
TRE
R O M A

DIA

Universit�a degli Studi di Roma Tre

Dipartimento di Informatica e Automazione

Via della Vasca Navale� �� � ����� Roma� Italy

Exploiting SML for Experimenting with

Algebraic Algorithms�

The Example of p�adic Lifting

Wolfgang Gehrke and Carla Limongelli

RT�INF����� ����

Universit	a degli Studi di Roma Tre
Dipartimento di Informatica
Via della Vasca Navale 
�
I � ����� Roma� Italy

fwgehrke� limongelg�inf
uniroma�
it

both sponsored by Project MURST ��� �Calcolo Algebrico e Simbolico�



ABSTRACT

This paper shows the expressive power of the functional programming language Standard ML �SML� in
the context of computer algebra
 It is focused on a special application of the p�adic lifting technique� the
Hensel algorithm� that is utilized in a symbolic but also numeric context
 This experiment demonstrates
that SML provides a suitable frame for the implementation of abstract algebraic notions together with the
possibility to code related algorithms in a generic way on the corresponding level of abstraction


�



� Introduction

The functional programming language Standard ML �SML� originally evolved as a �meta�language� in
the context of logic deductions
 Meanwhile it was turned into a general purpose high�level programming
language �MTH��� MT���
 It provides imperative features� an exception mechanism� and a powerful
parametric module system �examples can be found in �Pau����


As the bene�ts for computer algebra resulting from the application of SML we see the following�

�
 The SML notation of algebraic notions comes very close to algebraic speci�cations

�
 The clear typing of all operations makes the understanding for a newcomer to the �eld of computer

algebra easier

�
 Since SML is widely applied for theorem proving systems this allows the integration of both compon�

ents� a computational one and a deductive one


Recently in �San��� SML was used to implement an expressive type system suitable for computer algebra

Furthermore also Extended ML �San
�� provides a promising language since it additionally allows logical
axioms inside signatures but it currently lacks an implementation


There are several reasons that carried us to apply SML in the �eld of computer algebra�

its strong polymorphic type system which enforces a considerable discipline in coding�
its advanced module systems which allows generic programming of algebraic notions on a corres�

ponding level of abstraction�
its formalized semantics which provides a mean to reason about SML programs


We can also take advantage of further extensions of the language like Concurrent ML �Rep��� or the
higher�order module system �Tof���


In order to verify our claim we have chosen the Hensel algorithm as a suitable candidate
 On the
one hand this algorithm is de�ned at a high level of abstraction
 On the other hand it is also suitable to
perform numeric computations


In this �rst experiment we have restricted the implementation to univariate polynomial root �nding

The general case of multivariate polynomials has been studied in detail in the literature �Lau
�� Yun���

A special case of this algorithm is the exact representation of algebraic numbers in a p�adic domain


Our implementation di�ers from existing computer algebra systems since there the algorithms presen�
ted in this paper are mostly built�in
 In contrast we make the implementation techniques visible and
provide di�erent instantiations for the same abstract notion
 Therefore the �nal algorithm can be easily
customized


From the functional point of view we contribute�

� a set of su�ciently general operations for polynomials in the context of the Hensel algorithm�

� an interesting example of the usefulness of higher�order functors�
� a �rst step towards a library for specialized computations with algebraic numbers


Nevertheless the e�ciency of such generic algorithms still has to be investigated

In Sec
 � we give a brief overview of the Hensel algorithm and in Sec
 � we summarize main features of

SML
 The Sec
 � provides details of the implementation and a discussion of design choices
 Furthermore we
describe how to exploit the functional style and SML modules
 We demonstrate how algebraic notions can
be implemented on an appropriate level of abstraction
 Examples and tests are shown in Sec
 �
 Finally
we conclude and suggest future work


� Some Background

Given a polynomial equation and a suitable initial approximationmod pt of its solution� with p being prime�
lifting algorithms compute a solution mod pt��� where p belongs to the domain where the polynomial is
de�ned
 They are based on Newton�s method for root �nding� translated into an appropriate algebraic
domain� that is in the most general case a commutative ring
 The following theorem states the convergence
of the lifting algorithm


�



Theorem� �Abstract Linear Lifting�	 Let I be a �nitely generated ideal in a commutative ring R

and f�� � � � � fn � R�x�� � � � � xr�� r � �� a�� � � � � ar � R with

fi�a�� � � � � ar� � � mod I� with i � �� � � � � n�

Further let U � �ui�j�� i � �� � � � � n� j � �� � � � � r� with ui�j � �fi
�fj

�a�� � � � � ar� � R �U is the Jacobian

matrix of f�� � � � � fn� evaluated at a�� � � � � ar	
 Assume that U is invertible mod I
 Then for each positive

integer t� there exist a
�t�
� � � � � � a

�t�
r � R� such that

fi�a
�t�
� � � � � � a�t�r � � � mod It� i � �� � � � � n and a

�t�
j � aj mod I� j � �� � � � � r�

Proof
 The proof is given by induction on t
 See �Lau
��
 ut

The approximation methods for p�adic construction are based on the following computational steps�

�
 start from an appropriate initial approximation�
�
 compute the �rst order Taylor series expansion�
�
 solve the obtained equation�
�
 �nd an update of the solution


The Hensel algorithm is based on this theorem and its constructive proof
 We will consider the re�
striction to univariate polynomials and algebraic numbers
 In particular we will assume R �Z�x�� I � �p�
the ideal generated by a prime number� a� � G�� a� � H� both in R �Z�x� and ��x�G�H� a polynomial

function
 According to the previous theorem� for any positive integer t� there exists G�t��H�t� � Z
�t�
p �x��

such that

G�t� � G mod p� and H�t� � H mod p�

Given F � Z�x�� n � N we want to �nd the solution of the equation ��x�G�H� � � where G�H��Z�x�
and x �Z


Factorization Division n�th root
F �x� �G�x� �H�x� � � F �x� � G�x� �Q�x� �H�x� � � F �x�� Gn�x� � �

� � �

HENSEL Symbolic

��x�G�H� � � Numeric

�

p�adic expansion
of algebraic numbers

F �x� � �

Fig� �� Applications of Hensel Method

Already at this less general level it is possible to appreciate the intrinsic abstraction of this method
that can solve di�erent computing problems
 These are either symbolic �factorization� n�th root of a
polynomial� polynomial division� or numeric �zero of a polynomial� p�adic expansion of an algebraic
number�� according to di�erent instantiations of its input parameters as the Fig
 � shows


� Functional Programming with SML

SML is a strict and impure functional programming language� i
e
 also functions are �rst�class objects

It is strict since the evaluation mechanism works based on the rule �call�by�value�
 It is impure since it
contains reference types� exceptions� and an imperative I�O mechanism


SML is a statically typed language using a sophisticated polymorphic type system where types can
be inferred at compile time
 The type system is accompanied by a highly advanced module system
 In

�



particular these modules make the language very attractive since they are a powerful tool to structure
large programs


Another important feature of SML is that it has a formal semantics� actually its de�nition �MTH���
MT��� proceeds in a completely formal style
 This is an important point when properties of SML programs
have to be proved
 A general introduction and examples of SML programs can be found in �Pau���


The module system as a mean to structure complex programs consists of�

structures as a way to bundle various declarations together�
signatures as the type checking information of structures�
functors as mappings from structures to structures


The descriptive power of signatures comes close to algebraic speci�cations
 Functors can describe generic
constructions of new structures in terms of given ones


This module discipline allows additionally separate compilation
 Finally it should be mentioned that
meanwhile the module concept has been generalized to the higher�order case �Tof���
 This means that
now also functors can be the input but also output of other functors and they have their own signatures


For our implementation we have been using the SML�NJ compiler �
 It comes together with several
useful tools� like a make facility� and already supports higher�order functors
 For our presentation we took
advantage of this generalization


� Organization of the Implementation

In the following we comment our implementation
 It should be noted that this is not just a description
of the code
 SML leads the programmer to structure the given problem clearly
 A deeper mathematical
understanding is necessary to achieve an appropriate implementation



	� Signatures for Algebraic Notions

The initial algebraic notion for our purpose is a ring and a commutative ring with unit
 These notions
can be represented in a straightforward fashion
 Here we present their signatures�

signature Ring � signature UnitCommutativeRing �
sig sig

type � include Ring
val eq � � � � �� bool val one � �
val r�s � � �� string end
val zero � �
val neg � � �� �
val plus � � � � �� �
val times � � � � �� �

end

In the signature Ring we make the equality between elements explicit in form of the function eq

together with a function r�s which allows to print ring elements
 A commutative ring with unit has just
one more constructor one for the type �
 Properties like commutativity are not represented in this coding


This last point is controversial
 Of course it would also be possible to maintain a set of properties for
every structure together with some rules how to compute new properties from given ones
 Nevertheless
this merely means a hard coding of mathematical theorems


Another approach to this problem could be the use of Extended ML as demonstrated in �San
��
 In
Extended ML signatures can contain logical axioms which describe further constraints
 Unfortunately
there does not exist a system to support Extended ML


We proceed to the next mathematical notion� an Euclidean domain
 This notion can be enriched
generically by the computation of the greatest common divisor and the extended Euclidean algorithm
 The
other two functions are special calls to the extended Euclidean algorithm


signature EuclideanDomain �
sig

structure ucr � UnitCommutativeRing
exception DivMod
val div � ucr�� � ucr�� �� ucr��
val mod � ucr�� � ucr�� �� ucr��

� Copyright ����� ����� ����� ����� ����� ����� ���	� ���
 by AT�T Bell Laboratories

�



end

signature EnrichedEuclideanDomain �
sig

include EuclideanDomain
val gcd � ucr�� � ucr�� �� ucr��
val eea � ucr�� � ucr�� �� ucr�� � ucr�� � ucr��
exception DiophFail
val dioph � ucr�� � ucr�� � ucr�� �� ucr�� � ucr��
exception NoEinv
val einv � ucr�� � ucr�� �� ucr��

end

This representation of an Euclidean domain is slightly di�erent from the literature as in �Lip
��
 We do
not provide a degree function since we do not need it explicitly
 div and mod are implemented as functions
and they are not just existential statements


The integers will be an example of a commutative ring with unit and also of an Euclidean domain

Furthermore we need modular arithmetic
 In case of prime numbers with these ingredients we can construct
a �nite commutative �eld


signature CommutativeField �
sig

structure ucr � UnitCommutativeRing
exception DivisionByZero
val inv � ucr�� �� ucr��
type integer
exception NotPrime
val char � integer

end

As already done for the Euclidean domain we make use of SML exceptions to code inadmissible
computations
 Intentionally we have an own type integer in order to be �exible in its implementation
which here is needed for coding the type for the characteristic
 The exception NotPrime will be used to
check a semantical requirement during the creation of a �nite �eld


Finally we present the signature for polynomials
 For some operations we make use of the built�in type
int for integers since these support other operations like comparison
 The substructures base and ucr

describe the rings of coe�cients and the univariate polynomials� resp


signature UniPolynomial �
sig

structure base � UnitCommutativeRing
structure ucr � UnitCommutativeRing
val simplify � ucr�� �� ucr��
val map � 	base�� �� base��
 �� ucr�� �� ucr��
val p�l � ucr�� �� base�� list
	� use dense list of coefficients beginning with the smallest �

val l�p � base�� list �� ucr��
val embed � base�� �� ucr��
exception NoProjection
val project � ucr�� �� base��
val degree � ucr�� �� int
val lcf � ucr�� �� base��
val subst � ucr�� � ucr�� �� ucr��
val shift � ucr�� � int �� ucr��
val derive � ucr�� �� ucr��
val power� ucr�� � int �� ucr��

end

signature PolynomialEuclideanDomain �
sig

include UniPolynomial
structure base� � CommutativeField
exception DivMod
val div � ucr�� � ucr�� �� ucr��
val mod � ucr�� � ucr�� �� ucr��

end

Several times we made use of substructures with the UnitCommutativeRing signature in order to
express better sharing constraints in the following code
 For the polynomials it was necessary to have
conversion functions between the polynomials and its coe�cients �embed and project� and polynomials
and a generally available type �p�l and l�p�
 Note also the generality of the substitution subst which
does not just take an element but an entire polynomial


�




	� Example of a Functor

To illustrate the module concept of SML we present an interesting functor in detail
 This is the enrichment
of an Euclidean domain by further functions
 The enrichment is coded here once and for all
 Later it can
be applied in di�erent situations for example for integers but also for polynomials over a commutative
ring


functor EnrichED	structure ED� EuclideanDomain
� EnrichedEuclideanDomain�
struct

local open ED�ucr
in

fun gcd	a� b
 � if eq	b� zero
 then a
else gcd	b� ED�mod	a� b



	� eea	a�b
 � 	x�y�z
 s�t� a�y 
 b�z � x � gcd	a�b
 �

fun eea	a� b
 �

let fun aux�loop		a�� a�
� 	s�� s�
� 	t�� t�

 �
if eq	a�� zero
 then 	a�� s�� t�

else let val q � ED�div	a�� a�


in
aux�loop		a�� plus	a�� neg	times	a�� q



�

	s�� plus	s�� neg	times	s�� q



�
	t�� plus	t�� neg	times	t�� q






end
in

aux�loop		a� b
� 	one� zero
� 	zero� one


end

	� solve the equation f�u 
 g�v � h if gcd	f�g
 divides h �

	� returns 	u� v
 �

exception DiophFail
fun dioph	f� g� h
 �

let val 	gcd� s� t
 � eea	f� g

val c � ED�div	h� gcd

val b � ED�div	g� gcd

val a � times	c� s

val q � ED�div	a� b

val r � ED�mod	a� b


in
	r� plus	times	c� t
�times	q� ED�div	f� gcd





end handle DivMod �� raise DiophFail
	� computes a�	��
 mod m if this is possible �

exception NoEinv
fun einv	a� m
 � let val 	gcd� s� t
 � eea	m� a


in if eq	gcd� one
 then ED�mod	t� m

else if eq	gcd� neg	one



then ED�mod	neg	t
� m

else raise NoEinv

end
open ED

end

The entire program contains some more auxiliary functors which we will not present in all detail here

These concern the construction of polynomials from rings or �elds and the creation of a �nite �eld
 The
latter is parameterized in an implementation of integers for more �exibility


Although we do not present the code we give the functor signatures
 We follow the style of higher�order
modules as suggested in �Tof���
 SML�NJ implements this module discipline� too


funsig Enrich 	structure ED � EuclideanDomain
 �
sig

include EnrichedEuclideanDomain
sharing ED�ucr � ucr

end
funsig UniPolys 	structure UCR � UnitCommutativeRing
�
sig

include UniPolynomial
sharing UCR � base

end
funsig UniPolyd 	structure CF � CommutativeField

functor UP � UniPolys
 �
sig

include PolynomialEuclideanDomain
sharing CF�ucr � base and CF � base�

end
funsig ModP 	structure IEED � EnrichedEuclideanDomain

val prime � IEED�ucr��
 �
sig

include CommutativeField
sharing type IEED�ucr�� � ucr�� and type IEED�ucr�� � integer

end

�



Ring

UnitCommutativeRing

EuclideanDomain

CommutativeField

UniPolynomial

UniPolynomialA UniPolynomialL

EnrichedEuclideanDomain

EnrichED

modP

PolynomialEuclideanDomain

UniPolyDomain

Fig� �� Main Signatures and Functors

When writing the functor with the signature UniPolys we have to decide the way of implementing
polynomials
 It has been done in two di�erent ways� with lists and with arrays
 Since the functor with the
signature UniPolyd makes use of the previous functor it is turned into a parameter


This functor UniPolydomain is a non�trivial example of an implementation using the higher�order style

On the one hand we want the �exibility of allowing di�erent implementations of polynomials� on the other
hand we do not want to code polynomials again
 This situation is characterized in that UniPolydomain
is an extension of a functor implementing polynomials


The relationship between the signatures and functors can be seen in the Fig
 �
 For the modP functor
there is a further parameter� a prime number
 As said before the UniPolyDomain functor is also paramet�
erized over a functor with the signature UniPolys


The dotted arrows indicate the inclusion relation between signatures
 The dashed arrows mean that
there is a substructure of the given signature
 The functors are shown by normal arrows



	� The Central Algorithm

The main algorithm is implemented in form of a single functor Hensel
 Its main input are a representation
of the integers and a prime number
 The interface of this functor is described in Fig
 �


Parameters Visible Visible Invisible
structure IEED structure IEED datatype �a result fun local power
val p structure IPol type result structure Convert
functor E Hensel structure MODP fun newton fun taylor
functor MP ��� �� structure MPOL fun factorize fun solve
functor UP structure MPol fun root fun hgen
functor UPD type integer type intpoly

Fig� �� Hensel Functor

All the other auxiliary structures are created internally with the help of the provided functors�






IEED a copy of the parameter�
IPol the integer polynomials�
MODP the �nite commutative �eld of characteristic p�
MPOL the polynomials over this �eld�
MPol these polynomials enriched by further operations


The type de�nitions integer and intpoly make use of these structures
 The signature hides a further
structure Convert which is needed for conversion between integers and modular numbers and for the
conversion of the corresponding polynomials


The main internal functions which are also hidden are�

taylor gives the Taylor series expansion�
solve computes the solution of the equation obtained by the Taylor series expansion and �nds a next

approximation�
hgen triggers the iteration of this process


The input of hgen is Phi� its derivation� the approximations for x� g� h and the number of iterations

This coding closely follows the Maple code as in �Lim���


The functions visible in the interface� newton� factorize� divide and root are all specialized calls to
hgen
 Since Phi is a function in the variables x�g�h the code uses a lambda abstraction
 The same applies
for the partial derivatives of Phi


This functional representation allows an easy way of implementing all the � special cases
 Furthermore
we can completely avoid multivariate polynomials which would make the code considerably more complex

The provided operations for univariate polynomials su�ce to code an arbitrary polynomial function


Parts of the code for the functor Hensel as the heart of the implementation can be found in the
Appendix
 The use of external functors is made explicit in the parameter list
 The other functors are
mainly routine implementations of the corresponding notion


� Example Instantiations and Tests

We have been instantiating the algorithm by providing di�erent alternative possibilities


Arithmetic
 it is possible to use the integer arithmetic provided by the compiler or instead a package
for arbitrary precision arithmetic�

Modular Arithmetic
 here it is possible to experiment with di�erent modular representation for num�
bers
 Once p is �xed we can decide to represent the numbers either as ��� p� �� �structure IntED���
or as ��bp�c� b

p

�c� �structure IntED���
Polynomials we can decide for di�erent implementation of polynomials
 In our case we decided to

implement them in two di�erent ways� by lists and arrays


The structures IntEE� and IntEE� result from applying the functor EnrichED to IntED� and IntED��
resp


We show how the di�erent versions of modular arithmetic are used
 We are going to instantiate the
functor Hensel and in this case the arithmetic we will use is given by the structure IntEE�


structure E� � Hensel	structure IEED � IntEE�
val p � �
functor E � EnrichED
functor MP � modP
functor UP � UniPolynomialL
functor UPD � UniPolyDomain


When we want to modify the number representation� the only necessary change is to alter this parameter

In this case IntEE� can be used


If we want to work with arrays instead of lists we only have to provide the functor UniPolynomialA
instead of UniPolynomialL
 This will instantiate the polynomial structures implemented as arrays


structure E�� � Hensel	structure IEED � IntEE�
val p � �
functor E � EnrichED
functor MP � modP
functor UP � UniPolynomialA
functor UPD � UniPolyDomain


�



Let us show now some examples of the application of the Hensel algorithm itself
 We present three
main examples� related to the zero of a polynomial� polynomial factorization and a root of a polynomial


Example �
 We want to �nd the complex root of the equation x� � � � �


� val x�� � E��newton	E��IPol�l�p	�������
� �� �
�
val x�� � Approx �	�����
�	�����
�	�����
�	�����
� � E��results

Here the structure E� is the one described in the previous example
 The function newton calls the function
hgen that is the core of the algorithm
 The function newton shown below� describes the shape of the
polynomial function � and its derivative by means of a lambda abstraction


fun newton	f� x�� r
 �
hgen		fn 	x�g�h
��IPol�subst	f�IPol�embed	x


�

		fn 	x�g�h
��IPol�subst	IPol�derive	f
�IPol�embed	x


�
	fn 	x�g�h
��IPol�ucr�zero
� 	� SINCE NOT NEEDED �

	fn 	x�g�h
��IPol�ucr�zero

� 	� SINCE NOT NEEDED �

x�� IPol�ucr�zero� IPol�ucr�zero� r


Since in this case the partial derivatives with respect to g and h are not used in the computation� we set
them to zero


� val x�� � E��newton	E��IPol�l�p	�������
� �� �
�
val x�� � Approx �	�����
�	�����
�	�����
�	�����
� � E��results

The results are the p�adic expansions of �i and �i


Example �
 For the following factorization we get an exact result


val x�� � E���factorize	E���IPol�l�p	������������������������
�
	E���IPol�l�p	���������
�E���IPol�l�p	��������

� �


step �
g � 
� �x�� 
�
h � 
� �x�� 
��x ��
step �
g � 
��x ��
h � 
��x ��
step �
g � ���x 
�
h � 
�

From the output of the result we can see that

�
x�G�H� � x
� � ��x� � ��x� � �
�x� � ���x� ��� �

�

x� � �� � 	� � 
�x� �� � 	� � 
�x� �� � 	�

�
�

�

x� � �x� �� � 	� � 
�x� �� � 	� � � � 	�

�

Example 

 The example of an exact root is shown below�

� val x�� � E��root		E��IPol�l�p	����������������
� �
�
E��IPol�l�p	�������
� �


exact result
step �
g � 
� �x�� 
��x 
�
h � 
�
step �
g � 
��x 
�
h � 
�

Again we can verify that�

�
x�G�H� � x
� � ��x� � �	x� � ��
x� �� �

�

x� � �x� �� � 	� � 
x� �� � 	��

�
�

Note that in the last two examples the polynomials have been represented by a list of coe�cients�
starting with the least signi�cant one� where this is the external form of coding polynomials and it does
not need to coincide with the internal representation


��



� Conclusions and Future Work

We have demonstrated the useful application of a high�level functional programming language to an
abstract algebraic algorithm� the p�adic lifting
 The implementation bene�ts from the functional style as
well as from the parametric modularity of the program
 SML provides means to describe the procedures
on the right level of abstraction


Furthermore this �exibility allows di�erent instantiations of the overall program
 Di�erent implement�
ations of integers can be used �built�in or arbitrary precision� as well as di�erent forms of modular
arithmetic �di�erent normal forms�
 Also the concrete implementation of polynomials can be altered using
lists or arrays for example


Because of its clear typing this implementation can also be used for teaching the Hensel algorithm

Di�erent implementation techniques for polynomials are another possible example
 The availability of
various instantiations allows a variety of practical tests


After a detailed performance analysis we plan to extend this kernel to a SML library for specialized
computations with algebraic numbers
 This performance analysis should not only investigate the use of
di�erent implementation methods
 Also the in�uence of generic programming on the performance has to
be considered


As an alternative such an implementation could be contrasted with a realization of computable complex
numbers in the style of �Vui
��
 Again both approaches have to be analyzed
 In form of libraries both are
highly desirable for performing exact scienti�c computations


References

�Lau��� M� Lauer� Computing by Homomorphic Images� In B� Buchberger� G�E� Collins� and R� Loos� editors�
Computer Algebra � Symbolic and Algebraic Computation� Springer�Verlag� �����

�Lim��� C� Limongelli� The Integration of Symbolic and Numeric Computation by p�adic Construction Methods�
PhD thesis� Universit�a degli Studi di Roma �La Sapienza�� �����

�Lip��� J�D� Lipson� Elements of Algebra and Algebraic Computing� Addison�Wesley Publishing Company�
�����

�MT��� R� Milner and M� Tofte� Commentary on Standard ML� MIT Press� �����
�MTH��� R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML� MIT Press� �����
�Pau��� L�C� Paulson� ML for the Working Programmer� Cambridge University Press� �����
�Rep��� J�H� Reppy� CML� A Higher�Order Concurrent Language� In SIGPLAN��� Conference on Programming

Language Design and Implementation� pages ������	� June �����
�San��� D� Sannella� Formal Program Development in Extended ML for the Working Programmer� Technical

Report ECS�LFCS�������� LFCS� Department of Computer Science� University of Edinburgh� December
�����

�San�	� P�S� Santas� A Type System for Computer Algebra� Journal of Symbolic Computation� ���������� ���	�
�Tof��� M� Tofte� Principal Signatures for Higher�Order Program Modules� Journal of Functional Programming�

�
�����	���	� July �����
�Vui��� J� Vuillemin� Exact Real Computer Arithmetic with Continued Fractions� Technical report� INRIA�

Rocquencourt� France� �����
�Yun��� D�Y�Y� Yun� The Hensel Lemma in Algebraic Manipulation� PhD thesis� Massachusetts Institute of

Technology� November �����

��



A Full Code of the Functor Hensel

functor Hensel	structure IEED � EnrichedEuclideanDomain
val p � IEED�ucr��
functor E � Enrich
functor MP � ModP
functor UP � UniPolys
functor UPD � UniPolyd
 � Hensel �

struct
structure IEED � IEED
structure IPol � UP	structure UCR � IEED�ucr

structure MODP � MP	structure IEED � IEED

val prime � p

structure MPOL � UPD	structure CF � MODP

functor UP � UP

structure MPol � E	structure ED � MPOL

type integer � IEED�ucr��
type intpoly � IPol�ucr��
	� ��� �

datatype �a result �

	� distinguish the type of the result �

Exact of �a

� Approx of �a
type results � 		integer � intpoly � intpoly
 list
 result
fun taylor 	x� g� h
 Phi Pder pp �

let val 	pdx� pdg� pdh
 � Pder
in

		IPol�map 	fn xx �� IEED�div	xx�pp

 	Phi	x� g� h


�
	pdx	x� g� h

� 	pdg	x� g� h

� 	pdh	x� g� h




end

fun solve 	x� g� h
 	phi� dx� dg� dh
 �
if 	IPol�ucr�eq	g�IPol�ucr�zero
 andalso

IPol�ucr�eq	h�IPol�ucr�zero

 then
	Convert�i�m	IEED�ucr�times

	IEED�einv	IPol�project	dx
� p
�
IEED�ucr�neg	IPol�project	phi



�

IPol�ucr�zero� IPol�ucr�zero

else

if IPol�ucr�eq	h� IPol�ucr�one
 then
	x�
Convert�mp�ip	MPol�div	MPol�ucr�neg

	Convert�ip�mp	phi

�
Convert�ip�mp	dg


�

IPol�ucr�zero

else

let val 	g�� h�
 �
MPol�dioph	Convert�ip�mp	dg
�

Convert�ip�mp	dh
�
MPol�ucr�neg	Convert�ip�mp	phi




in
	x� Convert�mp�ip	g�
� Convert�mp�ip	h�



end

	� global entrance point for all calls �

fun hgen	Phi� Pder� x�� g�� h�� r
 �

	� Phi as a function in x� g� and h
F and n are implicitly coded by Phi
Pder as a triple of functions in x� g� and h
representing the partial derivatives wrt x� g� h� resp�
�

let fun aux 	x� g� h
 r Res pp �

let val exact � IPol�ucr�eq		Phi	x�g�h

� IPol�ucr�zero

in

if 	r � �
 then
if exact then Exact	Res

else Approx	Res


else
if exact then Exact	Res

else

let val phi�exp � taylor 	x� g� h
 Phi Pder pp
val 	xs� gs� hs
 � solve 	x� g� h
 phi�exp
val nx � IEED�ucr�plus	x�

IEED�ucr�times	xs� pp


val ng � IPol�ucr�plus	g�

IPol�ucr�times	gs�IPol�embed	pp



val nh � IPol�ucr�plus	h�

IPol�ucr�times	hs�IPol�embed	pp



in

if 	IPol�ucr�eq		Phi	nx�ng�nh

�
IPol�ucr�zero

 then

��



Exact	Res � �	xs� gs� hs
�

else

aux 	nx� ng� nh
 	r � �

	Res � �	xs� gs� hs
�

	IEED�ucr�times	pp� p



end
end

in
aux 	x�� g�� h�
 	Integer�abs	r

 �	x�� g�� h�
� p

end
	� ��� �


end

This article was processed using the LATEX macro package with LLNCS style

��


