Implementation of Adaptive Sample Rate Kwan-Martin Notch
Filter Using Efficient Realizations of Reciprocal and
Squaring Circuit

Richard H. Strandberg, Jean-Claude Le Duc? Luis G. Bustamante,
Vojin G. Oklobdzija and Michael A. Soderstrand
Department of Electrical and Computer Engineering

University of California
Davis, CA 95616

Abstract

Adaptive algorithms often involve the use of di-
vide and square operations. Rather than implementing
generic dividers and multipliers in the adaptive section
for the adaptive sample rate notch filter, we have devel-
oped prototype architectures. We present a technique
of optimizing an implementation of the squarer. In the
reciprocal circuit presented, we show how a numerator
(scaling) can be easily incorporated into its design to
achieve a general purpose divider. Both realizations have
been demonstrated in an adaptive sample rate notch fil-
ter using Xilinx reconfigurable Field Programmable Gate
Arrays (FPGA). A comparison is made between generic
circuits and the proposed techniques. The results provide
a measure of the advantages of the proposed approaches
for use in adaptive signal processing.

1 Introduction

A significant problem in the mobile communica-
tions area is narrowband interference that cause diffi-
culties in decoding spread-spectrum BPSK signals. It
has been shown that a simple canonical form of second
order IIR notch filter can be adapted to eliminate nar-
rowband interference from broadband communication
signals [1]. Each notch stage is of the form:

Hy,(z) 1 — Hppr,(2)
1-r? 1—272

2 1-2ricosb;z=1 +r2z

(1)
= (2)

Hppr,(z)

where: r; is the pole radius of the i-th section, is 6;
= 27 is the angle of the poles on the unit circle
where w; is the center frequency of the i-th section

*Ecole Supérieure d’Ingénieur en Electrotechnique et Elec-
tronique, 93162 Noisy le Grand CEDEX FRANCE

1058-6393/95 $4.00 © 1995 IEEE

324

and w, is the sampling frequency. Instead of using
conventional adaptation where the filter coefficients
are updated, we use a fixed bandpass filter and adapt
the sample rate [2]. Our proposed adaptive sample
rate (ASR) notch cascadable section [3] is shown in
Figure 1. T(t) is the output of the last stage of the
cascade. The presence of an additional bandpass filter
and sensitivity filter, H,,(z), is required to implement
each cascade with an overall efficient architecture and
4L is the instantaineous LMS gradient of the i-th

aT,,
section.

() —] VAL

LU

a7(2)
dT,

Figure 1: Cascadable ASR notch filter section.

By selecting certain fixed values of r; and #;,
we can arrive at greatly simplified implementations of
Hpp,(z). For example, if we choose a value of r; =

%, then the z=2 term of the denominator of will be

g. The % term can be implemented by subtracting

one-eighth of the term from itself. We can accomplish
the % factor by simply shifting the bits 3 places. By
setting 6; = %, the 2~! term of Hpp, (2) is zero making
a multiplier and accumulator unnecessary. Finally, we

—r2 . .
implement the scale factor 1—;* = -11—6 by simply shift-
ing the bits 4 places. The resulting direct realization
of the bandpass filter contains no multipliers and is

shown in Figure 2.

y(®)

Figure 2: Implementation of bandpass filter.

Sensitivity filters are also second order IIR filters
with simple implementations. The sensitivity filters
are described by Equation 3.

2riz~ 1
1 —2ricosfiz=1 +r?z=2

Hy(2) = 3)

Using instantaneous values of the gradient does
not result in a sufficiently robust algorithm. We there-
fore add a first order forgetting filter, Hy,(2) to the
output of the sensitivity filters. The first order forget-
ting filter is described in Equation 4.
1- Ty

Hy(z) = Torpat 4)

where r; is the radius of the forgetting filter. Set-
ting r; = 3 or % allows us to implement Hy,(2)
with efficient realizations like the filters mentioned be-
fore. Adding a reciprocal circuit to limit the range of
the gradient speeds up convergence of the algorithm.
Both gradient-limiting circuit and forgetting filter are
shown in our proposed adaptive sample rate notch cas-
cadable section in Figure 3. Although we’'ve shown
so far that our technique enables us to implement
hardware-efficient digital filters, the gradient-limiting
option with forgetting filter increases our requirements
by four potentially large circuits: two multipliers, a
squarer and reciprocal. Next we present our results
for efficient realizations of the squarer and reciprocal.

2 Implementing Square Function

The square function with operand N can be
implemented by a table-lookup technique. However,
in our case this would require 256 entries of 16-bit
data requiring 512 bytes of ROM. Though this might
be an appropriate implementation elsewhere, in sys-
tems consisting of predetermined cells such as FPGAs
where each cell uses entire logic block, such a tech-
nique might exhaust the entire capacity of the FPGA

325

Figure 3: ASR cascadable section with gradient lim-
iting.

chip. Therefore, it may more economical to imple-
ment the square function in combinational logic. Al-
though one could use an 8-bit by 8-bit parallel multi-
plier. Given our intent is to use the square function
in several places, minimal hardware implementation is

desired [4].

2.1 Method

The method for minimal hardware implementa-
tion of a square function is based on the following
algorithm. Let us assume that we want to obtain a
square of a two bit binary number

X = T1Zg

(3)

We will treat X as a sum of two numbers such that:

(6)
where @ = 21,0 and b = 0,29 (and ”,” represents a
concatenation operation). In such a case:

X=a+b

X% = a?+ b + 2ab (7)
By substitution of a and b we obtain:
X? = 22,004 00, 22 + (z120), 00 (8)
Given z? = z;, X? becomes
X2 = [1?1 + (xle)]vOJ Zo (9)
which is then
X? = (z120), (2120),0, 2o (10)

We will shortly see that the realization of this
function is very simple and requires the use of only
two gates. Extending this concept to a more elaborate
case where X is an 8-bit number, as in our case, we
have:

X = T726Z5T423Z22120

(11)

where:

X = z?+x§+m§+z§+m§+z§+x%+zg
+2{z7z¢ + 725 + 724 + T7T3 + 2722
+z721 + 7% + TeZT5 + Tels + TeT3
+z6x2 + Tex1 + TeTo + T5T4 + TsT3
+Z522 + 2521 + T520 + T4x3 + 422
‘2421 + 420 + T3Z2 + 23T + T3Zp
+z2%1 + 220 + 120} (12)

we can rewrite this expression as:

X = 24zl 423 +ai+25+25+a% +25
+2{z7(z6 + T5s + T4 + £3 + T2 + 71 + T0)
+z6(Ts + £4 + T3 + T2 + 21 + o)
+25(24 + 23 + 22 + 71 + 20)
+z4(z3 + T2 + €1 + Zo)
+z3(z2 + 1 + o) + z2(x1 + o) + T170f13)

In binary form this becomes:

X? = £1,0,26,0,25,0,14,0,73,0,22,0,21,0, 7o +
(zrx6), (x725), (T724), (T723), (T722),
(z721), (£770),0,0,0,0,0,0,0,0 +
0,0, (zezs){zex4)(z623)(z622)(z671)(T6T0),
0,0,0,0,0,0,0 +
0,0,0,0,(zsz4)(zs523)(z572) (2521)(T520),
0,0,0,0,0,0 +
0,0,0,0,0,0,(z423){2422)(z471)(%420),0,0,0,0,0 +
0,0,0,0,0,0,0,0,(z3z2)(z371)(23%0),0,0,0,0 +
0,0,0,0,0,0,0,0,0,0,(z221)(22%0),0,0,0 +
0,0,0,0,0,0,0,0,0,0,0,0,(z1%0),0,0 (14)
Let us show only the relevant bit positions as 1’s. The
corresponding single bit pattern is:

1 1 1 1 1 1 1
111 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1
11 1 1 1
1

where the first row represents the individual squares
of the bits and the next four rows represent resulting
product bits. We can further compress this pattern by
moving bits up in the unfilled positions. The resulting
bit pattern is given below:

111 1 1 1 1 1 1 1 1 1 1
111 1 1 1 1 1 1 1 1
i1 1 1 1 1 1
11 1 1
1

326

If we were to use a parallel multiplier to produce
square function the corresponding partial product ma-
trix would look like the one given below:

11 11 1 1 1 1 1 1 1 1 1 1
111 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1
11 1 1 1 1 1
11 1 1 1
1 1 1
1

The depth of this partial product bit matrix is
8 versus 5 in our case. The summation of the par-
tial product bits and reduction of this matrix to two
operands would take 5 XOR gate equivalent delays in
the later case, while this can be done in 4 equivalent
XOR gate delays in our case. That means that the
this scheme would yield a faster implementation.

2.2 Implementation

Implementation of squaring function is relatively
simple and straightforward. Let us examine first a
square block for two bits. The bit pattern is:

)(2 = (271230),(.1}137:0),0,1}0 (15)

To implement X2 we need only two 2-input AND gates
(assuming that the input bits are available in both
polarities: true and complement) as shown in Figure

x1 x0
n
;)
s g
0
w
Y =
L
MSB LsB

Figure 4: Implementation of two-bit X? function.

In case of 8-bit operands the circuit is more complex
and it follows a design of a reduced parallel multiplier.
However, it can be simplified further as shown in the
steps to follow. Let us examine the partial product bit
matrix given in the Table 1.

Z7 Ie Ts T4 I3 T2 T Ty
L7T6 | T7T5 | T7X4 | T7T3 | T7X2 | 721 | T7Z0
TeLs | TeT4 | TeZ3 | TeT3 | TeZ2 | T6Z1 | TeZo
T5L4 | T5T3 | T5Z2 | T521 | T5Z
T4T3 | T4L2 | 42 | 24T
I3ZT2 | T3T1 | T3Z9
T2Z1 | 2%
T1iZp
Table 1: Partial product bit matrix resulting from an 8-bit X2 function.
Z7T6 | T7%6 | Texs | TeZs | T5Tq | TsZg | T4X3 | TaZ3 | Take | Taxe | Toxy | Tox1 ry To
T7ly | 724 | 2723 | T7X2 | T7X1 | T7Z0 | TeXo | T5L0 | TaZo | T3Zp | T2Zg | T1%0
Telyg | TeL3 | TeX2 | el | T5X1 | T4X1 | 3L
T5L3 | L5 | T4T2

Table 2: Simplified product bit matrix resulting from an 8-bit X2 function.

In the next step we have merged the terms where
there are z; and z;z; terms present in the same col-
umn. This results in reduction of column hight by one
where the term 7;z; replaces two terms, z; and z;z;,
and the term z;z; is added to the next column. The
resulting simplification is shown in Table 2.

Further simplification using the same method
would not reduce the number of entries in the column
given that all of them (in the middle) are already full.
From this point on we will use one row of 4:2 com-
pressors [5]-[6] before we sum the partial products in
the Carry Propagate Adder. The total delay for the
partial product reduction is equivalent to 3 XOR, gate
delays. This i1s 40 percent improvement in speed over
use of a paralle] 8X8-bit multiplier.

To add the four rows of the simplified product
bit matrix we have above, we could use just one row
of (4:2) compressors. A (p, k) compressor is a counter
with some of its inputs and outputs intentionally de-
sign for inter-connection such that they are not avail-
able for regular inputs and outputs. P represents the
number of available inputs and k represents the num-
ber of available outputs. The design of the compressor

we are using in our squaring circuit is shown in Figure
5.

Instead of using just one row of compressors we
are going to mix full adders and compressors. We will
by that way optimize the size of our circuit. We use
the (4:2) compressor only when we have at least 3 bits
per column in our matrix. When we need a 3-bit adder

Ao o
M2-1
L2 D <

Figure 5: Schematic of compressor used.

we will use a full adder. The result of this row of com-
pressors and full adder will be two 16-bit numbers, S
and C. To get the square we will have to add those
two numbers with a classical 16-bit adder.

3 Reciprocal Circuit

As binary multiplication can be accomplished as a
series of add and shift operations, reciprocation is done by
a series of subtraction and shifts. Our design is a fixed
point 8- bit (input) divisor with 10-bit dividend and quo-
tient. First we will show what the dividend is for our case
and then describe the operation of the circuit in general
and by example.

Since we are using an analog to digital converter with

327

clock | de | ds [ds [ds [d2[di [do=qo |8 [q7 [[qs [au (@2 [@2 [@1 | 0
1 0JojJojO0]O0]oO 1 0j0]1 1)1]170]l0}0](1
2 0jo0|lo0o]JO0o[|O0]1 0 of1}j1]170[0]0]1(0O
3 0|loc|[O0O]O 110 0 1j1({1{0]|]0fjO0|1]0{0O
4 0010 1 010 1 1j1{0jo0jo0o|1(0f0]O
5 0|0 1 0 0 (1 1 1|]0j0|0}|1]0]O0(0O]O
6 0 1 0 0 1 1 1 o(fo0ojojJ1|0]ojo]Oo}]oO
7 001 1 1 0 0 ojoj1(o0fo0ofO0ojO0]oO]1
8 0 00| 0 1 1 0 oj1r]j]ofofo0fOo]O]1]1
9 0|00 1 1{0 0 i1({6jojojojoj1]1710
10 0 011 1 00 1 0jo0j0fO0jO0fj1]1]01]0O
11 010001010 0 0J]0j0joOoj1|1t0]|0]1
Table 3: Register values of DREG and QREG for the example gi%lhi = 19h.

input voltage range from -5.00 to +5.00 volts with 8-bit
binary representation, the value of the voltage step size is
3% = 0.0390625 2 0.04 volts. The value of the step size is
critical in determining the dividend. A hexadecimal input
divisor of 19 (denoted 19h) represents 1.00 volt and our
reciprocal circuit should produce an output of 19h. The
dividend therefore needs to be 19h? or 271h.

Next we present the basic procedure of realizing the
reciprocal. Instead of shifting the divisor from left to right
as is done in division by hand, we shift the dividend from
right to left. The algorithm is described in shorthand form
as follows:

DREG <0
QREG < Dividend
for QREG number of bits do
1f DREG < Divisor
DREG < SL(DREG)
QREG < SL(QREG)
else
DREG < DREG — Divisor
DREG <« SL(DREG)
QREG < SL(QREG)

where the quotient register is denoted QREG, the divi-
dend register is DREG, the least significant bit (LSB) of
DREG equals the most significant bit (MSB) of QREG
and SL(register) denotes a shift left operation.

Next we present an example of the division: %’-
19h. We obtain the following register values of DREG and
QREG in Table 3. The MSB of DREG is denoted d¢ and
the LSB is denoted do. A 7-bit divisor is sufficient for an
8-bit twos-complement number guaranteed to be positive.
We obtain the final result at the eleventh clock cycle. Al-
though we needed the dividend of 271h to implement our
reciprocal, any 10-bit dividend could be easily loaded to
implement a general-purpose division. Modifications are
necessary to accomodate negative numbers.

328

4 Conclusion

An adaptive sample rate notch filter has been de-
veloped and implemented in hardware. Efficient realiza-
tions have been proposed for the following circuits: simple
canonical bandpass filter, squaring and reciprocal.

References
{1] T. Kwan and K. Martin, “Adaptive detection and en-
hancement of multiple sinusoids using a cascade IIR

filter,” IEEE Transactions on Circuits and Systems,
vol. 36, pp. 937-945, July 1989.

R. Strandberg, M. Soderstrand, and H. Loomis, “Elim-
ination of narrow-band interference using adaptive
sampling rate notch filters,” in Proceedings IEEE
Asilomar Conference on Circuits, Systems and Com-
puters, (Pacific Grove, CA), pp. 861-865, Nov. 1992.

M. Soderstrand, H. Loomis, and K. Rangarao,
“Elimination of narrow-band interference in BPSK-
modulated signal reception,” in Proceedings IEEE In-
ternationl Symposium on Circuits and Systems, (Sin-
gapore), pp. 2798-2801, June 1991.

R. H. Strandberg, J.-C. Le Duc, Z.-Y. Yang, L. G. Bus-
tamante, V. G. Oklobdzija, and M. A. Soderstrand,
“Reconfigurable processor for real-time adaptive sam-
ple rate notch filtering,” in Proceedings IEEE Asilomar
Conference on Circuits, Systems and Computers, (Pa-
cific Grove, CA), Oct. 1994.

V. Oklobdzija and D. Villeger, “Multiplier design uti-
lizing improved column compression tree and opti-
mized final adder in cmos technology,” in Proceedings
of the 10th Anniversary 1993 International Sympo-
sium on VLSI Technology, Systems and Applications,
(Taipei, Taiwan), May 1993.

V. Oklobdzija and E. Barnes, “On implementing ad-
dition in vlsi technology,” in IEEE Journal of Parallel
Processing and Distributed Computing, no. 8, 1988,

(2]

(3]

(s}

(6]

