# RECONSTRUCTION OF INCIDENT DIRECTION OF HIGH-ENERGY GAMMA-RAY PARTICLES WITH THE GAMMA-400 Y-RAY SPACE TELESCOPE 

M. D. Kheymits • A. M. Galper • A. A. Leonov • S. I. Suchkov • N. P. Topchiev • Yu. T. Yurkin


#### Abstract

In the GAMMA-400 project, a gamma-ray telescope with high angular and energy resolution is being designed, which permits making a new step in the study of high-energy cosmic gamma radiation. The finest angular resolution among gamma-ray space telescopes of $\sim 0.02^{\circ}$ at energy 100 GeV can enhance the discrete-source identification and the dark-matter signal selection. A method to reconstruct direction of cosmic gamma-ray particles with fine angular resolution is proposed, implemented and applied. The method allows us to reconstruct the direction of electromagnetic shower axis and extract the trace of an electron-positron pair. The method is parametrised to achieve any necessary trade-off with resolution and efficiency.


es RECONSTRUCTION ALGORITHM es
The procedure uses energy deposits in silicon-strip layers both in the converter (C) and spatially-sensitive calorimeter (CC1) in each projection.

Define a median point for each layer in the following equivalent way:
Plot weights $w_{i}$ (initially energy deposits) in $i^{\text {th }}$ triggered strip vs strip position $y_{i}$ (upper figure) and cumulative weights $a_{i}$ defined by

$$
a_{i}=1 / 2 w_{i}+\sum_{j=1}^{i-1} w_{j} \longrightarrow \stackrel{y_{i}}{\bullet}
$$

vs strip positions (lower figure). Then, find a median value: a half-sum of outermost cumulative weights. Abscissa of the intersection of the median line (red) and cumulative polyline (blue) gives the position of the median point. The weight of the median point is taken as the ordinate of a point on the polyline at its own position.

es CONCLUSION es Angular resolution, taken as $68^{\text {th }}$ percentile of deflection angles, is shown on a plot below with different band widths. We get resolution camparable with a limit set by the multiple scattering process. This method has an efficiency above $10 \%$ in the energy range above $30-500 \mathrm{MeV}$, depending on parameter values.

After that:
i) Fit linearly all planes with defined medians.
ii) Construct a band of some width in the converter and MAYBE ANOTHER WIDTH in the calorimeter around the estimated line.
iii) Ignore strips outside the band.
iv) Repeat the iteration procedure a NUMBER OF TIMES.

A weight correction is done once. All weights of strips closer than SOMEDISTANCE to the line are multiplied by $\operatorname{A}$ FACTOR INCREASING toward upper planes of the converter and to lower planes of the calorimeter.

This algorithm has a number of parameters shown above in (brown capitals). Varying values of these parameters we can acheive some trade-off between high angular resolution and high efficiency of the method. For example, by narrowing the BAND WIDTH, we can reconstruct the direction of a gamma-ray source more accurately by rejecting those events with highly deflected electron-positron pair. Specific trade-off values are to be decided with taking into account a scientific task to be done.


