)(−ρgη + qs), (2.8)

where y ′ ≡ dy/dx, H(.) is the Heaviside function, and η(x) is the vertical position of
the sheet, given by η =(L−x) cos α−h0+y sin α. Here we include the capillary force qs

at the two side edges of the sheet to give a correction to the idealized two-dimensional
model assuming an infinite sheet width. The Young–Laplace equation for the menisci
touching the side edges in the plane perpendicular to the x-axis gives

qs(x) = −2ρgηlc sinα

w

(
1 − η2

4l2c

)1/2

, (2.9)

where w is the width of the sheet. The magnitude of qs can be scaled as ρgηlc sinα/w,
and thus is negligible compared to ρgη for w 
 lc, which will be assumed to be valid
henceforth. To complete the formulation of the problem, we need to specify some
boundary and matching conditions and determine the eight constants of integration,
the unknown meniscus location xm and the contact angle at the free end θf . The
sheet is clamped at x = 0 so that the corresponding boundary conditions are y(0) = 0
and y ′(0) = 0. At the other end, x = L, the sheet is free of torque, but is subject to a
transverse shear force due to surface tension. Therefore, we may write: y ′′(L) = 0
and By ′′′(L) = − σ sin(θf + φf ), where φf = tan−1(y ′|x = L). These four boundary
conditions must be supplemented by matching conditions at the meniscus x = xm

given by the continuity of the deflection, the slope, and the curvature of the sheet,
i.e. [y] = [y ′] = [y ′′] = 0 where [A] = limε→0{A(xm + ε) − A(xm − ε)}. However, there
is a jump in the transverse shear force across x = xm due to surface tension so that
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[By ′′′] = −σ sin(θm − φm), where φm = tan−1(y ′|x = xm
). The additional two conditions

are provided by describing the interface profiles at x = xm and x = L using the Young–
Laplace equation, respectively:

|hm| = |h0 − (L − xm) cosα − y(xm) sin α| =
√

2lc [1 − sin(θm − φm − α)]1/2 , (2.10)

hf = h0 − y(L) sin α =
√

2lc[1 − sin(θf + φf + α)]1/2. (2.11)

We note that the effects of the sheet bending on the change of interface profile
compared with those corresponding to the rigid sheets are manifested through the
deflection angles φm and φf appearing in (2.10) and (2.11), respectively.

To make the equations and boundary conditions dimensionless, we use the scaled
variables x = Lx̂, y = Lŷ, η = Lη̂, xm = Lx̂m, h0 = Lĥ0, hm = Lĥm, and hf = Lĥf , so
that the complete boundary value problem is

ŷ iv = −L4η̂

l2ecl
2
c

H(x̂ − x̂m), (2.12)

subject to the conditions

ŷ(0) = 0, ŷ ′(0) = 0,

ŷ ′′(1) = 0, ŷ ′′′(1) = −L2 sin(θf + φf )/l2ec,

[ŷ] = 0, [ŷ ′] = 0,

[ŷ ′′] = 0, [ŷ ′′′] = −L2 sin(θm − φm)/l2ec,

|ĥ0 − (1 − x̂m) cosα − ŷ(x̂m) sin α| =
√

2lc[1 − sin(θm − φm − α)]1/2/L,

ĥ0 − ŷ(1) sin α =
√

2lc[1 − sin(θf + φf + α)]1/2/L.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

We see that the shape of the sheet ŷ(x̂) depends on five dimensionless parameters,
namely h0/L, lc/L, lec/L, α and the contact angle θm = θA,c, consistent with the
dimensional analysis result above. Integrating (2.12) yields a polynomial shape of
the sheet with eight integration constants. These constants, the unknown meniscus
location x̂m and the contact angle θf are obtained by using ten conditions (2.13) to
yield closed-form expressions for ŷ(x̂), employing MATLAB.

Figure 2 shows the shapes of the sheets of different wettability θA,c upon solving the
foregoing equations for different descent distances h0/L. Lowering the sheet increases
the wetted area with the meniscus at the down face moving toward the clamped end,
and causes the sheet to bend upward owing to the increased hydrostatic force and
the vertical component of the surface tension at the free end. It is interesting to note
that for θA,c not significantly exceeding a right angle, the sheet can be bent downward
when it initially contacts the liquid surface, corresponding to relatively small h0/L as
shown in figure 2(b). It is because the downward surface tension force at x = xm and
the downward hydrostatic force on the wet region above the unperturbed free surface
dominate the other forces in this case. In figure 3, we show the dimensionless shapes
of the sheet as a function of the following two dimensionless parameters: lec/L and
θA,c. The trends are intuitively obvious. The sheet bends more as the sheet is relatively
more flexible (decreased lec/L) and more hydrophobic (increased θA,c). Unlike the
foregoing parameters, the dependence of the sheet deflection on the remaining two
parameters, lc/L and α, is rather complicated as shown in figure 4. While the sum of
the torques by the hydrostatic pressure and the surface tension forces monotonically
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Figure 2. Equilibrium shapes of floating flexible sheets (solid lines) versus h0/L. The dotted
and dashed lines denote the unperturbed free surface and the rigid sheets, respectively. Circles
and triangles respectively denote the locations of the meniscus at x = xm and the locations
where the sheets intersect with the unperturbed free surface, η = 0. The values of the parameters
used in the computations are such that lc/L = 0.0545, lec/L = 9.68 and α =75◦, corresponding
to the parameter values for a sheet of length L = 50 mm and B = 0.017 N m floating on water
with σ = 0.0728 N m−1. (a) The shape of the sheet with θA,c = 95◦. In the direction of the arrow,
the parameter h0/L increases taking the values 0.0327 and 0.0655. (b) The sheet shapes of
(a) replotted in (x, y)-coordinates. (c) The shape of the sheet with θA,c = 155◦. The parameter
h0/L takes the values 0.0327, 0.0655, and 0.0982, in the direction of the arrow. (d) The sheet
shapes of (c) replotted in (x, y)-coordinates.
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Figure 3. Effects of (a) lec/L and (b) θA,c on the sheet shape (solid lines) and the location
of the meniscus at x = xm (circles). Triangles denote the locations where the sheets intersect
with the unperturbed free surface. For comparison, the curve with a filled circle in each case
corresponds to the parameter values h0/L = 0.0771, lc/L = 0.0545, lec/L = 9.68, α = 75◦ and
θA,c = 155◦. In the direction of the arrow, (a) lec/L increases taking the values 9.68, 13.7, and
16.8; and (b) θA,c increases taking the values 95◦, 125◦, and 155◦.

increases with the increase of h0/L, L/lec and θA,c for the entire parameter space, the
resultant torque may increase (figures 4b and 4c) or decrease (figures 4a and 4d) with
increasing lc/L or α depending on the other parameter values.

In addition to the sheet shapes and the locations of the menisci, the force that
the liquid surface supports at a given depression distance h0 can be obtained using
our theory. Before treating this force, we turn to a comparison of the theory for
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Figure 4. Effects of (a, b) lc/L and (c, d) α on the shape of the sheet (solid lines) and the
location of the contact line at x = xm (circles). Triangles denote the locations where the sheets
intersect with the unperturbed free surface. To show the effects of changing lc/L, in the
direction of the arrow, (a) lc/L increases taking the values 0.0545, 0.0771, and 0.0945, with
h0/L = 0.0771, lec/L = 9.68, α = 75◦ and θA,c = 155◦; and (b) lc/L increases taking the values
0.173, 0.244, and 0.299, with h0/L = 0.0599, lec/L = 2.16, α = 60◦ and θA,c = 95◦. To show
the effects of changing α, in the direction of the arrow, (c) α increases taking the values
45◦, 60◦, and 75◦, with h0/L = 0.0771, lc/L = 0.0545, lec/L = 9.68 and θA,c = 155◦; and (d ) α
increases taking the values 60◦, 70◦, and 80◦, with h0/L = 0.0379, lc/L = 0.109, lec/L = 1.53
and θA,c =155◦.

sheet bending and meniscus deformation with experiments. The flexible sheets were
rectangular glass sheets 24 mm wide and 0.14 mm thick. The sheet was clamped at
various angles α while the effective sheet length was kept at L =50 mm. The sheet
surfaces were coated with two materials to vary θA,c with deionized water, the liquid
used in the experiments. We obtained θA,c = 95◦ by spray-coating the sheets with a
nitrocellulose lacquer, and θA,c =155◦ with a mixture of chloroform and melted alkyl
ketene dimer (AKD). At a fixed α, the sheet was lowered slowly by a linear stage until
the sheet penetrates the water surface. The images of the sheet and the liquid menisci
were taken by a CCD (charge coupled device) camera with resolution of 512 × 512
pixels. Figure 5 shows representative images before, upon and after penetration of
the sheet through water surface.

While lowering the sheet, we measured the depression hf and the contact angle θf

at the free end, and the values are smaller than those for rigid sheets at the same h0

due to bending. We see excellent agreement between the theory and the experiments in
figure 6. In particular, figure 6(b) shows that the penetration occurs upon θf reaching
θA,c and that the meniscus on the up face of the sheet slowly advances with a contact
angle fairly close to θA,c as the sheet is further lowered. In the inset of figure 6(a),
we compare the experiments with the scaling introduced above: hf /lc ∼ h0/lc − kλ,
and find good agreement owing to the dominant hydrostatic pressure effect on the
deflection in this case. Figure 7 shows the depression of the clamped end h0,p/ lc and
the free end hf,p/ lc at the moment of penetration. Besides good agreement between the
experiments and the theory, we see that bending of the sheet allows the clamped end
to descend further than a rigid sheet, and the increase of h0,p/ lc is more pronounced
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Figure 5. Images of a flexible sheet, coated with a mixture of chloroform and melted AKD
and clamped at α = 60◦ to the left, pushing the water surface down. As the sheet is lowered
from (a) to (b), the contact angle at the free end θf increases until it finally reaches θA,c

when the up face of the sheet begins to be wetted (onset of penetration). (a) Before piercing:
h0 = 3.8 mm, hf = 3.4 mm and θf = 110◦. (b) Upon piercing: h0 = 5.3 mm, hf = 4.8 mm and
θf =155◦. (c) After piercing: h0 = 6.8 mm, hf = 6.3 mm and θf = 156◦.
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Figure 6. Comparison of the experimental measurements (filled symbols) and theoretical
predictions (solid lines) of (a) hf /lc and (b) θf versus h0/lc for a flexible sheet with
lc/L = 0.0545, lec/L = 9.68, α = 60◦ and θA,c = 155◦. Dotted lines correspond to the predicted
results for a rigid sheet. Inset: the experimental results and the scaling law hf /lc ∼ h0/lc − kλ.

with the increase of α. However, the location of the free end hf,p/ lc at penetration
varies little because the slope perturbation φf in (2.11) is much smaller than θA,c + α.

The force balance equations similar to (2.4) and (2.5) give the vertical downward
force Fv at the clamped end x = 0. The computed results for the dependence of the
vertical force on h0/lc and α are shown for the sheets with different θA,c in figure 8.
As was observed in figures 2(a) and 2(b), even when the sheet is hydrophobic with
θA,c > 90◦, the tilted sheet tends to be drawn into the liquid for small h0/lc unless θA,c

is very large. Thus the force values in figure 8(a), corresponding to θA,c = 95◦, take
negative values for small h0/lc, implying that moderately hydrophobic sheets need to
be externally supported (at the clamped end) upward to prevent them from sinking
when they push on the liquid surface. As was explained earlier, the meniscus touching
the down face at x = xm results in downward surface tension and hydrostatic pressure
forces, which dominate the upward forces elsewhere. Alternatively, one can consider
the forces in the context of Keller’s (1998) theorem stating that the net vertical force
exerted on a floating body is equal to the weight of the liquid volume displaced by
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and θA,c = 155◦. Each curve ends at a high α, where the clamped end is wet due to the elevated
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Figure 8. Downward vertical force per unit width exerted at the clamped end in static
equilibrium (solid lines) with the parameter values lc/L = 0.0545 and lec/L = 9.68. Dotted lines
correspond to the vertical force acting on a rigid sheet with the same lc/L. Each curve ends
when θf reaches θA,c , onset of penetration. (a) θA,c = 95◦. (b) θA,c = 155◦. Insets: contribution
of each force component to the total force. (I) The surface tension force at the contact line on
the down face; (II) the surface tension force at the free end; and (III) the hydrostatic pressure
force, for α =75◦.

the meniscus and by the solid body. The downward force due to the lifting of the
meniscus at x = xm is not balanced until h0/lc becomes sufficiently large that the
weight of the displaced liquid volume facing the up face equals that of the elevated
water weight behind the down face. However, when the sheet is superhydrophobic
as in figure 8(b), it is supported upward by a liquid surface in most configurations
and the magnitude of the force increases with h0/lc. Comparing the maximum load
that the liquid surface can support just before the penetration occurs, little difference
between the flexible and rigid sheets is observed in figure 8(a), when the sheets are
moderately hydrophobic. However, as seen in figure 8(b), one needs to exert a greater
force to sink flexible sheets than rigid ones when the sheets are highly hydrophobic.
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Although the rigid sheets support more load than the flexible ones under the same
depression distance h0/lc, the flexible sheets can be depressed deeper before θf reaches
θA,c, leading to an increase of the displaced volume of liquid. The inset of figure 8(b)
reveals that the hydrostatic pressure force is dominant over surface tension forces
when a superhydrophobic sheet is lowered a considerable amount.

3. Discussion
We have presented a theory to predict the deflection of floating flexible sheets

clamped at one end and corroborated the results using experiments. Further, we
calculated the force at the clamped end, to find that flexible sheets can support more
load than rigid ones when the sheets are highly hydrophobic owing to increased
volume of the displaced liquid. Our focus in this paper has been on the sheet-shaped
objects. Thus when one considers the bending of straight or tapered cylinders, such as
the legs of water-walking arthropods and hairs covering those legs, the theory needs to
be modified. For long thin cylinders, the surface tension force acting along the cylinder
side dominates the hydrostatic force. A scaling law can be readily constructed for the
deformation δ of a cylinder of length L and diameter D lowered a distance h0 from
the unperturbed free surface with clamped angle α, using the balance of the torque
due to surface tension σh0L tanα with BDδ/L2, where B is the bending stiffness per
unit diameter of the cylinder. We then obtain δ/L ∼ (h0/D)(L/lec)

2 tan α. The vertical
forces due to the surface tension along the side of a flexible cylinder and of a rigid
cylinder are scaled as Fv,f ∼ ρgh2

f lc tan α and Fv,r ∼ ρgh2
0lc tan α, respectively. Thus

Fv,f /Fv,r ∼ [1 − b(L/D)(L/lec)
2 tan α sinα]2, where b is a constant. A rigorous free

boundary problem needs to be solved to obtain the detailed solutions of the shapes of
the cylinder and the surrounding menisci and the force, which requires complicated
geometric considerations for the contact of the meniscus with the circular cylinder
wall. The maximum load that the cylinder can support before sinking can be obtained
when the critical sinking condition of the cylinder is determined. Our theory can also
be extended to more generalized floating situations in addition to the current obliquely
clamped end condition.

This work was supported by a Korea Research Foundation grant (KRF-2007-412-
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