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1 Prelude

This is one of a series of documents in which philosophically motivated technical issues are explored
making use of an interactive proof tool for a higher order logic.

This document began as an exploration of a draft of Pluralities and Sets by Øystein Linnebo [7].
Once the bare bones were in place I had to decide where to go from there, and I recalled a paper
by Thomas Forster in which he extends the iterative conception of set to embrace set theories with
a universal set [3], and decided that iterative ontology would provide a theme under which a broad
exposure of my own foundational programme might be presented.

Discussion of what might become of this document in the future may be found the postscript (Section
8).
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In this document, phrases in coloured text are hyperlinks, like on a web page, which will usually get
you to another part of this document (the blue parts, the contents list, page numbers in the Index)
but sometimes take you (the red bits) somewhere altogether different (if you happen to be online),
e.g.: the online copy of this document.

2 Changes

2.1 Recent Changes

This document began as an extension to Pluralities and Sets[6], but I then realised that it was a bad
idea to combine these two very different approaches to abstract ontology in the same document and
so made it into a new document.

2.2 Changes Under Consideration

2.3 Issues

See also Section 8.

3 Introduction

The idea of applying the adjective “iterative” to ontologies other than that of well-founded sets
came to me from Thomas Forster whose paper on the iterative conception of set[3] extends that idea
to embrace set theories with a universal set. Tt then seems natural to observe that foundational
ontologies of entities other than sets may also be conveniently described under an iterative conception.

The ontologies which I consider here were not inspired by an iterative model, but they can never-
theless be presented in that way. The motivation for the ideas is primarily pragmatic, arising from
a conception of the applicability of formal languages and methods to deductive and nomologico-
deductive science.

3.1 Carnap’s Programme

It may be helpful to relate some aspects of the ideas presented here to the philosophical programme
of Rudolf Carnap, or at least to my understanding of its most important central thread. That central
thread is the desire to facilitate the application of formal languages to deductive and nomologico-
deductive science (an important part of philosophy being considered one of the deductive sciences).

Carnap began within the universalistic conception of logic presented by Frege and Russell, but the
application of logic to empirical science seemed to demand languages which transcended the limits
of such universalistic conceptions. In consequence, early in his career Carnap adopted the more
pluralistic attitude towards formal languages which was pioneered by Hilbert and his associates.
During this transition to pluralism he showed particular concern for the question whether implicit
definitions embodied in some formal axiomatisation of a subject matter are categorical. This is a
part of an ongoing concern for meaningfulness which ran through all the phases in his intellectual
development, which was a principal source of his opposition to ‘metaphysics’1.

1 To the extent that in some of his best work meaninglessness seems to becomes a criterion of metaphysics rather
than a critique of it.
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4 What is a Foundational Ontology

A logical foundation for mathematics is a formal deductive system in which a large part of mathe-
matics can be derived by conservative extension.

This connects with Frege’s logicist thesis, which may be paraphrased:

mathematics = logic + definitions

with ‘logical foundation system’ rather than ‘logic’ (since that term is commonly used in a narrower
sense today) and with the notion of ‘definition’ liberalised to that of ‘conservative extension’.

Such a foundation may serve more than one purpose. The first was to demonstrate the logicist thesis
(in which purpose it is now generally held to have failed, primarily in virtue of the differences which
are now perceived between ‘logic’ simpliciter and the kind of logical system needed to serve this
foundational role). This is not my present concern, which is with three other roles which such a
foundation system may fulfil.

1. as a foundation for abstract semantics

2. as a source of proof theoretic strength

3. as a logical system in which to formally derive mathematics, ideally with good software support.

It is not necessary that all of these roles be assumed by the same foundation system. There may be
tension between the first two roles and the last.

The plan I follow in this document is as follows.

The document falls into three parts, concerned primarily with each of these three foundation roles
in turn.

In the first part the foundational role will be assumed by an ontology of well-founded-sets, under
the hypothesis that this is the best way of fulfilling this role. At this stage ontology is firmly in the
driving seat. To the extent that formal theories come into the discussion there will be just two. The
first order language with just two relations, membership and equality, and a polymorphic ω-order
logic with the same primitive relations over the individuals. The aim is a universal foundation for
semantics, either in the form of a single formal language with semantics and deductive system, in
which abstract semantics for arbitrary languages may be defined, or, more plausibly, as a single
language together with a heirarchy of semantics and deductive systems are available.

An important aim of this part is a resolution of the problem of semantic regress. By semantic regress
I refer to obvious problem that to give a formal semantics one needs a formal language in a language
which has a well-defined semantics. This problem is dealt with in two principal ways. The first is to
formulate a semantics which is effectively ‘meta-circular’, in which the same language, or a language
in the same family, as the object language, is used as the meta-language in which the semantics is
defined.

In such a formal context foundational ontologies can be defined, resulting in ontologies confined by
that of the meta-language. This allows formal techniques to be used to clarify the characteristics
of various formal descriptions of foundational ontologies. Once thus clarified, these definitions can
then be exported into a foundational context. In that context the definitions are no longer locating
an ontology within a metatheoretic context, but are working in an empty context carving out an
ontology without constraint by the ontology of the metalanguage.
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In the second part, we consider the interplay between semantics for first order languages defined by
such ontologies and axioms for a first order theory.

In the third part we address various pragmatic considerations which arise in the formalisation of
mathematics and its applications, speculate about how these might influence the choice of formal
language in which to conduct such formalisation, and about the kind of foundational ontology re-
quired to underpin languages suitable for large scale application of formal methods. In this section,
the semantics are defined in the systems considered in the first part, and the deductive systems would
then be derived from the deductive systems for the semantic foundations.

5 Pure Well-Founded Sets

The term set is used for a variety of different kinds of collections. Almost any characteristic which
has been mooted as an essential characteristic of sets is sometimes absent from conceptions of set.

Among these characteristics we may include:

• purity

• well-foundedness

• extensionality

• definiteness

‘Purity’ in a set theory consists in there being nothing but sets in the domain of discourse, or formally
perhaps in their being more than one thing with no members (only one of them being ‘the empty
set’.

Counterexamples to well-foundedness appear in numerous set theories, including all those in which
there is a universal set, of which perhaps the best known is Quine’s NF. Technical counterexamples
to full extensionality are found in those set theories with urelements which are formalised for con-
venience in single sorted first order logic by deeming urelements to have no members. Full-blooded
counterexamples to extensionality are found in constructive notions of set, in which a set is deter-
mined by a rule (for deciding membership) and equality of sets is provable co-extensionality of the
rules which determine them.

By definiteness I have in mind here only that very weak notion of definiteness which arises from
membership being a relation in a first order langage, i.e. that in any interpretation of the theory
it is either true or false for any two values x and y that x is a member of y. This characteristic is
absent in fuzzy set theory.

I will not be further considering in relation to the foundations of abstract semantics any set theory
which lacks any of the above characteristics. This is because the concept of pure well-founded set is
the simplest, and hence easiest to make clear and precise, and I know of no reason to believe that
the extra complications which arise from dropping any of the above requirements gives any benefit.

Later, when we come to consider foundational systems for use in the derivation of mathematics
(rather than as semantic foundations), then these characteristics are gradually whittled away until
ultimately we propose foundationl ontologies which are simply not sets.
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5.1 Iteration, Recursion, Induction

The best known description of the intended interpretation of modern set theory is the iterative
conception of the cumulative heirarchy. The concept of set described by the iterative conception is
that of a pure-well-founded set (though Zermelo who is usually credited with this conception [8, 2]
began his iteration from some collection of urlements, and therefore allowed for an ontology which
is not ‘pure’).

The ontology in this conception is obtained by transfinite iteration of the ‘powerset’ construction.
The structure of this definition is similar to inductive definitions of set which may be expressed using
recursion.

6 A Plan

6.1 Themes

6.2 Formality

The work aims to contribute to the development of effective ways of formalising deductive reason in all
its applications, in the spirit of Leibniz and Carnap. It aims to do so by reflection on how appropriate
formal notations or languages can be established. More specifically in respect of determining the
semantics of the formal languages.

For the purposes of establishing the soundness of deductive systems, abstract semantics suffices, and
in developing such semantics, a good place to start is with the underlying ontology in relation to
which the semantics will be given.

6.3 Universalism and Pluralism

6.4 Iterative

7 Well Founded Ontologies

7.1

SML

open theory "rbjmisc";

force new theory "t048a";

SML

declare infix p230 , "  "q;

HOL Constant

hereditary: p1a Ñ 1a Ñ BOOLq Ñ p1a Ñ BOOLq Ñ BOOL

@$   p
 hereditary $   p ô @x
 p@y
 y    x ñ p yq ñ p x
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HOL Constant

inductive: p1a Ñ 1a Ñ BOOLq Ñ 1a Ñ BOOL

@r x
 inductive r x ô @p
 hereditary r p ñ p x

HOL Constant

well founded: p1a Ñ 1a Ñ BOOLq Ñ BOOL

@r
 well founded r ô @x
 inductive r x

HOL Constant

wf part: p1a Ñ 1a Ñ BOOLq Ñ p1a Ñ 1a Ñ BOOLq

@r
 wf part r � λx y
 r x y ^ inductive r y

8 Postscript

This document has not yet really got off the ground, so I don’t have much to say about it as yet.
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A The Meta-Language

The formal analysis is conducted in a single logical system, a Higher Order Logic based on Church’s
formulation of the Simple Theory of Types[1]. The formal treatment is prepared with the assistance
of an interactive theorem proving tool. This tool assists by syntax checking and type-checking
specifications, by confirming that these specifications are conservative over the initial logical system,
by facilitating the construction of detailed formal proofs and mechanically checking their correctness.
The tool also prepares listings of the resulting theories, which may be found in appendices B.1 and
?? and facilitates the preparation of documents including the formal materials.

There is some additional complexity in undertaking strictly formal work in this manner, which is
not entirely eliminated by the use of software support. Feasibility depends on careful choice of
methods (and problems) to keep complexity within bounds. In the kind of exploratory investigation
at hand, one simplification is to avoid reasoning about syntax. This may be done by constructing
interpretations of the target systems and reasoning about these interpretations in HOL. In the
resulting theorems the syntax of HOL (which is in some degree extendable) is used to express
claims which correspond to the rules, axioms and theorems of the logical system or systems under
investigation. When proven they give good grounds for belief in the soundness of the logic under
consideration, even though we have avoided formal treatment of its syntax.

This approach to reasoning in some logic of interest using a tool supporting a different logical system,
is sometimes called shallow embedding (by contrast with deep embedding in which both syntax and
semantics and the relationship between them are formally treated, supporting full formalisation of
the metatheory). An extended discussion of these methods is not within our present scope, but I
will try to include a certain amount of further explanation as the document proceeds in the hope of
making the technical detail as intelligible as practicable.

A.1 Dependencies

For a complete understanding of the details of the formal materials in this document it would
strictly be necessary to refer to the definition of the language in which the specifications are written
(ProofPower-HOL) and to the listings of the various theories in the context of which these theories
have been developed. I hope that the material will be intelligible to a reasonable degree without
studying all this material, many readers will already be familiar with Church’s formulation of the
Simple Theory of Types [1] and will be familiar with the meanings of the usual logical connectives
in that context.

For the full detail the following documents may be consulted.

1. Church’s formulation of STT: [1].

2. The ProofPower-HOL language: informal description [10]

3. The ProofPower-HOL language: formal specification [9]

4. ProofPower-HOL theory listings: [11] or in HTML at RBJones.com2.

5. Other theories at RBJones.com: rbjmisc [5], t045 [4].

6. Complete documentation for ProofPower can be obtained from the ProofPower web pages3.

2http://rbjones.com/rbjpub/pp/pptheories.html
3http://www.lemma-one.com/ProofPower/doc/doc.html
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B Theory Listings

B.1 The Theory t048a

Parents

rbjmisc

Constants

hereditary p1a Ñ 1a Ñ BOOLq Ñ p1a Ñ BOOLq Ñ BOOL
inductive p1a Ñ 1a Ñ BOOLq Ñ 1a Ñ BOOL
well founded p1a Ñ 1a Ñ BOOLq Ñ BOOL
wf part p1a Ñ 1a Ñ BOOLq Ñ 1a Ñ 1a Ñ BOOL

Fixity

Right Infix 230 :
  

Definitions

hereditary $ @ $   p

 hereditary $   p ô p@ x
 p@ y
 y    x ñ p yq ñ p x q

inductive $ @ r x
 inductive r x ô p@ p
 hereditary r p ñ p x q
well founded $ @ r
 well founded r ô p@ x
 inductive r x q
wf part $ @ r
 wf part r � pλ x y
 r x y ^ inductive r yq
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B.2 Proof Statistics

The following table shows the number of times each primitive inference rule was invoked during the
proofs of the theorems listed above.

Inference Rule Count

refl conv 460
list simple @ elim 378
simple λ eq rule 82
inst type rule 67
asm rule 98
simple @ intro 92
subst rule 38
mk app rule 260
ô mp rule 150
ñ intro 158
simple @ elim 18
simple β conv 114
eq trans rule 140
eq sym rule 66
ñ elim 264

Total 2385

The proofs could probably have been done with fewer primitive inference, but there is little incentive
to seek shorter proofs. In these proofs, on average each instruction to the theorem prover results in
about 500 primitive inferences, the average number of proof steps at the user interface is less than 3
per theorem (in these theories, in which there are no non-trivial results). 4

4The statistic are generated and included in the document automatically and will therefore be correct for the current
version of the document, the following comment is not, and might get out of date.
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