JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN

ELECTRICAL ENGINEERING

ECONOMIC LOAD DISPATCH SOLUTION USING GENETIC ALGORITHM
1 R. K. KAPDIA , 2 N. K. PATEL
1M.E. [Power System] Student, Department Of Electrical Engineering, Sankalchand Patel College Of Engineering, Visnagar, Gujarat
2 Asso. Professor, Department Of Electrical Engineering, Sankalchand Patel College Of Engineering, Visnagar, Gujarat
raajforyou@gmail.com, nk2510@rediffmail.com

ABSTRACT: The main objective of this paper is to solve Economic Load Dispatch problem, since it has been gaining importance. Economic Load Dispatch of electric power generation is to supply the committed generations so as to meet the required load demand at minimum operating cost while satisfying equality and inequality constraints. In this paper efficient MATLAB code is generated for the ELD problem in which generation cost and losses are minimized. Binary Genetic Algorithm is used and result is presented.

Keywords — Economic Load Dispatch, Genetic Algorithm, MATLAB
I: INTRODUCTION
Since after deregulation of Power System, it has been facing many problems. One of them is Economic Load Dispatch, as it is also a concern as the cost associated with generating and transmission of electrical energy keeps on increasing. In essence, it is an optimization problem and its main objective is to reduce the total generation cost of units, while satisfying various constraints.
Many optimization techniques were employed to solve ELD problem. Such as the lambda iteration (LI) method and gradient method have been applied to solve the ELD problems. An optimization technique known as Genetic Algorithms has emerged as an efficient candidate due to its flexibility and efficiency for many optimization problems.
The rest of the paper is organized as follows. In Section 2, mathematical modeling of the ELD problem is done and an objective function is formulated which requires to be optimized. The formulation of GA to solve ELD problem in MATLAB is presented in section 3, while simulation results are presented in Section 4 to demonstrate the performance of the algorithm for the ELD problem. Section 5 focuses on conclusions of the presented work.
II: ECONOMIC LOAD DISPATCH PROBLEM
A modern electric utility serves over a vast area of relatively large load density. The transmission losses in the power system may vary from 5 to 15% of total load. Therefore, it is essential to account for losses while developing an economic load dispatch policy.

The economic dispatch problem is defined so as to minimize the total operating cost of a power system while meeting the total load plus transmission losses within generator limits. Mathematically, the problem is defined as [1],
 Minimize

 [image: image1.png]28
Za,?} +b,P,+c, Rs/H

Subject to (i) the energy balance equation
 [image: image2.png]

 (ii) the inequality constraints

 [image: image3.png]

Where,

 [image: image5.png]a;,b;,c;

 are cost coefficient

 [image: image6.png]

 is load demand
 [image: image7.png]

 is real power generation and will act as a
 decision variable

 [image: image8.png]

 is power transmission loss
 Ng is number of generator buses
The simple but approximate method of expressing transmission loss as a function of generation power is through B-coefficients. This method uses the facts that under normal operating condition, the transmission loss is quadratic with the injected bus real power. The general form of the loss formula using B-coefficient is [1],
[image: image9.png]XNg Ng

Where,

 [image: image10.png]P;,

 are real power injections at the ith, jth
 buses
 [image: image11.png]

 are loss coefficients which are constant
 under certain assumed conditions
 Ng is number of generation buses
III: GENETIC ALGORITHM AND ELD PROBLEM FORMULATION
The genetic-based mechanism of problem solving was first conceived by John Holland of the University of Michigan, Ann Arbor, in 1965. Genetic algorithms owe their popularity as solutions in various search and optimization problems to their global perspective, widespread applicability, and inherent parallelism [2].
The genetic algorithm (GA) is a randomized search and optimization technique guided by the principle of natural genetic system. Recently, there has been a great deal of interest in GAs and their application to various engineering fields. GAs also lend themselves well to power system optimization problems, since they are known to exhibit robustness, require no auxiliary information, and can offer significant advantages in solution methodologies and optimization performance. GAs do not know how to derive a problem’s solution, but they do know, from the objective function, how close they are to a better solution [2].
Figure – (a) shows a flow chart for genetic algorithm to solve ELD problem and element of that is explained in context to the following case study.

Case Study – Find the generation schedule of a three generator power system to meet demand of 300 MW. The cost characteristics of generator are given as below [1].
[image: image12.png]).00525P + 8.663P; +328.13 Rs/H

[image: image13.png]).00609P,° + 10.040P, + 13691 Rs/H

[image: image14.png].00592P" + 9.760P; + 59.16 Rs/H

The cost characteristics are valid for the following minimum and maximum limits of power generation.

[image: image15.png]P™M™ — 50 MW, P™%* = 250

[image: image16.png]P =5 MW, P"e¥

[image: image17.png]P =15 MW, PR = 100

The transmission line B-coefficients are given as
[image: image18.png]0.000136 0.0000175 0.000184
0.0000175 0000154 0.000283
0.000184 0.000283 0.000161

[image: image19.emf]Start

Initialization of Population i.e.

Chromosomes

Function Calculation

Loss And Fitness Calculation

Sorting

Selection

Crossover and Mutation

Function Calculation

Loss And Fitness Calculation

Check Gen <= Maxgen

And

Check Tolr <= Error

No

Stop

Yes

Figure 1(a) Flowchart of GA for ELD problem

Initialization of Population
Chromosomes i.e. potential solutions for the function, means values for real power, are generated in MATLAB as below and these are binary strings of 0’s and 1’s.
chromosome = round(rand(pop_size,nbit));
Where,
 pop_size = number of chromosomes
 nbit = number of bit for each variable
 multiplied by number of variables

For our example we have three variables [image: image20.png]P, P, P,

and we suppose take 4 bit per variable then our chromosome will have length of 12 bit.
Now this population which is in binary form is converted in to real values by following equation.
[image: image21.png]x'"—x‘
Y

X (Decoded Value)

Where,

 n = number of bits
Suppose,

[image: image22.png]

, [image: image23.png]

 and the four bit string is[image: image24.png]

, then it can be decoded as follow,
[image: image25.png]20
X =2+
>

S
X10 =12

The precision attained with a four bit string is equal to (1/16) th of the search space [2].
Function Calculation
Now these chromosomes is decoded and the decoded values of real power generation is used and total function value is calculated, which is sum of all the three functions.
[image: image26.png]F=F+F+F

Loss and Fitness Calculation

As we move forward into the flow chart, the next calculation is of loss, losses are calculated using B-coefficient matrix and loss equation [1].
[image: image27.png]XNg Ng

Different elements of the above equation are explained before in section 2.
Now for Fitness calculation, steps are explained below.

Step 1 – Calculate error E,

[image: image28.png]Ne
1 }P,‘
Pp+ Pr— y

In this calculation numeric 1 indicates chromosome number 1, so it simply means that we have to calculate the same thing for all chromosomes i.e. for pop_size, as that is the length of chromosome.
Step 2 – Calculate fitness f,

[image: image29.png]

Where α is the scaling constant [1], we can take it’s value anywhere between 0 and 1.

Sorting

Here we sort all the initially generated chromosomes in ascending order as we want to minimize our function value by putting minimum at the top.
Selection

From this sorted matrix of chromosome we select some random number of chromosomes for crossover and mutation process, probably those which have good fitness value.
Selection process can be done by many ways like using roulette wheel, stochastic selection. One simple method of selection involves generation of random numbers.
Crossover And Mutation

Selected chromosomes, now onwards we will call them parents, are used to do crossover and mutation to produce children which are responsible for the global search property of the GA.

Crossover operator basically combines substructures of two parent chromosome to produce new structure which is child. There are many types of crossover like single point, double point, multipoint, uniform, matrix etc.

The final operator in the genetic algorithm is mutation; the mutation operator is used to inject new information into the population. Mutation changes randomly the new offspring. For binary mutation is preferred which switches a few randomly chosen bits from 1 to 0 and vice-a-versa. There are many types of mutation processes like uniform, boundary, non-uniform etc.

After mutation, the new generation is completed and the procedure begins again with the function calculation of the population.

One simple MATLAB code for single point crossover and uniform mutation is shown as under.
chromosome = round(rand(4,6))
str = ('Single Point CrossOver');
disp (str);
chromosome(3,:) = [chromosome(1,1:3) chromosome(2,4:6)]
chromosome(4,:) = [chromosome(2,1:3) chromosome(1,4:6)]
str = ('Random Mutation');
disp (str);
mutrow = randi([1,4],1,2)
mutcol = randi([1,5],1,2)
for i = 1:2
 chromosome(mutrow(i),mutcol(i)) = abs(chromosome(mutrow(i),mutcol(i))-1)
end
Result of this MATLAB code is shown below. We have generated four chromosomes with length of 6 bits, and from them taken first two for crossover and mutation.

chromosome =

 1 0 1 0 1 0

 1 1 0 1 0 0

 0 0 0 1 0 0

 0 0 0 0 1 0

Single Point CrossOver

chromosome =

 1 0 1 0 1 0

 1 1 0 1 0 0

 1 0 1 1 0 0

 0 0 0 0 1 0

chromosome =

 1 0 1 0 1 0

 1 1 0 1 0 0

 1 0 1 1 0 0

 1 1 0 0 1 0

Random Mutation

mutrow =

	Generation (MW)

	Gen 1
	Gen 2
	Gen 3

	218.9516
	38.7207
	55.5674

 1 4

mutcol =

 5 2

chromosome =

 1 0 1 0 0 0

 1 1 0 1 0 0

 1 0 1 1 0 0

 1 1 0 0 1 0

chromosome =

 1 0 1 0 0 0

 1 1 0 1 0 0

 1 0 1 1 0 0

 1 0 0 0 1 0

As shown above, crossover of 1st and 2nd string is done. 3rd string is compressed of first three bits of 1st and last three bits of 2nd string while 4th string is consisting first three bits of 2nd and last three bits of 1st string. Arrow shows 3rd and 4th strings.

Evaluation

After doing crossover and mutation, function value and fitness of all chromosomes is found, this is called Regeneration.
This regeneration process has two starting criteria, first maximum generation and error E check.

In first case if generation has reached some predefine generation value then this process will stop and the best chromosome will be our answer.
In second case if our error will become less than some predefine value then we will terminate the program and the best chromosome is our answer.

This paper has employed both this stopping criteria.

IV: TEST CASE AND SIMULATION RESULTS
The example taken in section 3 is test case for this paper. Efficient MATLAB codes are generated to solve the same example.

Parameters for MATLAB code are as under.

Population size = 100,

Mutation rate = 0.01,

Crossover probability = 0.5,

Maximum generation = 100

Error = 0.0001,

Alpha = 0.5,

Figure - (b) shows results for the example.

	Number of Generation
	Total Cost (Rs.)
	Losses (MW)
	Demand (MW)

	
	
	
	

	34
	3631.2
	13.2397
	300

Figure - (b) results for the example
V: Conclusion
This paper presents a method to solve economic dispatch problem using GA. From the above example & result, it is very clear that the generation cost is minimized in just 34 generations which shows the power of Genetic Algorithm and its ability to find global optimum solution to given problem. This program can be used to create full automatic program with live values to find optimum value of generation.

REFRENCES

[1] Kothari D. P., Dhillon J. S., “Power System Optimization”, 4th Edition, PHI Learning Private Limited, Jan 2009, pp 501-532.
[2] Padhy N. P., “Artificial Intelligence And Intelligent Systems“, 8th Edition, Oxford University Press, 2010, pp 459-531.
[3] Haupt Randy L., Haupt Sue E., “Practical Genetic Algorithm”, 2nd Edition, A John Wiley & Sons, Inc., Publications, 2004, pp 27-47.
[4] Jain Piyush, Swarnakar K. K., Dr. Wadhwani S., Dr. Wadhwani A. K., “Prohibited operating zones constraints with economic load dispatch using genetic algorithm.“, IJEIT, vol. 1, issue 3, March 2012.

[5] Ling S. H., Lan H. K., Leung FHF, and Lee Y. S., “Improved genetic algorithm for economic load dispatch with valve point loadings.”, IEEE, 2003
[6] Attia A.EL-Fergemy, “Solution of economic load dispatch problem with smooth and non-smooth fuel cost functions including line losses using genetic algorithm.”, IJCEE, vol. 3, no. 5, Oct. 2011.
3rd

2nd string

1st string

4th

1st string

2nd string

(1,5)

(4,2)

ISSN: 0975 – 6736| NOV 12 TO OCT 13 | VOLUME – 02, ISSUE - 02

Page 223

_1419765620.vsd
Start�

Initialization of Population i.e. Chromosomes�

Function Calculation�

Loss And Fitness Calculation�

Sorting�

Selection�

Crossover and Mutation�

Function Calculation�

Loss And Fitness Calculation�

Check Gen <= Maxgen
And
Check Tolr <= Error�

Yes�

No�

Stop�

