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A Remark on Partial Regularity of
Minimizers of Quasiconvex Integrals
of Higher Order

M. Guiporzi *)

SUMMARY. - We prove partial regularity of minimizers of strictly
quasiconvez functionals of the form I(u) = [, F(D*u) dz, where
the integrand grows as |€|P.

1. Introduction

In this paper we study the partial regularity for minimizers of func-
tionals of the following type

I(u) = /QF(Dku) dz (1)

where  is an open bounded subset of R?, F is a C? function, u €
WkP(Q;RY) with p > 1 and k& > 1. Many authors investigated the
case k = 1 assuming F either convex (see for instance [11]) or more
generally quasiconvex. In particular the major breakthrough in the
latter framework is due to Evans [7] who proved the regularity of
minimizers under the following hypothesis:

FEOI<CU+IEP).,  p=2: 0
D2F(E)] < O+ [€72): ()

[ [F@+ v+ Do) 5 (D62 dy < [ P+ Do) dy.
? ? (i)
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for all ¢ € M™*N and ¢ € C}(Q;RY) with v > 0. However it should
be mentioned that many natural examples of quasiconvex integrals
satisfing (i) and (iii) but not (ii) can be found in literature, see for
instance (2) below. Anyway in [2] it is shown that Evans’ result still
holds if growth condition (ii) is dropped.
The first examples of genuine quasiconvex functionals with sub-
quadratic growth i.e. when p € (1,2) have been discovered few
years later (see e.g. [14]). As much as concerns the regularity of
minimizers in the subquadratic case we refer to [5];

The aim of this paper is to prove the C*7 partial regularity
of minimizers of functional (1), assuming F' a C? integrand with
polinomial growth

p—1
3

IDF(¢)] < L1+ [¢*) (H1)

verifying the condition

[ [F@© -+ v+ 1050) T 047 dy < | P&+ D o).
Q Q (H2)

for any ¢ € M™*N and ¢ € CF(Q;RY), with v > 0. It is well known
that when k = 1 quasiconvexity, i.e. (H2) with v = 0, together with
(i) is equivalent to (H1), see [13]. On the other hand if £ > 1 this
equivalence has not yet been proved except in the special case k = 2
(see [12]).

In view of applications, the regularity results obtained in this paper
applies to integral functionals such as

I(u) = /Q D2u(y)|? + /Aot (D%u(y)) dy, 2)

where u : Q C R? — R.

As a common feature in this framework partial regularity is achieved
through the decay estimate for the excess function, which if p = 2,
is given by

Bz, R) = ][ | DFu — (DFu) g dy .
Bpg

The key point in the proof is to show that if at some point z E(z, R)
is sufficiently small then E(z, p) decays like p? as p goes to zero.
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2. Notation and preliminary results

In the following € is an open bounded subset of R”, Br(z) the ball
{y eR" : |y —z| < R} and

(W = ]{3 )y

where u is an integrable function. Here and in the following when no
confusion arises we may denote by Bg the ball of center 0 and radious
R. Givenp > 1 and u € WFP(Q;RN) with k > 1, P(y) = Py(z, R;y)
stands for the unique polynomial of degree k£ — 1 such that

/ DY(u(y) — P(y))dy =0 1=1,....k—1.
Br(z)

Its coefficients depend on z, R and obviously also the derivatives
of u; for more details on such polynomial see for example [9] pages
79-80. Whenever it is not ambigous we may omit the dependence of
P on R, z and on u. The dimension of the simmetric space in which
DFvy takes value is m = (Zi“’f)

Let V be the function defined by

V(E) = (1+[¢) 7 ¢ (3)

LEMMA 2.1. Letp > 1 and let V : R™ — R™ be the function defined
by (3). Then for any &, n € R™ and t > 0 we have

|V ()] < max{t, 2}V (€)]; (4)

VE+m < (VO +[Vn)); (5)

V(&) = V)| < dV(E—n); (6)

max{|¢], [€]2} < |V(€)| < cmax{|¢], [¢]5} if p>2  (6a)
cmin{|¢[, |62} < [V(§)] <min{l¢|, ¢ if p<2  (6b)
dé 1l < o L < e =l ®)

with constants ¢ and C depending only on p and m. Moreover for
every M > 0, there exists C(p, M) such that

V(€ =n) < elp, M)IV(E) =V(n)| if min{[¢],|n[} <M. (9)
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Proof. If p < 2 we refer to lemma 1.1 [5], in the other case note that

€11 +1€1"27) < [V(©)] < elp)[e](1 + [¢]7),

so (4)—(6a) follow easily; (8) can be proved in the same way as in [4],
and (9) follows from the previous one (see [5]). O

We are now interested in a Sobolev-Poincaré type inequality on balls
for the function V. In [5] the authors were able to prove such in-
equality but paying something in terms of enlarging the radius of the
integration domain. By induction it is easy to extend the result to
higher order derivatives.

PROPOSITION 2.2. Let p > 1, 2 > a > max{%, 1}, and u €
WHP(Bgip(z), RN). If P is the polynomial of degree k — 1 s.t.

/ D'(u—P)dy=0 1=0,....,k—1,> (10)
B3IR(:E)

then 0 = o(n,a,p) > 0 and ¢ = c¢(p,n, k) exist such that

1
I, Al40)  \ 3+
(. ()
B3lR(m) R
D
B3zm g(z)

Rk—m
forl=0,....k—1andm=101+4+1,... k.

’ dy)a, (1)

Proof. Setting v(y) = u(m+Ry)}ng(m+Ry), we may assume R =1, z =
0. For [ > 0 and m = [+ 1 then the result is Theorem 2.4 in [5],
which, in a slightly modified version, also applies to the case p > 2.

Suppose then m > 1, let us prove it for m + 1. Letting w = D™wv,
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we have

Dm |2 1+40) dy)

1

2(1+0)
— ¢ < w)[2 1+a)dy) *
B3m

1

wu%@“s{f Vo)

Q=

O

The next lemma is a straightforward generalization of Lemma 3.1,
Chap. 5 in [9] using (4) in place of homogenity.

LEMMA 2.3. Let h : [r/2,7] = [0, 00] be a bounded function such that

forallrj2<t<s<r
2
91(y)
1% d
stJ‘“

h(t) <6h(s)+ ) ¢
2,

where gy € LP(B,), 0 < 0 < 1, ¢; > 0 and at least one is non zero.
Then a constant C = C(0) exists such that
2
>‘ dy.

h(r/2) < C - c % ai(y)
>, (%

From the previous two lemmas we can obtain the next higher

integrability result.

PROPOSITION 2.4. Let g : R™M — R be a continuous function satis-
fying

9(6)] < LIVOO)P, (12)
v [ voDraRa < [ o'y (13)
Q Q
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for all ¢ € Wéf’p(Q;RN) and for some L, v, A > 0. Letp > 1 and
u € WEP(Q;RN) be such that

/ g(D*u) dy < / g(D*u+DFg)dy Vo€ WiP(RY), (14)
Q Q

then there exist ¢, 0 > 0 depending neither on A nor on u such that
if BR(m) cQ

1+6
][ |V()\Dku)|2(1+5)dy§c(][ |V()\Dku)|2dy) . (15)
Bp (v) Br(z)

Proof. As usual we may assume z = 0. Fixed Bgr, CC Q, let § <
t < s <randd € CEBs) be a cut—off function, 0 <9 < 1,9 =1

on B; and |D'Y| < ﬁ Set

¢1=9(u—P); ¢ =(1—=9)(u—P),

where P is the polynomial of the Sobolev-Poincaré inequality asso-
ciated to u, see (10) with R = r. Since DFu = D*¢; + D¥¢5, from
(13), (14), (12) and the same argument of Lemma I1.4 in [2], we get

”/s VDR dy < [

< / 9(DF o) dy + / g(DFu — D¥y) — g(DFu) dy
Bs\B: Bs\B:

oD ) dy = [ g(DFu—Drgs)dy
<1 {IVOD ) P VD u = DX o)) +V D ) L.
Bs\Bt
By this inequality and (5) we obtain

VoDl < [ WODPdy<e [ VD) dy
By Bs BS\Bt

o, ul oo (E5)

“Filling the hole” by adding
¢ [ |[V(ADFu)|? dy

By

2
dy.
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to both sides and dividing by ¢+ 1 we get by lemma 2.3

/B |V (AD*u)|? < sz;/ 1% <AM)

rl
and now using the Holder and the Sobolev-Poincaré inequalities

7[ |V<ADku>|2s(][ |V<AD’“u)|a) ,
B B3kT

where max{%,1} < a < 2. By a modified version of the Gehring
Lemma due to Giaquinta Modica (see [9] Proposition 1.1, Chap 5),
we get the result. O

2
dy,

T
2
T
2

Next Proposition is a mere adaptation of the one obtained in
[5] regarding linear elliptic system of the second order. We recall
that the theory valid for second order linear elliptic systems can be
extended to higher order ones (see [9] note 5 pag. 76).

PROPOSITION 2.5. Let u € W1 (Q;R™) satisfy the linear system
/QA;%DGUZDW dy =0, Vo € CE(Q;RY),
where a, B are multiindeces of lenght k, Agﬂ are constants and satisfy
the Legendre-Hadamard condition:
Agﬁki)\jvavg > vAPo/*  forany A e RN, v eR".
Then u is C* and for all Br(z) € Q

C
sup |D*ul < T [ullwha (B (@) mv)- (16)

B%(m)

Let f: R™ — R™ be a locally integrable function. The Hardy—
Littlewood maximal function M (f) is defined by

M(f)(z) = sup ]{9 Wl

T

If ¢ > 1, such function is a continuous operator from L? to L?. The
next result is proved in [5].
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LEMMA 2.6. Let p > 1 and a > max{1, %}, then there exists ¢ =
c(a,p,n) such that if f: R* — RN is measurable, then

[ vonerray<e [ vinedy

The following Lemma is a slightly modified version for higher
derivatives of the approximation result proved in [3].

LEMMA 2.7. Let u € WEP(R*;R™), with p > 1. For every K > 0,
set

Hy ={y € R" : [M(D"u)(y)| < K}.

Then a function w € WE(R*; RN) exists such that
”Dkaoo < cK;
w=u on Hg;

|| DFullp
Kr

IR\ Hg| <

with ¢ depending on n, N, p.

We need also a selection Lemma. For the proof we refer to Eisen

[6].

LEMMA 2.8. Let G be a measurable subset of R, with meas(G) <
+oo. Assume (Mjy) is a sequence of measurable subsets of G such
that, for some € > 0 the following estimate holds

measMp, > ¢ for all heN.

Then a subsequence (My, ) exists such that N My, # 0.

3. Proof of the main result

Before stating the main Theorem we need a technical lemma, see [2].
Remark also that the proof of Lemma 2 in [2] holds for 1 < p < 2 as
well.
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LEMMA 3.1. Let f: R® — R be a C? function satisfying for any
EeR?
p=1
IDFEI < L +1€°) 7,

with p > 1. Then for any M > O there exist a constant ¢ = ¢(M, p, L)
such that if we set for any A >0 and A € R" with |A| < M

Fan(€) = A72[f(A+XE) — f(A) = ADf(A)E],

then s
| Faa(€)] < e(1+XE7) 2 €)%

We recall that u € W*P(Q; RY) is a minimum point for

HMzAFw%@My (17)
if
I(u) < I(u+ ) (18)

for every ¢ € Wéc’p(Q; RM).

THEOREM 3.2. Let u € WEP(Q;RN), p > 1 be a solution of the
minimum problem (18) and F be a C? function verifying (H1) and
(H2). Then, there exists an open set Qo € Q with meas(?\ Qy) =0
such that u € Ck’V(QO;]RN) for any v < 1.

loc

REMARK 3.3. In the non quadratic case it is convenient to use as
excess function

E@anf V(DFu) — V((D*u)e )P dy.  (19)
Bpr(z)
Indeed when 2 < p < oo it can be easily verified that
c][ |DFu — (DFu)y gl + | DFu — (DFu)y gl dy < E(, R)
Br(z)
<C |DFu — (D*u)y g|P + | D*u — (D¥u) 4 | dy,

Bpg(z)

for some constants C > ¢ > 0
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PROPOSITION 3.4. Let F' and u satisfy the hypotheses of Theorem
3.2. Given M > 0, a constant Cyy exists such that, for all 0 < 7 <

ﬁ, there exists € = e(1, M) such that, if
|(D*u)p r| < M and E(z,R) < e, (20)
then
E(z,7R) < Cy7m’E(z, R). (21)

The proof passes through various steps and follows closely the
one due to Acerbi-Fusco [2] (and [5] in the subquadratic case) where
in order to avoid Caccioppoli estimate, which would require a control
on the second order derivatives of F', they make use of the higher
integrability result for minima of non coercive functionals.

Proof. Fixed M and 7 we will determine C; later. By contradiction
assume there are z;, and R, with Bpg, (z}) C €2 for each h such that

|(D* )z my |, < M, lim By, Ry) =0, (22)
E(zp, TRy) > Cym2E(zp, Ry,). (23)

Let Ap = (D*u)y,r,, A2 = E(zp, Rp,) and let P be the polynomial
such that
D'(u—P)=0 1=0,..., k.

BRh (mh)

Step 1. Blow-up. If we set

_u(zp + Rpy) — P(zp + Rpy)
Uh(y) - Rk>\h )
h

then

Doy =0 1=0,....k (24)
B1

and
DFu(zp, + Rpy) — Ap,

DFyy, =
Up, >\h
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Since from (9) and (22)

1 1
3z [V (AnD¥vy) 2 dy = 2z |V (D*u) — (D*u) 4, v, )| dy
h Y Bi h Y Bry, (z1)
c(M
< LD D) = V(D )y P dy = 1), (29
BRh(mh)

(6a) and (25) imply that
/ {|Dkvh|2 + A2_1|Dkvh|p} dy <c if 2<p< oo, (26)
B1
/ | DEup|P dy < ¢ if1<p<2. (27)
B1
In particular

]{? | DFuy|? < e, (28)
1

where, here and in the following, ¢ = min{2,p}. Hence by (24),
possibly passing to not relabelled subsequences

vy = v WEUBLERY), Ay, — A, |A| < M. (29)

Step 2. v solves a linear system. Since u is a minimum point for
I(-), rescaling the Euler equation in terms of vy, we get

OF
B, 98

(An + M D on) Do’ dy =0, V¢ € Cg(BiRY),
where || = k. Here and in the sequel we use the convetion that
repeted indeces are summed up.

_oF
ol

(Ap + A DFuy)

1 [3F (43)| Dudi dy = 0.

An JB, 1O
Splitting By as

Ef UE; ={y € By : \p|D*up| > 1} U{y € By : \y|D¥up| < 1},
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from (28), we get

|E;| g/B HIALESONS (30)
1
Hence
1 OF & ;
» g (Ap + A D vp) — oer (Ah)||Da¢ | dy
o(L, M)
<

< kgl [ @ T D o dy
E+

h
-1

5 =
Sc<L,M>||D’ws||oo{'A Lt ([ ptar) }
h B

From (H1) and (20) we claim that the last term of the latter in-
equality vanishes as h — 00. Indeed for 2 < p < oc we have that
g = min{p,2} = 2 so the right hand side of the previous estimate
reduces to

p—1
C(L,M)IIDkélloo/\h{lJr </ /\ﬁ2|Dkvhlp> ’ },
By

because of (30) and this goes to zero by (26). Similarly, for 1 < p < 2,
we have that ¢ = p and

p=1
_ p
(L, M)||D* || A0™! {1+ </B |D’%h|1’) } =0
1

because of (30) and (27). We have then

1 oF oF .
— [(%a (Ap + M DFvy) — oer (Ap)]Dod" dy
2 2 . .
/ / oF Ap + S)thk'uh) — 8. F : (Ah)]DﬂviDaqéZ ds
- ) agag 0106

O°F . .
—|—/ - (A Dsv) Do dy = I, + II,,.
b 6&38%( n)Dgvy D' dy = 1), h
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We may suppose \,D*v, — 0 a.e., so that, as D?F is continu-

ous, I, — 0. On the other hand (30) implies that the charac-

teristic functions 1,- — 1 in L* for all 4 < oo. Then II;, —
h

I5, D?F(A)D*vDF¢$ dy. Finally v satysfies
O*F
B, 0¢LOE)

(A)Dyv' D¢’ = 0.

It is well known that (H1) and (H2) yield

O*F

(v, M)|N?||v]?F < —
o€ 0€]

(DX N vaus < (M)A |vf*,

hence from Proposition 2.5 v is C*°. Furthermore from the theory
of linear elliptic system (see [9] Theorem 2.1 chap 3), and (16) if
0 <7 <1/2 we have

7[ Dy — (DF). 2 dy < o(M)7? 7[ IDEy — (DEv) . 2 dy
B 2

1
2
< o(M)7 sup [ DMo]? < (M7 DMo[1% i, oy < € (M)7
(31)

Step 3. Higher integrability. If we set
Fu(€) = N2 [F(An + M) — F(An) = MDF(A)E]  (32)

from (H1), (H2) and Lemma 3.1 it follows that

m@l < O woneP, (33)
h
[ A0tz 5 [ vountor, (34)
By h Y/ Bi

for every ¢ € CF(By;RY). For any 0 < r < 1, set

I'(w) = / Fy(Dru(y)) dy.



14 M. GUIDORZI

One can then easily verify that v, is a minimum for I”(-). Hence, by
Proposition 2.4 applied to g(¢£) = A7 F,(¢) and inequalities (25) and
(9)

1+46
][ |V()\thvh)|2(1+5)dy§c<][ |V()\thfuh|2> dy
B B1

’ 1+6
- (7[ V(Dhu - 4y) dy|2>
BRh(xh)

140
< (M) / [V (D*u) — V(Ap)[ < en2H),
BRh (th)

(35)

From (6a) and the very same argument that yields (28), it follows
that (D*vy,);, is bounded in L‘I(H‘S)(B%;Rm]v ).

Step 4. Upper bound. Fixed r < 3%, it is not restrictive to assume

that

lim sup[I;l('uh) — I;l('u)]
h

exists. We claim that this limit is 0. Choose s < r and take 9 €
C¥(B,) such that 0 <9 <1, 9 = 1 on By and |D'9| < ¢/(r — s)! for
l=1,... k. If we set ¢ = max{2,p} and ¢, = (v — vp)¥, by (4),
(5), (33) and the minimality of vy, it follows
IMop) = I} (v) < I (vp + ¢p) — I)'(v)
= / [Fy(DFvy, + DF¢y) — Fy(DFv)] dy
B, \B;

C

IN

2 [V (A D )2 + |V (A D*((vp, — v)9) + DFoy)|?] dy
h VY By\Bs

C
<5 /.., (VDR £V OuD o)
h T 8

k1
1 z 2
+ 12% WW(MD (v — )] ) dy .
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Now since v is smooth on By, it follows that

1

Vi
A JB,\B,

a
V(A D*0|?dy < ¢ {1 + <sup IDkvl) } (r—s)
B,

because of (4) if 2 < p < oo and inequality [V ()] < €] if 1 <p < 2.
From (35) we get

/ IV O Drun) 2 dy
BT\BS

1
+3
g(/ |V()\thvh)|2(1+5)) B, \ By|TH
BT\BS

)
<cAZ(r — s)T+5.

As much as concerns the remaining summands we distiguish now
three cases.

A) 2<p<o

Denoting by P, the polynomial of degree k—1 such that fBl DYP, —
(vn)) = 0 for [ < k and setting

r>p, if P

then p € (0,1) exists such that 1/p = p/p* + (1 — p)/2. From (6a)
we deduce that

(AVARWAN

~3 ~I3

1
3/, s [V(AuD (v — vp))* dy
h T el

< c/ |DY (v — vp) > dy + c/ A£72|Dl(v —op)|Pdy = 1Ij, + II,.
B By
(36)
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Now

i)
2

;D(12—M)
I, < A2 </ |D! (v — 'uh)|2) <
By
<o ([ D= - m)
By
E%
* p
e L
B,

1 (26)
Sckgﬁ </ |Dkvh|q) < CAEZD_Q)O_N)’
By

o

IS
= =

i)

D= )

E3

=

where we have used the Sobolev-Poincaré inequality, and the fact
that D!v, converges to D'v strongly L? for I < k. As p < 1, then
limy Iy, + I, = 0.

p=2

It reduces to Ij,.

C) 1<p<2

Denoting by P, the polynomial of Proposition 2.2 with R = 37%,
z =0 and u = v — vy, let 6 be such that %:04—21;

(H_i). Then since
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V(&) < [¢] if p < 2, from the smoothness of v and from (25), we get

/ VWD (o — o)) dy
BT\BS
20
< (/ [V (AD (v —vp))] dy)
BT\BS
16
140
X (/ V(A D' (v — vy))[20F9) dy)
BT\BS
20
<o ( / D' (v — o) dy>
BT\BS
16
- e 2(1-)
x / VWD (0 o) — Ba))PO) dy oy
Bai—k

20
< el ( / D (v = op) dy>
B.,\BS

X </B1 [V (A DE (v, —v))|? dy + |>\h|2) 1-9

20
<Al </ | D! (v —vh)|dy> .
B1

where we used the fact that

D 12(1 2(1+
/B | Py | (1+0) dy < ¢||lv, — Ul‘V[(/k—(IT?P(Bl;RN) <ec
1

Finally letting s go to r we prove the claim.

Step 5. Lower bound. We claim that if t < r < ﬁ then

1
lim sup ¥ [V (A (DFv — D¥up,))|? dy < climsup[I”(vy) — 1" (v)].
h h By h

Let ¢ € CF(By-1) be a cut-off function between B 1 and B,
3k 11 3
|Dlp| < ¢ for I < k. Set

Up = QUp; U= U
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We may assume that the exponent § given by the higher integrability
estimate (35) is always less or equal to the one, o, provided by the
Sobolev-Poincaré inequality. Therefore, by (5)

k
/ V(AW D" 5,27 dy < c/ Z IV (A Dloy) 20+ dy.
" B

3=k [=0

Now the summand corresponding to [ = k is bounded by c)\i(Hé)

because of (35) whereas, for [ =0,...,k — 1 we have that

/ [V (A Dlop) P dy < ¢ (/
B._1 B

3—

1446

1+o
|V(Athvh)|2<”‘”dy>

3—k

<c {/ V(A D (v, — Py)) 21+ dy
B,k

1446

1+o
+ / VOWD' B2+ dy b
Bg_p

3l—

where P, is the polynomial associated to v; with R = 3! (see
Proposition 2.2). Then, on account either of (4) if 2 < p < oo, or of
V()] < €] if1 < p <2, it follows from the definition of P, that

/ V(A D' P20 dy < X217
Bai—k
As to the other terms, Proposition 2.2 yields that

/ VD! (o — PP+ dy < ¢ </
Bk

3l— 1

1+46
|V(AhD’fvh)|2) ,

and from inequality (25) we finally get
/n [V (A D¥p) 219V dy < CAZ(H‘S),

Now Lemma 2.6 implies that for any A

1

5 LIV D ) 10

+ ||V(>\hM(Dk6h))|‘L2(1+5)(Rn;RN):| <eg,
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so if we fix € > 0, there exists > 0 such that if G € R” is measurable
with |G| < 7 then

)\i%[/G|V()‘th"~Jh)|2dy+/G|V(>‘hM(Dk1~)h))|2dy <e. (37

By the continuity of the maximal function in L9 spaces, there exists

Ky = Ky(e) > 1 such that, setting S, = {y : |M(D*;,)(y)| > K}
for K > Ky, then

|Shl < for any h. (38)

Notice that for ¢ € (0,00), (1 + t2)¥t2 is increasing for every 1 <
p < 00 so from the definition of S}, and from the previous inequalities

p=2 1 -
15,11+ MK T K? < % /. V(MM (DF5) 2dy < e,
h h

hence for h large enough
1Sl < 75 (39)

By the approximation Lemma 2.7 a sequence wy, in W5 (R?;RV)
exists such that

wp =70, on R"\S, | DFwp |l < cK. (40)
Furthermore, wj, — w in W (R”; RV). Let us now consider

o) = IH0) = [12G) = I )+ [P )~ FP)]
+ I (w) = I} (v)] = Ry + B3 + Ry.
By (37) and (38) we have

1

5 /. [V (M D¥y))? < e,
h h

and for every K > Ky(e), there is hg = hg(g) such that

1 p=2
h>hy = A—%|V(Athwh)|2 = (1+ X3 |D*wp|?) "= | DFwy|? < 2K2.
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Hence,
1
lim sup — |V()\thwh)|2 < limsup2K?|Sy| < 4e

by (39). Finally from the previous estimates we have

lim sup |Ri‘| < lim sup/ [Fh(DkT)h) — Fh(Dkwh)] dy
h h SpN By

§limsup>\% [V (WD )2 + |V (A DFwy) 2dy < ce. (42)
h h Sk

Fix now t < s < r, and let ¥ be a cut-off function between B, and
B, just as in previous step. Setting

¢n = I (wp — w),

RY = [I)(wp) — I} (w + )]
+ [ w + ¢n) — I (w) — I (¢n)] + (1) ()]
= R+ Rl + Rl
by (5) we have

IR} < / |Fj (D*wy,) — Fy(D*w + D¥¢y)| dy

C

<
— )2
>\h

/ [W(Ahmwhn? VD W)
T BS

k—
X sV D! — ) d

By a similar argument employed for R? and by (40), since D'wj, —
Dw uniformly for | < k,

limsup|R}| < c¢(K)(r — s).
h
Notice that from the definition of F}, (see (32))

1 1
Rl = / dy / / D2F(Ap+ s \nD*wy,+tA, D¥¢p) DPwDF ¢y, ds dt,
r 0 0
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and, no matter what K is, this quantity goes to 0 since D?F (A, +
sApDFwy, 4 tA, D*¢y,) uniformly converges to D2F(A).
On the other hand from (34)

v
N2
>‘h
v
22
>‘h

Rl = /B F(D ) > /B VOuD )y

v

/ IV (D (uwy, — w)) 2dy.
Bs

Therefore, possibly passing to subsequences, we may suppose limy, Ré‘
exists and

limhalimsupi/ V (A (DFwy, — DFw))|?d
m > ey [ VO (DR - Dol
—c¢(K)(r—s).

To deal with R? we use a technique introduced in [1]: setting S =

{y € B, 1 v(y) # w(y)} and § = SN {y € B, : v(y) = limy va(y)},
then |S| = |S|. Arguing by contraddiction, we now prove that

IS < —. (44)
Were this inequality false, then by (39) for h large enough we would

have

but by Lemma 2.8 there is a ¥ € B, such that

7€ S\S, for infinitely many h.
Passing to this subsequence, we get

0() = limw(7) = limwn () = w(y)

hence 77 € S and (44) is proved. Now, since D*v = D¥w a.e. in
B, \ S, we have

Rl < /B B (DFu) = Fy (D) dy
»N

c
<

<5z [ WVOuDR)P 4V (mDrw)f dy
>‘h B,NS
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and by the very same argument used to prove (42) we get

limsup | R}| < ce.
h
By this inequality, (41), (42) and (43) we deduce

lim{1} (vy) — I} (v)] > lim sup 15 / |V (An(D*wy, — DFw)) [ dy
h h J Bs

—c(K)(r—s) —ce.

On the other hand

Ai% [ Vo0 = DH)
< A—h | VOW(D*w = Drun)dy
+ E e IV (An(DFwp, — D¥oy))2dy
+ A—h T On(Dt = DRy

=R} + R+ RY.
Arguing as for R?, we get
1

—2/ VRD )2 < ce,
BsNSy,

Rl <
8_>‘h

and similarly

RI < —2/ [V (A D¥9)|? < ece.
h 4/ BsNS

From these last estimates we finally conclude that

1
lim sup ¥ [V (A (D0 —DFup))2dy < eflimsup I (vy) — I (v)]
h h By h

+ce +¢(K)(r —s),
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and letting s — 7 and then ¢ — 0" we obtain the result.
Step 6. Conclusion of the proof. If 0 < 7 < ﬁ then by the
previous two steps

1
lim—z/ [V (M (DFo — DFup))2 =0
h )\h Bs
hence by (5), (6) and (31)
E R 1
lim supw =lim — 7[ |V (D*u) — V((Dku)mhm"h”?
h A A Brr, (1)
1
< lim sup — 7/ V(Do — (DFor),)P?
h An B,
<timsup 5 (VOW(DFo, — Dho))P
h >‘h B
+ V(Do = (D)) + V(D) — (DFop).))[*] dy
< cH(M)T* + li}]lrn|(Dkv)T — (DFup) |7

bl

and as D¥vy, — D*vy in L9(By; R™Y),

E
lim sup w < ¢ (M)7?,
h h
which contraddicts (24) if we choose Cyr = ¢*(M) O

The proof of Theorem 3.2 follows from the previuos Proposition
by a standard argument see [5] Theorem 3.2.
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