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Abstract

Boolean equation system are a useful tool for verifying formulas from modal mu-calculus on transition
systems (see [18] for an excellent treatment). We are interested in an extension of boolean equation
systems with data. This allows to formulate and prove a substantially wider range of properties on much
larger and even infinite state systems. In previous works [11, 15] it has been outlined how to transform a
modal formula and a process, both containing data, to a so-called parameterised boolean equation system,
or equation system for short. In this article we focus on techniques to solve such equation systems.

We introduce a new equivalence between equation systems, because existing equivalences are not
compositional. We present techniques similar to Gaul3 elimination as outlined in [18] that allow to
solve each equation system provided a single equation can be solved. We give several techniques for
solving single equations, such as approximation (known), patterns (new) and invariants (new). Finally,
we provide several small but illustrative examples of verifications of modal mu-calculus formulas on
concrete processes to show the use of the techniques.

1 Introduction

Boolean Equation Systems (BESs) [18, 19, 23] are systems of the(faridy, = f1) ... (ocnXn = fn),

whereo; is either a least fixpoint symbalor a greatest fixpoint symbelandf; is a propositional formula.

These systems can be seen as generalisations of nested and alternating fixpoint expressions, interpreted over
a Boolean lattice.

BESs have been studied in detail by Vergauwen and Lewi [23], and Mader [18, 19] in the context of
model checking modal-calculus formulae. In [19], Mader shows that the model checking problem can be
solved by solving BESs. Furthermore, she provides a complete proof system for solving BESs by means
of algebraic manipulations.

Parameterised Boolean Equation Systems (PBESS) (also kndvirsa®rder Boolean Equation Sys-
tems) [11, 15, 24] are sequences of equations of the &akid;: D, . .., d,:D,) = ¢, whereo is either
a least or a greatest fixpoint symbd),is a data variable of sofd; andy is a predicate formula. The sort
D x ... x D, is referred to as thparameter-spacef a parameterised boolean equation.

PBESs form an extension of plain BESs. Groote and Mateescu [11] introduced these PBESs as an
intermediate formalism for model checking processes with (arbitrary) data. Extending on the results of
Mader [18, 19], they showed that their model checking problem could be translated to the problem of solv-
ing PBESSs. In [11], they provided four proof rules for approximating the solution of single parameterised
equations: two for the least fixpoint and two for the greatest fixpoint. Furthermore, as a proof of concept,
we showed in [15, 24] that PBESs can be solved automatically by means of a technique that combines the
essentials of GauRR-elimination [18, 19], and approximation (see e.g. [10]).

While the automated approach has proved successful for several practical applications, it also illus-
trates the undecidability of model checking when no restrictions on the involved data-types are made, by
occasionally requiring transfinite approximations of fixpoint expressions (i.e., in such cases, approximation



procedures do not terminate). The emphasis on automation set a scene where possible remedies for such
situations where hard to find.

Inspired by this latter observation, we take a different approach altogether in this paper, and focus
on algebraic techniques that help in solving PBESs by hand. While this may seem a step back to some,
being able to solve PBESs by hand provides a better understanding of the techniques that are involved. We
intentionally proved many properties about systems by hand, some of which can be found in the second
part of this paper, with as primary goal to build up experience and skill. As expected this led to effective
techniques to manually solve parameterised boolean equation systems which are reported in the first part
of this paper. Although it is not the focus of this paper, we expect that these techniques will also have a
positive impact on the mechanised and automatic verification of modal formulas on processes in a setting
with data.

The approach we describe in this paper is similar in spirit to the algebraic approach for solving BESs,
taken by Mader [19]. We separate the problems of solving PBESs as a whole, and parameterised boolean
equations in isolation. Central to our approach is the notiorsystem equivalendbat allows us to reason
compositionally about PBESs. While in [19], also a system equivalence is introduced for BESs, it turns
out that this equivalence is not compositional. We illustrate this fact by a simple example in section 3.
Together with system equivalence we introduce system ordering which on several occasions turns out to be
an indispensable tool.

Based on our new notion of system equivalence, we present an overall and complete technique, allowing
to solve all PBESs using syntactic manipulations only, provided the means to solve a single parameterised
boolean equation in isolation are available (section 4.1).

In section 4.2 we investigate various techniques for solving a single parameterised boolean equation.
These include a theorem allowing logical reasoning using predicate calculus and a result allowing to trans-
fer results obtained using parameterised boolean equations to predicate logic. We proceed by restating
results on approximation from [11] in terms of the new system equivalence.

Some of the parameterised boolean equation systems that we encountered were not easily solved using
for instance approximation. But we noticed that many of these had a very similar pattern. For some of
the most general patterns we could give a standard solution. We present this result in section 4.2.3. We,
however, believe that we have only scratched this topic on the surface. We expect a situation comparable
to solving differential equations, where identifying and solving differential equations of a particular form
has become a field of its own. There have been a number of typical parameterised boolean equations that
we have not been able to solve and that deserve a separate investigation.

While invariants are an effective tool in diverse areas, such as process algebras [3] and program anal-
ysis [9], they have not yet been connected to BESs and PBESs. So, we set out to find their counterpart in
parameterised boolean equations. We provide a definition and two theorems to ease their use in concrete
situations. Our notion of an invariant in equation systems plays a very helpful role in many of the examples
in section 5 and so we believe that it will become a similarly effective tool as invariants are elsewhere.

The structure of this paper is as follows. Section 2 introduces the terminology used throughout this
paper, together with a short overview of PBESSs, their semantics and several smaller results. In section 3 an
equivalence for PBESs is introduced and compared against the equivalence for BESs that can be found in
the literature. Section 4 then focuses on solving PBESs globally and parameterised boolean equations in
isolation. As an illustration of these techniques, we apply these to several smaller examples in section 5.
Concluding remarks are presented in section 6.

Acknowledgements. We thank Marc Voorhoeve for the counterexample following lemma 4.13, Joost-
Pieter Katoen for suggesting the identity tag generator example and Kees van Hee for indicating that client-
server systems are important systems for which properties should be provable.

2 Definition of a parameterised boolean equation system

We are interested in solving sequences of fixpoint equations where the equations have the form

uX(dy:Dq,...,dn:Dy) =@



wherey indicates a minimal fixpoint, or
VX(dliDl, e 7anDn) =@

wherev indicates that this is a maximal fixpoint equation.

Each equation has a predicate variakléfrom a setX of variables) at its left hand side that depends on
zero or more data variables, . . ., d,, of sortsDy, ..., D,,. For simplicity and without loss of generality,
we restrict ourselves to a single variable at the left hand side in all our theoretical considerations. We treat
data in an abstract way. So, we assume that there are non empty data sorts, generally written using letters
D, E, F, that include the soi® of booleans containing. and T, representindalseandtrue, respectively.
We have a seb of data variables, with typical elementsdy, .. ., and we assume that there is some data
language that is sufficiently rich to denote all relevant data terms, such as for in8tant¢e< d,. For a
closed terme, we assume an interpretation functifrj that maps to the data element it represents. For
open terms we use@ata environment that maps each variable frof to a data value of the right sort.
The interpretation of an open tergrmof sortB, denoted age]e is given by[e(e)] wheree is extended to
terms in the standard way.

The right hand side of each equation igradicate formulacontaining data terms, boolean connectives,
guantifiers over (possibly infinite) data domains and data and predicate variables. Predicate foranalae
defined by the following grammar:

pu=b|X(e)|pNp|pVe|Vd:D.p|3d:D.p|T|L

whereb is a data term of soit, X is a predicate variabld,is a data variable of sof? ande is a data term.
Note that negation does not occur in predicate formulae, except as an operator in data terms.

In the sequel it turns out to be necessary to lift predicate formulas to functions from data to formulas.
We use conventional typed lambda calculus to denote such functions\deLg),» denotes a function from
elements from data sof? to predicates. Sometimes, the lambda is omitted if that leads to a more compact
notation. For instancad: D.X (d) is generally simply written aX'.

Predicate formulae are interpreted in a context of a data envirorumemd apredicate environment
n7:X—(D—B). The semantics of predicate formulae is defined below. For an arbitrary envirodment
(be it a data environment or predicate environment), we wifit¢d] for the environmen# in which the
variabled has been assigned the value For a predicate formula, a predicate environment and a
data environment, we write o(ne), denoting the formulg in which all free predicate variable¥ have
received the valueg)(X) and all free data variables have received the valug(d). Environments are
applied to functions, where bound variables are respected.

Definition 2.1 (Semantics of Predicate Formulae).
Lete be a data environment and¥ — (D—B) be a predicate environment. Timéerpretation[¢]ne maps
a predicate formula to “true” or “false” and is inductively defined as follows:

def

[Tne true
def

[L]ne = false
[b1ne = [ole
[X (€)]ne ;‘{ n(X)([e]e)
lo1 A w2]ne d:ef [¢1]ne and[p2]ne
[er Vpalne = [palne or [p2]ne e/l

. def true, if for allv:D it holds that[p]n(e[v/d
[¥d:D-¢lne = false, otherwise
[3d:D.o]ne def true, if there exists a: D such thafy]n(c[v/d])

false, otherwise

Consider for an arbitrary data saf, all (total) functionsf: D—B. The set of all such functions is
denoted D—B]. The ordering— on[D—B] is defined ag C ¢ iff for all d:D, we havef(d) impliesg(d).



The set([D—BJ, C) is a complete lattice. For a subsébf [D—B], we write(\ A) for theinfimumof the
setA and(\/A) for the supremunof the setA.

We denote the set of all predicate environment§ty-(D—B)]. The ordering< on [X—(D—B)] is
defined ag) < 7' iff for all XeX', we haven(X) C '(X). The set[¥—(D—B)], <) is also a complete
lattice.

Definition 2.2 (Parameterised Boolean Equation System). A parameterised boolean equation system
is inductively defined as follows: the empty parameterised boolean equation system is deaotdor

a parameterised boolean equation syséeralso(c X (d:D) = )& is a parameterised boolean equation
system wherec{y, v} is a fixpoint symbol angb a predicate formula.

In the remainder of this article, we abbreviate parameterised boolean equation systerquaition
systenif no confusion can arise. The setloihding predicate variables an equation systei, denoted

by bnd(€), is defined adnd(e) &' ¢ andbnd((oX (d:D) = »)&) L' bnd(€) U {X}, i.e. a binding
variable is a variable that occurs at the left-hand side of an equation. An equation gy$esaid to

be well-formediff all binding predicate variables of are unique. ThuswX = T)(uX = 1) is not

a well-formed equation system. We only consider well-formed equation systems in this paper. We say
an equation syster#i is closedwhenever all predicate variables occurring at the right-hand side of the
equations ir€ (collected in the setcc(€)) are binding variables, i.excc(£) C bnd(€); if an equation
systemé is not closed, we sa¥ is open We say an equationX (d:D) = ¢ is solvedif ¢ contains no
predicate variables. Likewise, an equation systeia solvediff all its constituting equations are solved.
We say that a parameterised boolean equation systeohisd inX if the predicate variabl&X does not
occur in any right hand side. Thelutionof an equation system is defined in the context of a predicate
environment; and a data environment

Definition 2.3 (Solution of an Equation System).  Thesolutionof an equation systeré in the context
of a predicate environmemntand a data environmeatis inductively defined as follows (cf. definition 3.3
of [19]):

[e]ne j=e:

[(0X (d:D) = p)€lne = [E)(nlo X (d:D)-p([E]ne) /X))
wherec X (d:D).p([€]ne) is defined as
pX (D) p((Ene) - MwD—B | XosD [l (Elnlw/ X elo/delv/d) € )
vX(d:D).p([€]ne) =

= V{¢:D—B | ¢ T do:D.[o]([E]n[y/ X]e[v/d))e[v/d]}

As an illustration consider the equation systenX =Y")(nY = X). For a given predicate environment
7, its solutions arey[ T/ X][T/Y]. Note that the solution fofuY=X)(vX =Y) isn[L/X][L/Y]. This
illustrates that the sequence in which the equations occur is of importance.

In the remainder of this paper, we consider only parameterised boolean equation systems for which
all data variables that occur at the right hand side of an equation, are bound at the left hand side of this
equation. For this class of parameterised boolean equation systems, we have the following result:

Lemma 2.4. Let ) be a predicate environment anddet’ be data environments. L&tbe a parameterised
boolean equation system for which all data variables occurring at the right hand side of an equation are
bound in the left hand side. Théfijne = [E]ne’

From hereon, we use the empty data environment for denoting the solution of an equation system and we
generally omit it.
Equation systems are monotone operators on the set of all predicate environments.

Lemma 2.5. Letn, n’ be predicate environments afichn arbitrary equation system. Ther< ' implies
[E]n < [E]n'.

Proof. By induction on the structure &f. ]



In general, the solution of an equation system depends largely on the context in which it is computed (i.e.
the predicate environmen). However, for closed equation systems, we have the following theorem.

Theorem 2.6. Let £ be a closed equation system. Then for all predicate environmeatsln’, and all
binding variablesX € bnd (&),

[E]n(X) = [E]n'(X)
The following lemma and corollary say that closed equation systems can be solved independently.

Lemma 2.7. Let £ andF be equation systems for whighcc(£) U bnd(€)) Nbnd(F) = (), and letn be
an arbitrary environment. Then

[EF]n = [FI([E]n)
Proof. We use induction o#.
e Suppose is empty. Then we must show thg]n = [F]n, which trivially holds by reflexivity.
e Supposef equals(cX (d:D)=¢)E’. So, we find thaf(c X (d:D)=¢)E’ F|n equals by definition
[E" Fl(nle X (d:D).¢([E'F]n)/X]). This equals using the induction hypothesis
[FI([E"Inlo X (d:D).-([FI([E]n))/ X)) 1)

From the assumption, it follows thahd(F) N occ(v)=0. So,o([FI([E']n))=¢([€']n). Using this
fact and definition 2.3 expression (1) can be shown to be equ#l|{§(c X (d:D)=¢)E&']n) as had
to be shown.

O

Corollary 2.8. Let &£ be a closed equation system afAdbe an equation system for whidhd(€) N
bnd(F) = (), and letp be an arbitrary environment. Then

[EF]n = [FI([€]n)

Due to the complex nature of the solution to an equation system (especially the treelike recursiofi where
occurs twice in the right hand side in definition 2.3 is tricky), it is not straightforward to solve an equation
system. In the subsequent sections, we present lemmas and theorems that help to solve equation systems
algebraically.

A well known approach to ‘calculate’ the solution for a fixpoint equation is by using a transfinite
approximation.

Lemma 2.9. Let F = 0X(d:D).p(ne) with n a predicate environment anda data environment. The
transfinite approximationX , of F' are defined by:

foro = p foroc =v
a=p+1is asuccessorordinalXsy1 = p[Xg/X] Xpy1 = ¢[Xp/X]
ais a limit ordinal Xo =\ X5 Xo= /\ Xs
B<a B<a

theno X (d:D).p(ne) = Iv:D.[X,]ne[v/d] for some sufficiently largev, where the interpretation of
the infinitary disjunction operatdf\/ ;_, Xglne is V5, [Xglne. The interpretation of the infinitary
conjunction operator is similar.

The following result is also useful, as it says that fixpoints can be solved stepwise. This means that the
solution of an equation can partly be substituted without altering the solution of the equation.

Lemma 2.10. Let p(X,Y") be a predicate formula in which the predicate variatifeandY may occur.
Let FF = oX(d:D).o(X,X)(n) andG = 0 X (d:D).o(X,Y)(n[F/Y]) for some predicate environment
ThenF = G.



Proof. We treat the case where = u. The case where = v is fully dual and has been omitted.
Obviously,F'is a solution forX in the second fixpoint. S@y is smaller tharF'. Substituting for X in the
first equation yields(X, X)(n[G/X]), which by monotonicity is smaller thap(X,Y")(n[G/X][F/Y])
which equalsG. So, G is a pre-fixpoint of the first equation, which implies thatis smaller thanG,
showingF' = G. |

3 Equivalence of parameterised boolean equation systems

Boolean equation systerfBESSs) have been studied in great detail [19]. BESs are instances of our param-
eterised boolean equation systems, i.e. the proposition variables in a BES do not carry data parameters.
We introduce two notions of equivalence. The first equivalence is based on the equivalence between BESs,
and can be found in the literature [19]. We argue that this equivalence is not suitable and introduce an
equivalence that is slightly finer.

Definition 3.1 (Standard System Equivalence and System Ordering).

Let £,& be equation systems. We write < &' iff for all predicate environmentg it holds that
[€ln < [€'n. We writeE ~ &' iff both £ <« & and&’ « €. The relation« is referred to as the
standard (equation) system orderinghereas the relatior is referred to as thetandard (equation) sys-
tem equivalence

Lemma 3.2. The relationk is reflexive, anti-symmetric and transitive. The relatios an equivalence
relation.

Proof. Follows immediately from the definition e& and~. a

The standard system equivaleneadoes not allow for compositional reasoning. Consider the two open
BESsuyX =Y andvX =Y. ltiseasytoseethatX =Y ~ v X =Y, since both have the same solutions

for all predicate environments. However, this does not imply that the two BESs are equivalent in all
contexts, since the predicate variablecan interfere. For example, if we add the equatidh= X to the

two BESs, the resulting BESs are different, i.e. we hgu& =Y)(vY = X) » (vX =Y)(vY = X),

since the solution to the first BES¥ = Y = L, whereas the solution to the second BEXis= Y = T.

To mend this situation, we redefine the standard system equivalence and the standard system ordering.
Throughout this paper we use this new notion and not the one from [19].

Definition 3.3 (System Equivalence and System Ordering).

Let £,&’ be equation systems. We wrige = £’ iff for all predicate environmentg and all equation
systemsF with bnd(F) N (bnd(£) U bnd(£’)) = 0, it holds thatlEF]n < [E'Fn. We write€ = &' iff
bothé = £ and&’ = £. The relation= is referred to as théequation) system orderingvhereas the
relation= is referred to agequation) system equivalence

Lemma 3.4. The relation= is reflexive, anti-symmetric and transitive. The relations an equivalence
relation.

Proof. The proof that= is an equivalence relation follows by definition from the fact thats reflexive,
anti-symmetric and transitive. Hence, we concentrate on proving these latter properties.

1. We first show thats is reflexive. Let€, F be arbitrary equation systems, $ihd(F) Nbnd(€) =0
and letn be an arbitrary environment. Then, by definition, we h@&|n < [EF]n, i.e.£ = E£.

2. For anti-symmetry, we reason as follows. I&€’, F be arbitrary equation systems, &thd(F) N
(bnd(€) Ubnd(E")) = 0, and letn be an arbitrary environment. Suppose we héve £’. Hence,
by definition[EF]n < [£'F|nand[E'Fn < [EF]n. Then by anti-symmetry of, we havel€ F]n =
(£ Fn,ie. =&

3. Finally, we show thats is transitive. Let€, £’, £” be arbitrary equation systems for whi€he> &’
and&’ = £” hold. LetF be an equation system, sshd(F) N (bnd(€) U bnd(£”)) = @ and letn
be an arbitrary environment. We distinguish two cases:



(a) Supposebnd(F) N bnd(E’) # . We show that this premise leads to a contradiction. Let
Xebnd(F) Nnbnd(£’), and let7’ be an arbitrary equation system, siid(F') N (bnd (&) U
bnd(€)Ubnd(E”)) = . Then by assumption, we hal@&F’|n < [£'F'|n for all environments
n, implying [EF'In(X) C [£'F'In(X). This can only be the case wh&{ F'|n(X) = T for
all n, sinceX does not occur ig F'. Likewise, we havel’ F'|n < [£" F']n for all n, implying
[E'F'n(X) C [E"F'n(X). This can only be the case whéff 7'In(X) = L for all 7,
since X does not occur i€” F’. But we cannot at the same time hg@éF'|n(X) = T and
[E'F'In(X) = L for all n, hence, we have a contradiction.

(b) So we may assume thahd(F) Nbnd(E’) = 0. Then from[EF|n < [E'Fln and[E'Fln <
[E" Fn, we arrive atlEF|n < [E£”F]n. Hence, we hav€ = £”, concluding the proof of
transitivity.

O

The system ordering we defined is (unlike the standard system ordering) robust when composing equation
systems from smaller equation systems (see theorem 3.5). This means that if we have the means to solve
equations in isolation, we can use this solved equation for solving equations in a larger context.

Theorem 3.5(Compositionality of Equation Systems).
Let&, &', F be equation systems for whithd(F) N (bnd(€) U bnd(E’)) = 0. Then

1. =8 = FE= FE,
288 =EF=EF.

Proof. The second property follows immediately from the definitioreef Thus, we concentrate on the
first property. We use induction on the length/f

1. AssumeF is the empty equation system. We must show &at £’, but this holds by assumption,

2. Let  be a predicate environment. Assumfeis of the form (o X (d:D)=¢)F’. By definition,
[(0X(d:D)=p)F E|n equalsF'En[c X (d:D).o([F'E]n)/X]. Using the induction hypothesis and
the monotonicity of equation systems over environments, this is at most

[F'Enlo X (d:D).o([F'E'n)/ X].

Using the induction hypothesis once more, this in turn is at n®<t'|n[c X (d:D).o([F'E'|n)/ X].
By definition, this is equivalent ti{o X (d: D)=¢)F'E']n. Thus

(60X (d:D)=p)F'E = (cX(d:D)=p)F'E".

The previous result immediately carries over to system equivalence.

Corollary 3.6. For all equation systent, £, F, for whichbnd(F) N (bnd(€) U bnd(£’)) = 0, we have
1. £E=& = FE=FE&,
2.E=8=EF=E8'F.

In fact, the standard system equivalence and ordering are very much related to the system equivalence and
ordering, as defined in definition 3.3. For closed equation systems the two notions coincide.

Lemma 3.7. Let £ and&’ be closed equation systems. Thers £’ iff £ <« £'.

Proof. The implication from left to right holds by definition. Thus, we focus on the implication from
right to left. LetF be an equation system such thaid(F) N (bnd(£) U bnd(£’)) = (. Letn be an
arbitrary environment. Since equation systems are monotonic opeff&lars; [£']n implies[F]([E]n) <
[F1([E']n). Since& and&’ are closed, this is equivalent [6F|n < [£'F]n (see corollary 2.8). Since this
holds for arbitraryF andr, we also have = £’. a



4 Solving parameterised boolean equation systems

In section 4.1, we identify several rules for calculating with equation systems as a whole and we present a
completeness result that says that if single equations can be solved in one variable a complete parameterised
boolean equation system can be solved. In section 4.2, we present several techniques that can be applied to
solve equations for a single variable.

4.1 Global techniques for solving parameterised boolean equation systems

The focus in this section is on algebraic techniques for solving equation systems as a whole. The first
lemma also appeared in [19] as lemma 6.3 using a slightly different phrasing. It allows to substitute the
right hand side of an equation for the left hand side in all the equations preceding it. In [19], this step

formed an essential part of the so-cal@éduf3 eliminatiorprocedure to solve boolean equation systems.

Lemma 4.1(Substitution).
Let £ be an equation system for which, Y ¢ bnd(€), then:

(0X (d:D) = p)E(oY (e:E) = ) = (6 X (d:D) = o/ YE(o'Y (e:B) = )

Proof. Let F be an arbitrary equation system ande an environment. We reason as follows. By
definition 2.3, it suffices to show that:

[E(0"Y (e:E)=¢) Fln[o X (d:D)-p([E(oY (e:E) = ¥) F]n)/ X]
[E(0"Y (e:E)=¢)FIn[o X (d:D).¢[/Y([E(0"Y (e:E) = ¢) Fln)/ X]
This follows directly from the following observation:
p([E(0'Y (e:E) = ¥)Fln) = [/ Y]([E(0'Y (e:E) = ) F]n) )
We show this by induction on the length &f If £ is empty (2) can be shown as follows

([(0"Y(e:E) = ) Fn) =

([Flnlo"Y (e:E)([FIn) [ Y]) =

[/ Y]([Flnlo"Y (e:E)4([F|n)/Y]) =
pl/Y]([(0Y (e:E) = ) Fln)

The one but last step follows asY (e:E).1([F]n) is a fixpoint for the equation foY". If £ consists of
(c"Z(f:F) = x)&, then we derive

¥
¥
®

(0" Z(f:F) = x)€' (oY

B) =
[€(a'Y (e:E) = ) F|(n] ”Z(f: )
o[/ Y)([E (oY (e:E) = ) Fl(n[o" Z
e[/Y]([(6" Z(f:F) = x)E' (oY (e:E

This finishes this proof. m|

<
g

o(
o "(0'Y (e:E) = ) Fn)/Z])) =
ng> X(E (@Y (e:E) = $)Fn)/2])) =

R

The sequence in which equations in a parameterised boolean equation system occur is important. It is only
allowed to change this order under very particular circumstances. All the remaining lemmas in this section
deal with reordering of equations.

Lemma 4.2(Migration).
Leto X (d:D) = ¢ be a solved equation, i.ecc(p) = ), and€ an equation system, such thétZ bnd(€),
then:

(cX(d:D) =) =E(cX(d:D) = )



Proof. By induction on the size of.

1. Assumef is the empty equation system. Then we must skew (d:D) = ¢) = (6 X(d:D) = ),
which holds by reflexivity of=.

2. Assumef has the form{o’Y (e:E) = ¢)E’. Let F be an arbitrary equation system apdn arbitrary
environment. We calculate as follows. Given thatontains no predicate variables, we have

[(0X(d:D) = ¢)(0"Y (e:E) = $)&'Flp

(" Flnle/ X][(o"Y (e:E) ([ Flnlp/ X)) /Y]

Again, sincep contains no predicate variables, we hayg/X] = n[(cX(d:D).¢([€'F]n))/X].
Then, by definition, we have

(€' FInl(e X (d:D).o([€'Fln) / X][(o"Y (e:E).¢([€"FIn[(o X (d: D)o ([€"F]n)) / X]))/ Y]
[(0X(d:D) = )" Flnl(0"Y (e:E).4p([(0 X (d: D) = )E"Fln)) /Y]
Now, applying the induction hypothesis twice, we have
[€'(0X(d:D) = @) Flnl(o"Y (e:E) ([ (0 X (d: D) = ) FIn)) /Y]
[(0"Y (e:B) = )€ (0 X (d:D) = 9)Fn
This concludes the proof. ]

The following theorem states that we have all the requirements to solve an equation system if we can solve
a single equation.

Theorem 4.3(Global completeness). Assume we can derive for arbitrary equatidpsy (d:D)=¢) =
(0 X (d:D)=1), such thatX does not occur iny. Then allclosedequation systems can be rewritten to
solvedequation systems using the rules of migration and substitution.

Proof. Consider a closed equation systérbeing equal to
(01 X1(d1:D1)=1) ... (0n X0 (dp:Dr)=p).

We prove the theorem in two stages. First we transférto an equivalent equation systefhfor which

X; (1 < i < n)does not occur in any; for j < i. We call this requirement 1. Suppose requirement 1
does not hold. Consider the largéstuch thatX; occurs in somep; for j < . If X; occurs ing;, then by
assumption we can replage by ¢ in £ where X; does not occur in) maintaining system equivalence.

Using lemma 4.1 (substitution) we can remove all occurrenceX;oh ¢; for j < i. By repeatedly
applying this step we have obtained our desired equation system satisfying requirement 1.

Now, we transfor€’ such that for alk, X; does not occur in any of thg; for j > 4, too. We call this
requirement 2. Note that any closed equation system satisfying requirement 1 and 2 is solved. Consider
the first equatior; X;(d;:D;)=¢; not satisfying requirement 2. Observe thatdoes not contain any
predicate variable. So, we can move this equation to the last position of the equation system using lemma
4.2 (migration). Using lemma 4.1 we can substitytefor X; in all other equations. By lemma 4.2

we can move this equation back to its original place. Observe that the newly obtained parameterised
boolean equation system satisfies requirements 1 andiZafwt is equivalent to the old equation system.
Repeatedly applying this step yields an equation system completely satisfying requirements 1 and 2. As
already observed above, the equation system is thereby solved, proving this theorem. m]

The following lemmas are convenient to reorder the equations in equation systems, but they are not needed
for completeness. Similar lemmas already occurred in [19, lemmas 3.21 and 3.22] for the standard system
equivalence. They carry over to our notion of system equivalence.



Lemma 4.4 (Switching). Leto X (d:D)=¢ andoY (e:E)=1 be equations with the same fixpoint symbol
o. Then, the following equality holds:

(cX(d:D)=p)(cY (e:E)=1)) = (¢Y (e:E)=))(c X (d:D)=¢)

Proof. Follows from Bek€’s [2] theorem for elimination of simultaneous fixpoints and definition 2.3.
O

Lemma 4.5(Independence). Let ¢ andi be predicate formulae for whichi does not occur ip and X
does not occur in, then:

(e X(d:D)=p) ('Y (e:E)=¢)) = ('Y (e:E)=1)(c X (d:D)=¢)

Proof. Letn be an arbitrary environment aflan arbitrary equation system. We proceed as follows. By
definition, the environment

[(0X (d:D)=¢p)(c"Y (e:E)=1) Fln
is equivalent to the environment
[Flnlo X (d:D).o([Flnle"Y (e:E).4([Fn)/Y])/ X][o"Y (e:E) 4([F]n) /Y]
Now, sinceY does not occur i, this equals
[Flnlo X (d:D).o([F|n)/X][o"Y (e:E)4([F]n) /Y]
Again, since there is no occurrenceXfin ¢, this is equivalent to
[Flnle"Y (e:E).4([Fnlo X (d:D).o([Fn)/ X))/ Yo X (d:D).([F]n)/ X].
By definition, this is equivalent to
[(0"Y (e:E)=v)(0 X (d:D)=p) Fln,
which concludes the proof. ]

In some cases only an approximation of a solution can be found for a particular equation, for instance
oX(d:D)=p = 0X(d:D)=1. The following two theorems indicate that such an approximation can still

be used to derive the equivalence between two equation systems. First we provide a lemma needed to
facilitate the proof.

Lemma 4.6. Let ¢, ¢ and x be predicate formulae such that the variallle¢ occ(v)). Let F be an
equation system containing an equation of the fethfi(d: D)=¢ and letn be a predicate environment. If

1. (6X(d:D)=y¢) = (¢X(d:D)=¢) and
2. x and x[Ad:D.(yp A X(d))/X] are logically equivalent
then
d'Y(e:E).x([Fln) = 'Y (e:E).x[\d:D.ab ) X|([F]n).

Proof.  The first condition say$c X (d:D)=v) = (0X(d:D)=¢), which we rewrite to a form that
can subsequently be used. So, the condition is equivalent to for all equation systenaspredicate
environmentsy:

[(0X(d:D)=¢)G]n < [(¢.X (d:D)=¢)G]n,
which by definition is equivalent to

[GInlo X (d:D).4([G]n)/X] < [Gln[o X (d:D).(1G]n)/ X].
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By applying both sides oX one can see that this is equivalent to
0 X (d:D).4([G]n) E 0 X (d:D).¢([G]n)
and asX ¢ occ(v) this is equivalent to
Ad:D.p([G]n) E o X (d:D).([G]n).
So, in other words, the expressions
P([G]n) and ([G]n) A o X (d:D).¢([G]n)(d) ©)
are logically equivalent for ali: D and allgG.
Now we turn to the proof of this lemma. Recall thtis an equation system containing an equation of
the formo X (d:D) = ¢. We use induction on the size &%. If F is empty, the theorem holds because the

premise that X (d: D)= is in F, is clearly invalid.
So, assumé is not empty. We distinguish the following two cases:

e F has the forn{oc X (d:D)=¢)F’. Hence,
o Y(e E).X([FIn) =

'Y (e:E).x([(0 X (d:D)=p) F'|n) =
'Y (e:E).x([Fnlo X (d:D).o([F']n)/ X]) =
'Y (e:E).x[Ad:D.4p A X (d)/ X]([F']n [UX(dD) e([F]n)/X]) =
'Y (e:E).x[Ad:D.4p N o X (d:D).p([F|n)(d)/ X]([F|n[o X (d:D)-p([F'n)/ X]) =
'Y (e:E).x[Ad:D .4/ X|([F'In[o X (d:D)-([F']n) / X]) =
’Y(e E).x[Ad:D.4p/ X]([(0 X (d:D)=) F']n)

At =! we use the second condition and=gt we use (3) and{ ¢ occ(1)).
e F has the formo” Z(f:F)=£)F with Z # X ando X (d:D) = ¢ in F'. So, we get

'Y<eE> X([Fln) =
X([("Z(f:F)=6)F']n) = ,
X([F'nle” Z(f:F).£([F'n)/X]) =

b

[([F'nlo" Z(f:F).£([F)n)/ X)) =
}E[( 0" Z(f:F)=€)F]n) =

which finishes the proof. a

Theorem 4.7. Let £ be an equation system and {ety) andx be predicate formulae such that the variable
X ¢ oce(y). If

1. 0X(d:D) =4 = 0X(d:D) = p and
2. xandx[\d:D.(¢¥ A X (d))/X] are logically equivalent
then
('Y (e:B) = \)E(0 X (d:D) = ¢) = (oY (:E) = x[Md:D.4p/ X])E(0 X (d:D) = o)
Proof. Using the definition we must show for all equation systefnand predicate environmengs

(oY (¢:F) = )E(@X (d:D) = ) Fln =
[(0'Y (e:E) = x[Md: D/ X))E(0 X (d:D) = @) F]n.

By definition this is equivalent to

[€(0X(d:D) = @) Flnlo’Y (e:E).x([(0 X (d:D) = ¢)Fln)/ Y] =
[£(0X(d:D) = @) Flnlo"Y (e:E).xNd: Dy X)(E(0 X (d:D) = ) Fl) /Y]

which is a direct consequence of lemma 4.6. a
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Below we state the dual of the previous theorem without proof.

Theorem 4.8. Let £ be an equation system and {ety) andx be predicate formulae such that the variable

X ¢ oce(v). If

1. 0X(d:D)=p = 0oX(d:D) =1 and

2. x andx[Ad:D.(y v X (d))/X] are logically equivalent
then

(d'Y(e:E) = x)E(c X (d:D) = p) = ('Y (e:E) = x[\d:D.xp/ X])E(0 X (d:D) = ¢p)

4.2 Techniques for finding local solutions

In theorem 4.3 it has been shown that we can solve a parameterised boolean equation system, if we can
solve each equation of the formX (d:D) = ¢ in X, i.e. if we can find an equivalent equation in whigh
does not occur in the right hand side. In this section, we focus on techniques to find such equations.

We do not strive for completeness in any formal sense here. Our focus in this paper is to yield a
set of rules that allows effective manual verification, and we have shown efficacy by applying our rules
to numerous examples some of which occur in section 5. General incompleteness results indicate that
completeness can only be achieved under particular circumstances. For instance, it is possible to prove
completeness using infinitary logics (see e.g. [17]). But such means are unwieldy for practical purposes
and generally only satisfy a general desire for completeness results. Completeness can also be achieved
for restricted data types. This is useful as such exercises can reveal new verification rules and techniques.
Albeit interesting, we do not treat such questions in this paper and postpone these to further investigations
in the field.

4.2.1 Predicate calculus

A self evident way of solving a single equation is by applying the standard rules of predicate calculus. In
order to use these, we first define logical implication for our setting.

Definition 4.9 (Logical Implication and Logical Equivalence). Letp, ¢’ be arbitrary predicate formulae.
We write p—¢’, representindogical implicationwhich is defined agy]ne implies [¢']ne for all data
environmentg and predicate environmengs We writep«— ¢’ as a shorthand fap— ¢’ andy’—p.

Note that in this definition we used a data environment, which is only important if free data variables occur
in formulae. In line with the rest of this paper, we omit the data environment elsewhere.

Lemma 4.10. The relation— is reflexive, anti-symmetric and transitive. The relatieris an equivalence
relation.

Well-known rules from predicate logic such as given in table 1, allow symbolic manipulations for trans-
forming and rewriting predicate formulae to simpler predicate formulae. These rules are valid for the
implication arrow as defined in definition 4.9. The following lemma and corollary express how implica-
tions derivable using the rules in table 1 can be used in equation systems. We found that it is not always
easy to solve equations directly. But by weakening or strengthening the equations a little using for instance
lemma 4.11, we can replace an equation by an approximate, which can be easier to solve and which is
sufficient for the purposes at hand.

Lemma 4.11(Monotonicity of Predicate Formulae).
Let ¢ andy be predicate formulae such that>iy. Then(c X (d:D) = ¢) = (¢ X (d:D) = 9).

Proof. As p—1, [¢]ne implies [ ]ne for any predicate environmentand data environment So, by
monotonicity,c X (d: D). ([F|n) E o X (d:D).4([F]n). Again using monotonicity, we find that

[Flnlo X (d:D)-([Fln)/X] < [Flnlo X (d:D).¢([F|n)/ X].

This is exactly equivalent to what we have to prove. ad
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Table 1: Transformation rules for predicate formulae. Hgre; andv are predicate formulae.

11 OAY — @ 12 PV < @

C1 PpAY < YAp Cc2 eV — PV

Al o ANWAX) < (pAY)AX A2 oV (VX)) < (pVY)Vx

DI oA(@VX) < (eAY)V(eAX) D2 oV AX) < (pVY)AleVx)
Im1 pAY — @ Im2 p — eV

Abl  pA(pVY) < o Ab2 oV (pAY) < o

FT1 pVLlL < o FT2 PANT « o

FT3 oAl o L FT4 oVT & T

Q1 Vd:D.o — ¢ Q2 ¢p — 3d:D.p

Q3 Vd:D.(pAvp) « Vd:D.p AVd:Dap Q4 3d:D.(pV1)) « 3d:D.pV3Id:D.yp

From lemma 4.11, the following consequence is immediate.

Corollary 4.12. Let ¢ andy be arbitrary predicate formulae for whigh-. We find that(c X (d:D) =
¢) = (0X(d:D) = 1),
The route from equation systems to formulae only works in restricted cases.

Lemma 4.13. Let ¢ andy be arbitrary predicate formulae such thatt occ(p)Uocc(y). If o X (d:D) =
¢ = 0X(d:D) = v theny — « or in other wordsp < p A ory < ¢V 1h.

Proof. By assumption we have
ocX(d:D)=¢ = oX(d:D) = 1.
So, by definition, for allF andn we find:
(06X (d:D) = ¢)Fln < [(6X (d:D) = ) Fn.
Again by definition
[Flnlo X (d:D).o([F]n)/X] < [Flnlo X (d:D).4([F|n)/ X].
If we apply left and right hand side t& and by takingF empty, we may conclude
0 X (d:D).¢(n) E o X (d:D).ih(n).

As X does not occur ip ande), we find that the fixpoints equald: D.[¢]n and Ad:D.[¢]n. So, for all
d:D:

[£]n implies [¢]n.
This is by definition 4.9 equal tp — ). ]
Note that the following rephrasing of the theorenmét true if X € occ(p) U occ ().

(vX(d:D) =¢) = (vX(d:D) =1) implies (vX(d:D)=¢) = wX(d:D)=pA¢). (4)

A simple counter example is the following. Takeand D equal ton andN and considerp = n<1 and
1 = X(n+ 1). We find that obviously

wX(nN)=n<1l) = @XmN)=X(n+1)),
as the solution for the right hand sideXgn) = T. But it does not hold that
wX(n:N)=n<1l) = (wX(mN)=X(n+1)An<l)

as the right hand side has solutidi{n) = L which clearly does not match the solution of the left hand
side. There are other counter examples showing that (4) does not holdrighesplaced by:, and/orA is
replaced byv.
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4.2.2 lterative approximation

A straightforward but often laborious method for solving an equatidf(d:D) = ¢ in X is by means

of an iterative approximation of the fixpoint solution &f, which is possible as we are dealing with a
monotonic lattice. One starts with an initial solutiSpfor X being eithet\d:D. | (for o = p) or \d:D.T

(for o = v). Then the approximate solutions of the fokat D.S,, 1 = ¢[S,/X] are calculated repeatedly.

A stable approximanis an approximant that is logically equivalent to its next approximation. Such stable
approximants are in fact the fixpoint solution to the equation. But in general this procedure does not
terminate, since the lattiqg), C) can have infinite ascending chains. However, using the equation system
ordering approximants that are not stable can still be of use in solving equation systems. This is another
motivation for defining an ordering on equation systems.

Definition 4.14. Let ¢, be predicate formulae and a predicate variable. We inductively define
¥[p/X]*, wherek is of sortN.

1. ¢[p/X]° € g, and

2. Ylp/ X1 Ly l(lp/ X]F)/X].

Thus,y[¢/X]* represents the result of recursively substitutinigr X in +». Note that for any::N, and all
predicate formulae, ¢, the expressiog[¢/ X" is a predicate formula. Below we state that /X]* and
©[T/X]* are approximations of the solution of an equation and that a stable approxirttaagasution to
an equation.

Lemma 4.15(Approximants as (Pre-)Solutions).
Let ¢ be a predicate formula aridN be an arbitrary natural number. Then

L. (1X(d:D) = ¢[L/X]*) > (uX(d:D) = ).
2. (vX(d:D) = p) = (vX(d:D) = [T/ X]F).

Proof. Follows from the fact that pre-solutions imply/are implied by the solution of the equation system
and lemma 4.11. |

Lemma 4.16(Stable Approximants as Solutions).
Let ¢ be a predicate formula aridN be a natural number. Then

1 0f o[ L/ X F e[ L/ X]* L then(uX (d:D) = ¢[ L/ X]*) = (uX(d:D) = ¢).
2. 1f o[T/X ke[ T/X]F+ then(v X (d:D) = ¢) = (v X (d:D) = [T /X]F).

A less mechanic but often more efficient version of lemmata 4.15 and 4.16 is lemma 4.17. In the setting
of parameterised boolean equation systems this lemma first appeared in [11]. It allows one to “guess” an
approximate solution to an equation. Only a relatively simple (inductive) check is needed to establish that
this solution indeed approximates the exact solution of the fixpoint equation.

Lemma 4.17(Groote and Mateescu).
Let p, v be predicate formulae whekeN is possibly a free variable ipn and X a free variable iny. Then:

1. Iffor all k, p(k)—w[L/X]*, then(uX (d:D) = 3k:N.¢(k)) = (uX(d:D) = ).
2. 1f Yo/ X]—¢p, then(uX (d:D) = ¢) = (uX(d:D) = ¢).
3. Ifforall k, [T /X]F—(k), then(vX (d:D) = ¥) = (vX (d:D) = Vk:N. o(k)),
4. If p—9[p/X], then(vX (d:D) = o) = (vX (d:D) = ).
Proof. Along the lines of [11]. |

The first rule inlemma 4.17 captures the fact that for a least fixpoint, a carefully chosen formula is a smaller
solution to an equation when it is always at mosttfeapproximant. The second rule describes the case
when we have a solution to an equation (which is not necessarily the least solution). The third and fourth
rules are the dual counterparts of the rules for the greatest fixpoint.

14



4.2.3 Patterns for equation systems

The techniques for finding the solution to equation systems we described in the previous section are not
always efficient or easy to apply. For instance, iterative approximation is not always applicable, as the
following example shows.

Example 4.18. Consider the following greatest fixpoint equationX (i:N) =i < N A X (i + 1), where

N is some arbitrary natural number. By approximating, we obtain infinitely many approximants, without
ever reaching the solution. Obviously, the solution to this equation shoulg:Bei + j < IV, which can

be further reduced ta.

In order to be able to solve such an equation effectively, we need to resort to a different method altogether.
We study equations of a certain generic form, and provide generic solutions to these equations. Equations,
such as the one from the above example, can then be recognised to be of a certain form, and be solved by
looking them up. We refer to these abstract equationsafterns Note that identifying ‘patterns’ is very
common in mathematics, for instance when solving differential equations.

The first pattern is obtained by generalising the equation in the example given above. Note that the
solutions for the minimal and maximal fixpoint equations are dual. f:é1— D be an arbitrary, total
function. We assume the existence of a functfoN x D— D, written asf™(d), with the property that

fO(d) = dand f*+1(d) = f(f"(d)).

Theorem 4.19. Let o X (d:D) = ¢(d) A (v(d) V X (f(d))) be an equation, wherg D—D is an arbitrary
total function andX does not occur ip andq.

1. The solution taX foro = v is

VN ((ViN. i < j — = (f*(d))) — (7 (d))),

2. The solution taX for o = pis: _
Fi:N. ¢ (f*(d)) AVGN. (j<i — o(f7(d))).

Proof. We first deal withc = v. We prove this theorem by directly, but transfinitely, calculating the
fixpoint (lemma 2.9). The finite solutions are given by the following formula:

n—1 j—1

Xu(d:D) = N\ ((/\ ~(f' (@) = @(f(d)))-

j=0 =0

It is easy to show thak,, is then'™ approximation ofX using induction om. The next approximation
X, (d) is equal to the maximal solution and given by

Xo(d:D) = nN.X(d)

= VN A ((/\ —U(f1(d))) — ¢(f'(d)))
VN (A2 ﬂﬁ(fz( ) — w(f7(d)))
= VNN < j = ~p(fi(d) — o(f7(d)).

It only remains to be shown that the solution is stable, which can be seen as follows:

p(d) A (Y(d) v Xy (f(d)))
= @(d) A ((d) vV Vi:N.(ViN. i<j — =(fHH(d))) — o(f71(d))) ,
= g(d) A (~9(d) = (Vj:N. j>0 — (Vi:N. 1 < i<j — =¢(f*(d))) — @ (f7(d))))
=

N.((Vi:N.i<j — = (f'(d))) — ¢ (' (d)))
w(d)

The proof forc = p follows the same lines. The finitary approximations are given by

\
SR

Xo(d:D) =\ (P A N ol ().
i=0 j=0
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The first infinitary approximation is calculated as follows
X,(d:D) = 3FInN.X,(d)
= 3NV WD) A Nj—o (F(d)))
= JN(p(f1(d) AN o(f(d)
= JiN.(L(f(d)) AVEN(<i — o(f7(d))))-
Showing thatX,, (d) is stable goes in the following way:

p(d) A ((d) vV Xu(f(d) _
= @(d) A (9p(d) v FiN.((f7+1(d))) AVGN.(j<i — (f771(d))))
(¥(d) Ap(d)) v FiN.(¢(f7H(d)) AVIN.(<i+1 — o(£7(d))))
?éifdgw(f (d)) AVIN.(<i — o(f7(d))))

O

The first pattern above immediately provides us with the solution to the equation of example 4.18, by taking
the functionf:N—N, defined asf (i) = i + 1, and defining the predicatg(i) = i < N andy (i) =

When more than one occurrencefoccurs in the right hand side of the pattern in theorem 4.19 we
have a straightforward generalisation for which we can find a solution in a similar vein.

In this case we assume that functiofisD — D for ¢ < N for some givenN are given. We let
g:N—{0,...,N — 1} be an arbitrary function. We assume the existence of functfosnsj, d) with the

property thatf(g,0,d) = dandf(g,j + 1,d) = f4(;)(f(g, 3, d))-
Theorem 4.20. Let N:N be some arbitrary natural number and let
N-1

X(d:D) = p(d) A N\ Wi(d) v X (fi(d)))

=0
be an equation, wherg: D— D are arbitrary total functions an8l does not occur i and;.

1. The solution taX foro = v is

Vi:NVg:N—{0,..., N=1}. (Vi:Ni<j——1y)(f(g,7,d)))—¢(f(9,5,d)))
2. The solution taX for o = pis

3j:N.3g:N—{0,..., N=1}. ((Vi:N.i<j——g;)(f (9,4, d))) AN e(f(g,7,d))),

Proof. We exactly follow the structure of the proofs of theorem 4.19 and we provide only the proof for
o = v here. First we define the finitary approximations:

X,(d) = Vg:N—{0,...,N—1}. /\ /\ﬂwgm (9, k,d)))—¢(f(g,4.d))).

7=0 k=0
In order to see thak,, (d) is then'™ approximation observe that
Xo(d)=T
and
(d) AN (Wil d) v Xn(fild)
= pd) A2 (%(d)\/ g. /\? 0((/\k ow/’q(k)( (9.1, fi(d)
= Yo AL ld) A Wild) Y ATZ (N2 oty (£Lg: K, fild
=" Vhep(d) A (Yg() (d)
= Vh /\;E%gp d) A
= VR A eld) A
(d) A
/\

)
)

)—(f(g, ], fi(d)
))—e(f(g,7, fi(d
VA (NI oﬂwhwm( F(h, k+1,d)))—(f(n, j+1,d))

(f(h,j+1,d)

) )

) )
(d ( )
(Vn( )( Y ((/\k Oﬁ'(/)h w1y (f(hy k41,d))) = )
(N o U (f (o )= (. 51, )

= VAN @(d) A (A ( d)))

= Vh Ny e(d) A (N

= YA Ao (A=~ (f(h, K, d)

= Xn+1(d)

= o_‘z/’h(k)( f(h,k,d)))—o(f(h,j+1,
1o Uy (f(hy k, d)—e(f(h, . d)))
N—e(f(h,j,d)))
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where atx we introduceh:N—{0,..., N—1} such thati = h(0) andg(l) = h(l+1) for all I. The
universally bound functiog above and below has typeN—{0, ..., N—1}.

Next we calculate the first infinitary approximation, which happens to be equal to the solution of the
equation.

X (d) Vn:N.X,, (d)
Vn:NVg. NiZo (Ao Vg ( (9, %, d))—0(f(g, 4, d)))

— WjNYg.(Vk: N, (k<j—==Yg()(f(9,k,d))))=¢(f (9,5, d)))

Finally, we show that the first infinitary approximation is stable, which proves that it is indeed the maximal
fixpoint solution for this equation.

o(d) AN (W () Xu(fi(d)))

= o )/\ /\z o (i(d) Vv VNV (VEN.(k<j——y0) (f (g, k. F(d)—=o(f(g. 5, fi(d)))))
Vg Aot o(d) A (i(d) V VN ((VEN.(k<j— =ty (£ (g, k. fi(d)))))—0(f (g, 4, f:(d)))))

> Vho(d) A (Ypoy(d) V ViN((VEN.(E<j——%nus1) (f(g, k+1,d)))) = (f(h, j+1,d))))
Vh.Vj:N.o(d) A (VE:N.(k<j+1—=—Upu (f(g, k. d))))—=e(f(h, j+1,d)))
Vh-?];N-(Vk:N-(k<j‘>_‘7/)h(k)(f(ga k,d))))—e(f(h,j,d))

= X, (d).

See for thewx the remark marked with theabove. O

The patterns that we considered in this section are inspired by the examples in section 5. We expect
that these will be encountered very often when solving parameterised boolean equation systems that will
occur when proving the validity of modal formulas on large examples. What we actually think is that it
will be fruitful to build a library of patterns and include these in tools that automatically solve boolean
parameterised boolean equation systems. This has for instance been done in computer algebra systems
with mathematical formulae.

However, finding and in particular solving these patterns might turn out to be difficult. A pattern that
we encountered but were not able to solve thus far is the following:

X(d:D) = ¢(d) ANVe:Eap(d,e) vV X(f(d,e)))

for arbitrary data sorE. Actually, — and we pose this as a very interesting open question — it might very
well be possible to device a method to solve all single fixed point equations of thesf&ifd: D) = ¢

by replacingy by a first order formula in whickX does not occur. Using Gaul3 elimination, this would

yield a complete method that allows to transform each parameterized boolean equation system to a first
order formula. Solving the equation system would then be equivalent to determine whether the formula is
a tautology. The advantage of this transformation is that it moves the relatively unknown field of model
checking (with data) and parameterised equation systems to the well studied field of first order logic.

4.2.4 Invariants

Invariants characterise ‘the reachable parameter space’ of a parameterised boolean equation. As in the
verification of programs they can be used to prove properties that only hold within the reachable state
space. Within parameterised boolean equation systems they can be used to simplify equations with a
particular parameter instantiation.

A formal definition of an invariant is given below. In our setting the definition looks uncommon, but
still expresses what is ordinarily understood as an invariant. Note that our invariants only have the transfer
property, and do not involve an initial state.

Definition 4.21 (Invariant). LetoX (d:D) = ¢ be an equation and létD—B be a predicate formula in
which no predicate variable occurs. Théns an invariant ofX iff

(INp) = (INp[(Ae:D.Ile/d] N X(e))/X])
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Basically, a predicate formula is an invariant iff, for that part of the parameter space of the equation for
which the invariant holds, the solution is not changed by adding the invariant.

Note that in general this affects the solution of the equation, as the solution with and without the
invariant only coincide in those situations for which the invariant holds. Nevertheless, invariants can be
used for simplifying an equation system by calculating with the equation system in which the invariant is
used, as expressed by the following theorem. First an auxiliary lemma is proven, and subsequently the
invariance rule is given that indicates how invariants can be used.

Lemma 4.22. Let o X (d:D) = ¢ andoY (d:D) = I(d) A ¢[Y/X] be equations such that ¢ occ(p)
and let/:D — B be an invariant ofX. For alld:D for which I(d) is valid, it holds that

(0 X(d:D).o(n))(d) = (oY (d:D).(I(d) A p[Y/X])(1))(d).

Proof. We prove this lemma by a transfinite approximation (see lemma 2.9). So, Wg lehdY,, be the
ath approximation forX andY respectively, where is an ordinal, and we show thatd) implies

Xa(d) = Ya(d)
We find:

e Fora = 0, we must distinguish between= v ando = . If o = v it holds thatX,(d) = Yo(d) =
T. Foro = pwe find thatX,(d) = Yy(d) = L.

e Fora = 8 + 1 a successor ordinal we find under the assumptionfifiitholds:
Yppa(d) = ¢

o= (
1nvj'aé1ant (p([(d
= e

invariant
= p(Xp(d))

|
>
S
+
=
Q,

e Fora alimit ordinal ands = 1 we find
i.h.
Yold) = \/ Ys(d) = \/ Xp(d) = Xa(d)
B<a B<a
The case witly = v is dual and goes in the same way.

So, we have shown that,(d) = Y,(d). Now, as we know tha¥, andY,, are the minimal/maximal
solutions for a sufficiently larga, the lemma follows. o

Theorem 4.23(Invariance Rule). Let 0 X (d:D) = ¢ be an equation such th&t ¢ occ(y) for some
predicate variabl&” and let/: D—B be an invariant ofX. Then

oX(d:D)=¢
oY (d:D) = I(d) A p]Y/X]

oX(d:D) = (I(d) AY (d)) V (~I(d) A )
oY (d:D) = I(d) A p[Y/X]

Proof. We write B for oY (d:D) = I(d) A ¢[Y/X]. According to definition 3.3 we must show for gll
andF*:

[(0X(d:D) = ¢) BFln = [(0X(d:D) = (I(d) NY (d)) V (~I(d) A ) B Fln
By definition 2.3 this is equivalent to:

[BF]nlo X (d:D)-¢([BF|n)/X] = [BFInlo X (d:D).((I(d) NY (d)) V (=1(d) A ))([BF]|n)/X].
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This in turn follows from
X(d:D).o([BF]n) = 0 X(d:D).((I(d) NY(d)) V (=I(d) A ) ([BF]n).
Distribution of the substitution leads to
0 X(d:D).o([BF]n) = 0 X(d:D).(I(d) A (Y(d)([BF]n))) v ~(I(d) A (([BF]n))))-
Becaus&” does not occur i, this subsequently reduces to:
o X (d:D).p([Fln) = 0 X (d:D).((Z(d) A (Y (d)([BFIn))) V (=I(d) A (([F]n))). (5)

It holds thatY (d)([BF]n) equals(cY (d:D).(I(d) A ¢[Y/X])([F]n))(d). Using lemma 4.22 this is equal
to I(d) A (6 X (d:D).o([F]n))(d). So, equation (5) is equal to

0 X(d:D).¢([Fn) = o X (d:D).(I(d) A (0 X (d:D).o([F|n)(d)) V =I(d) A (p([F]n)))-

Now observe that the right hand side of this equation equals the left hand side, except that the solution for
X has been partially substituted. Using lemma 2.10 both sides are equal. |

A disadvantage of the previous theorem is that it requires an extra equation. Therefore, we provide a
theorem below that allows the use of an invariant without this additional equation. But first an auxiliary
lemma is given:

Lemma 4.24. Leto X (d:D) = ¢ ando’Y (e:E) = 1) be equations and Iét D — B be an in invariant of
X. Let K be a parameterised boolean equation system. If for some predicate formitta X' ¢ occ(x)

1. (6X(d:D) =9 ANI(d)) = (cX(d:D) = x),
2. ('Y (e:E) =%) = ('Y (e:E) = ¢[A\d:D.I1(d) A X(d)/X]) and
3. 0X(d:D)=ypisink.
then
'Y (e:E)[Kln = 'Y (e:E).ap[Ad:D.x/ X][K]n.

Proof. This lemma is proven with induction on the length/f If X is empty,c X (d:D) = ¢ cannot
occur inK and the lemma holds as condition 3 is invalid.

If K is not empty, we distinguish two cases:

1. K equals(c X (d:D) = ¢)K'. So, we must show:

o'Y (e:E).4[(0 X (d:D) = )K'|n =

'Y (e:E). K In[o X (d:D).([K']n) /X] =*

o'Y (e:E).[Ad:D.1(d) A o X (d:D).o([K'n)(d)/ X][K'nlo X (d:D).([K']n)/ X] =
o'Y (d:D)4p[o X (d:D).(I(d) A @) ([K')n) / X][K'|n]o X (d:D).o([K']n) / X] =***
o'Y (e:E).[o X (d:D).x([K'Jn) / X][K'|no X (d:D).o([K']n)/ X] =

o'Y (e:E).¢[x/ X][K'Inlo X (d:D).([K'n) / X] =

o'Y (e:E)[x/X]([(0 X (d:D) = ¢)K']n)

At * condition 2 is used. At* lemma 4.22 is used. At* condition 1 is used.
2. Kequals(c”Z(f:F) = £)K' with Z # X. We find
)" Z(f:F) = K I =
) nle" Z(f:F).£((K'n)/Z]
)]
)Yl

/,'7 —%
X/ XK nlo" Z(f:F).£([K'n) /2] =
X/ X" Z(f:F) = §)K'n

At * we use the induction hypothesis.

"Y(e:E
'Y (e:E
"Y(e:E
Y (e:E
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The theorem below says thatyfis a solution for the equationX (d: D) = ¢ under invariant (condition
1) andX is used in an equation’Y (e:E) = « in a situation wherd implies X (condition 2), then we
may substitute solutiog for X in .

Theorem 4.25. Let 0 X (d:D) = ¢ ando’Y (e:E) = ¢ be equations and ldtD — B be an invariant of
X. Let& be a parameterised boolean equation system suck¥at} ¢ bnd(€). If for some predicate
formula such thatX ¢ occ(x)

1. (6X(d:D) = p NI(d)) = (cX(d:D) = x) and
2. ('Y (e:E) =) = (¢'Y (e:E) = Y[Ad:D.I(d) A X (d)/X]).
then
('Y (e:E) = $)E(0 X (d:D) = ¢) = ('Y (:E) = pAd:D.x/X]E(0 X (d:D) = o)
Proof. By definition we must show for alF andr that
(0" (e:E) = ¥)E(0 X (d:D) = @) Fln = [(0'Y (e:E) = ¢[Ad:D.x/X])E(0 X (d: D) = ) Fln.
Abbreviate€ (0 X (d:D) = ¢)F with . We can rewrite the previous equation to
[Klnlo"Y (e:E)4[Kln/Y] = [Kln[o"Y (e:E).4b[Ad:D.x/ X][K]n/Y]
which follows from
oY (e:E)[K]n = o'Y (e:B)p[Ad:D.x/ X][K]n

which matches the conclusion of lemma 4.24. O

5 Applications

In this section, we study properties of several small but characteristic reactive systems. Note that, although
the systems that we study are small in size, their behaviours are in many cases quite complex.

We study the systems by proving the validity of certain modal formulas governing their behaviour.
We translate the process descriptions and the formulas to parameterised boolean equation systems that are
subsequently solved. For a detailed account on how these equations can be derived from a process and a
formula, we refer to [11, 15, 24]. For the remainder of this paper, we assume the reader is familiar with
the use of the specification languag€RL [13, 14], and the use of tHfest-order modalu-calculuswith
data [11, 15] to specify logical properties of systems. We use natural numbers as the main data type in the
examples as natural numbers are very common. More complex data types can be used similarly.

5.1 A one-place buffer

The first system we study is a one-place buffer. We study two properties that are not commonly studied
on buffers, namely that if the input stream of the buffer consists of identical values, the output stream also
consists of identical values and if the input stream is increasing, then the output stream is also increasing.
These properties need data in modal logic to be expressed.

The buffer is represented by th€RL procesBuffer(see below). It reads natural numbers one-by-one
from an infinite stream using action and it outputs a stream of data using actiqsee figure 1).

proc Buffer(t:B,n:N) = > r(m) - Buffer( L, m) abw s(n) - Buffer(T,n)
m:N

where the initial state iBuffer(T, n) for an arbitraryneN.
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s)lalels/

Figure 1: A One-Place Buffer System

A constant input stream. The first property we set out to investigate is the following: provided that the

input is a stream of the fork, for some natural numbéy; then the output is also of the fork?. In other

words, the buffer does not perform any transformations on its input when this is a constant input stream.
The property requires keeping track of the value that appears in the input stream. It is expressed by

the following formula. We use fixpoint variables with a tild& to stress the difference with variables in

equation systems.

VEN. (X VEN. [r(D)](i=k — X) A [s(D]( = k A X))

The property and the process can in the standard way be translated to a parameterised equation system.
The property holds if/k:N.X (b, n, k) holds whereX is given by

vX(b:B,n, k:N) =VEN.  (VmuN.(bAm=l — (I=k — X(L,m,k)))A
(=bAl=n— (I=kAX(T,n,k)))).

We can eliminate the quantifiers by substitution. We get using corollary 4.12:
vX(b:B,n, k:N) = (b — X (L, k, k) A (=b — (n =k A X(T,n, k))).
This equation can be solved using a simple approximation:
Xo(b,n, k) =TT,
X1(b,n, k) = =b — n=k,

Xo(byn, k) = (b— (=L — k=k)) A (=b — (n=k A (=T — n=k)))
=-b—-n==k.

As X (b, n, k) is stable, we found the solution. So, a buffer preserves a constant input stkdah.if-b —
n = k), which is equivalent té, which is indeed what could be expected.

An ascending input stream. The second property we study is the following. If the input stream is
ascending, is the produced stream also ascending? This property can be expressed using two variables to
remember the last read input and the last produced output. It is formalised by the following modal formula:

(vX (in, out:N).VEN.([r(1)](1>in — X (I, out)) A [s()](I=>out A X (in,1))))(0,0).
The ascending stream property holds on the proBefferif X (b, n,0,0) holds whereX is given by:

vX (b:B,n,in,outN) = VI:N.  (VrmuN.(bAl=m — (I>in — X (L, m,l, out)))A
(=bAl=n — (IZout A X(T,n,in,1)))))).

The right hand side of this fixpoint equation can be simplified using laws of predicate logic. So, with
corollary 4.12 we find:

vX (b:B, n,in,outN) = VI:N.(b — (I>in — X (L,1,1, out))) A (=b — (n>out A X(T,n,in,n))).
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The approximation of this equation is straightforward:

Xo(b,n,in, out) =T,

X1(b,m, in, out) = —b — n>out,

Xa(b,n, in, out) = VIN.(b — (I>in — [>out)) A (b — n>out),
= (b — in>out) A (-b — n>out)

X3(b,n,in, out) = VI:N.(b — ({>in — [>out)) A (-b — (n>out A in>n))
= (b — in>out) A (b — in>n A n>out),

X4(b,n, in, out) = VEN.(b — (I>in — (>l ANl>out)) A (b — in>n A n>out))
= (b — in>out) A (-b — in>n A n>out).

Note thatX (b, n, in, out) is stable. Therefore it is the solution of the fixpoint equation. So, the ascending
chain property holds i (b, n,0,0) is valid. By substituting the solution of, this boils down to-b6 —
n=0.

5.2 Merging infinite streams

Combining several input streams into a single stream is a technique that is found frequently in streaming

media applications. The way streams are combined depends on a particular application. Here, we study
a small system that reads data from two (infinite) input streams, one-by-one, and produces a new output
stream that is locally ascending, see figure 2. Our particular merge system is described by the four process

—_—=
l 61513 (n -
— Merge s|8|5|1/

lo2ls 1]

Figure 2: Combining Two Input Streams into a Single Output Stream

equations below. The initial processiferge. It reads data from streairvia actionr;, whereie{1, 2},
and the output is produced via actien

Merge =%« (r1(m) - Merge,(m) 4+ ro(m) - Mergey(m))
Merge, (n:N) = 3" r2(m) - Merges(n, m)

Mergey(m:N) =5  r1(n) - Merges(n, m)

Merges(n, m:N) = s(n) - Mergey(m) <n < mws(m) - Merge,(n)

To illustrate its behaviour, consider the input streams as depicted in figure 2, and ignore the output stream
that is depicted. On this input stream, it first reads the valuasd 1 in random order, via actions and
r9, respectively. Sincé < 3, the valuel is produced as output via actierand the value is read from
input strean®, and produced as output, sinze< 3. Subsequently, valugis read from strearf and the
value3 is produced as output, after which the vafuis read from input strearh. Now, the merge process
decides non-deterministically from which of the two streams it reads next, and it outputs thé.value

Clearly, on ascending input streams, the merge system should produce an ascending output. This is
expressed by the following formula:

(vX (iny, ing, out:N).VEN.  ([r (D] > ing — ):((l, ing, out))A
[r2(D](l = ing — X(ina, 1, out))A
s(D](1 > out A X(ing, ing,1))))(0,0,0)

>
D) =
)
Note that the proces&ferge must first be converted to linear form if we are to verify this property.

This is fairly straightforwardly achieved by introducing an additional paramefér ProcessMerge; is
represented by = i, whereass = 0 represents procesterge itself. Combining the resulting linear
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process specification with the above formula according to the translation of [11, 15, 24] and after applying
some simplifications, we obtain the following equation.

vX(o,n,m,iny,ing, out:N) = (0 =0— (VE:N. 1 > in; — X(1,1,m,1, ing, out)))A
(0 =0— (VE:N.I > ing — X(2,n,1,in1,1, out)))A
(c=1— (VI:N.l > iny — X(3,n,1,in1,1, out)))
(0 =2— (VEN.I > iny — X(3,1,m,l, ing, out)))A
(c=3An<m)— (n>out ANX(2,n,m,ing,ing,n))A
(c=3Am<n)— (m>out ANX(1,n,m,in,ing,m))

where the ascending input/output property hold¥ {&, n, m, 0,0, 0) holds.

A closer inspection of the equation reveals a striking similarity in the use of the varialaledin,
and, likewise, in the variables andin,. This is in fact no coincidence. In the linear process, representing
processMerge, the variables: andm register the last read values of stredrand strean®, respectively.
The variablesin; andiny, appearing in the modal formula have a similar purpose. This redundancy is
identified by the invariantn = in1) A (m = ins). Furthermore, the variableut satisfies the invariant
out < min(iny,ing). It is straightforward to verify that both properties are invariants in the sense of
definition 4.21. Thus, rather than immediately solving this equation, it pays to solve the equation with the
invariant.

vXi(o,n,m,iny, ing, out:N) = (n=iny A m=ing A out<min(iny, ing))A

(0 =0— (V:N.I > iny — X;(1,1,m,1,ing, out)))A
(0 =0— (VE:N. I > ing — X1(2,n,1,in1,1, out)))A
(0 =1— (V:N.I > ing — X1(3,n,1,in1,1, out)))A
(0 =2— (VI:N.I > in; — X1(3,1,m,l, ing, out)))A
(c=3An<m)— (n>out ANX1(2,n,m,iny,ing,n))A
(c=3Am<mn)— (m>out ANXi(1,n,m,ini,ing,m))

It is straightforward to approximate this equation.

Xo(o,n,m,iny, ing, out) = T,
X1(o,n,m,iny, ing, out) = n=in; A m=ing A out<min(iny, iny).

The approximationX; is stable and hence it is the solution f&y.

Now we cannot use this solution to construct a solutionXde, n, m, 0,0, 0), simply because it does
not satisfy the invariant. However, if we consid€fo, 0, 0,0, 0, 0), then using theorem 4.25 we can use
the solution forX; as the solution foX. More concretelyX (o, 0,0, 0,0, 0) is always true.

Approximating the fixpoint equation foX directly does not terminate as quickly and is awkward due
to universal quantifier that remains present in the approximations.

5.3 Anidentity tag generator

Many applications depend on a mechanism that produces identity tags for objects. lllustrative examples of
such tags are the identity numbers on passports, phone-numbers, but also IP-addresses and message-header
tags in e-mails. In essence, the mechanism for producing identity tags is a process that writes an infinite
stream of identities. We represent these identities by means of natural numbers, see figure 3.

_

s]lslelo/

Generator

Figure 3: Identity tag generator.
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The process7enerator is a generic process that generates identity tags according to some predefined
function that is passed as a parameter to pro¢gssrator. The generator is initialised with the valie

proc Generator(f:N—N,i:N) = s(i) - Generato( f, f(i))

Thus, by executing proce§eneratof succ, 0), wheresucc is the successor function for natural num-
bers, we can generate the natural numbers. Most applications, using the generator, rely on the generator
to produce unique tags. Thus, any two outputs of the system should be different. This is expressed by
the following modal formula. It says that always in the future whenever atdgygenerated, every tag
generated later is not equalte.

vX.([TIX AVm:N.[s(m)vY.([T]Y AVn:N.[s(n)Jm # n))

An alternative but more complex approach would be to store all outputs in a set and check that each tag
being generated does not occur in the set. The fact that this is not needed in the above modal formula is
due to the greatest fixpoint operators, which reasons about infinite runs of a system. Verifying this modal
formula on proces§&eneratorallows us to find the conditions on the generator function that ensures all
produced tags are unique. In order to do so, we need to solve the following equation system:

vX(f:N—=N,i:N) =X(f, f(@)) AVm:N.(m = i) = Y(f, f(i),m),
vY (f:N-N,i,m:N) =Y (f, f(i),m) A¥u:N.(n =14) — m #n.

Obviously, all universal quantifiers can be removed in the equations above. Thus, we can rewrite this
equation system to the following equivalent equation system.

vX(fN=NuN) = X(f, f(i)) ANY(f, f(i),9),
vY (f:N->N,i,m:N) =Y (f, f(i),m) Am #i.

These equations are both of the form of the pattern of theorem 4.19. Hence, the solutisivfoN. f7 (i) #

m. The solution taX isV;’:N.Vj:N. fi+i'+1(;) £ £7'(i), which is logically equivalent t/;j:N.V;":N. j #

= fi(i) # fj'(z'). Of course, this is exactly the requirement we expected, but it is nice to see that we
can also systematically derive it.

5.4 Atokenring

Synchronisation and mutual exclusion between processes in a network can be achieved by passing tokens.
By abstracting from the behaviours of these processes, we can study the mechanisms to pass tokens in
isolation. Networks using tokens usually have a ring topology and are dalketh ring networks In

figure 4, we depict a token ring configuration for two tokens and six processes.

1 2

b} 4

Figure 4: Token Ring system fd¥ = 6 with two tokens.

We represent an arbitrary configuration in a token ring of 8izey means of subsets of the sét=
{0,..., N—1}. Ifthere is at least one token at procgsthe valuej is in this subset. We define the operator
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2V ooV ast; (R) & (R\ {j}) U {(j + 1)modN} indicating that tokens move from processo

procesy;j + 1)modN. ProcesRingdescribes a very simple token passing mechanispCiRL.

proc Ring(R:2") =) " toker(j) - Ring([; (R)) < jER A j<N & &
J:N

Basically, procesfing executes doker(;) action, for somej, whenever procesg passes its token to

the next process in the ring. The conditiafic R A j<N > ¢ says that this can only occur jfis an
element of R and j is smaller thanV, or in other words if procesg has at least one token. One of
the characteristics of this token passing mechanism is that idettetokens. To see that, take the
configuration of figure 4 wheré indicates the presence of a token. Consider the following sequence of
actions:toker(3) toker(4) toker(5). At this point, there is only one token left in the token ring.

Given the simplicity of this system, it is not hard to see that there will always remain at least one
token in the system. In fact, for proceRéng(R), the invariant/(R) = R # () can be proven fairly
straightforwardly. However, we cannot immediately draw the conclusion that this process is fair in the
sense that every process will always eventually hand over a token. This property is formally expressed by
the following (first-order) modak-calculus formula.

VE:N. k<N — (vX.[T]X A pY .((tokerk) T V ([T]Y A (T)T)))

Combining the modal formula with the process expression using the translation given in [11, 15, 24], we
obtain the following equation system for arbitrarg/\/:

vX(R2V k:N) =Vj:N. (JERAj<N — X(I;(R), k) AY (R, k)
pY (R:2V k:N) = (35:N. jeRA j<N Aj = k) V ((3j:N. jeR A j<N)A (6)
(Vj:N. jER A j<N — Y (I; (R),k)))

Note that after solving this equation system, the expresgioN.k < N — X (R, k) answers whether the
token ring is fair. The equation far can be rewritten to

pY (R:2V k:N) = (kR A k<N) V (3j:NjeRAj < N))A
Njen((k ¢ RVEZN)AjeR — Y ([; (R), k).

Using theorem 4.20 this equation can be solved, yielding

pY (R:2V k:N) = 35:N.3¢:N — {0,..., N—1}.(Vi:N.i<j — (k €] (g,i, R) V k>N)A
g()€ [(g,4, R)) A ((k€ [ (9,4, B) Nk<N) v (3j:N.j'e [ (9,4, R) A j'<N))).

The right hand side of this equation can be simplified using the rules of predicate calculus. We get (using
corollary 4.12):

pY (R:2V k:N) = 3j:N.(JER A j<N).
The solution forY” can now be substituted in the first equation obtaining:

vX (R:2V, k:N) = Vi:N.(JERAj < N — X(I;(R),k)) A3j":N.(j'€eR A j'<N).
We solve this equation by iteration

Xo(R, k) =TT,
X1(R, k) =35 :N.(jeR A j’<N),
Xo(R, k) =ViN.(jJERANj <N — JFj"N.(j'e [ (R) A j'<N)) AFj":N.(7€R A j"<N)
=35:N.(JER A j<N).
Hence, the solution of the system is

vX (R:2N k:N) = 35:N.(JER A j<N),
pY (R:2V k:N) = 3j:N.(jJER A j<N),

And so, the token ring is fair i¥k:N.k<N — Jj:N.(jJER A j<N). This can be slightly simplified to
N=0V3j:N.(JERAj<N).
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5.5 Alossy channel

Consider a simple lossy channel that reads information from a stream, and tries to send it to the other side
where a message is lost occasionally.

CT = Zm:N r(m) : CJ— (m)
Ci(m:N)=s(m)-Ct+1-Ct

We wish to verify that when data is not always lost, messages eventually get across. We formulate this
using the following modal formula

vX.([TIX A (uY [TIY V()T V Im:N.(s(m))T))
We first translate the process to linear form:

C:B,m:N)= >, «r(k)-C(L,k)abrd
s(m)-C(T,m)<a-b>4
1-C(T,m)<a-b>4
The proces€' is equal toC (T, m) for anym:N andC (m) is equal toC (L, m).
The equation system we obtain is the following:
vX (b:B,m:N) = (VE:N.(b — X (L, k)) A (=b— X(T,m))) ANY(b,m)
wY (b:B, m:N) = (VE:N.(b — Y (UL, k) A (=b — Y (T, m))) V =b V Im’:N.=b A m=m’

Approximation quickly leads to a solution without involving:

Yo(b,m) :L,

Yi(b,m) = =b A (bV —b) = —b,
Ya(b,m) = (b — —b) V =b =T,
XQ( ,m) =T

whereX,(b,m) = T is a stable solution. Thus, in whatever state the pro€estarts, messages always
get across if not always lost.

A slightly more involved property, taken from [6, page 309], says that delivery via agfiohis fairly
treated if there are no paths wheiten) is enabled infinitely often, but occurs only finitely often:

vX 1Y .vZ ¥m:N.[s(m)] X A (Fm:N.(s(m))T — ([[]Y AVm:N.[r(m)]Y)) A[[]Z AYm:N.[r(m)]Z
This formula together with procegs are translated to the following equation system

vX (b:B,m:N) =Y (b,m)
wY (b:B,m:N) = Z(b,m)
vZ(b:B,m:N) = (=b — X(T,m)) A (=b— ((=b— Y (T,m)) A\VEN.(b = Y(L,k))))A
((=b— Z(T,m)) AVEN.(b — Z(L,k)))
— (=b— X(T,m)AY(T,m) A Z(T,m)) A (b — YEk:N.Z(L, k))

We approximateZ and find a stable solution in three steps:

Zo(b:B,m:N) =T,
Z1(b:B,m:N) = =b— X(T,m) AY(T,m),
Zo(b:B,m:N) = (=b— X(T,m) AY(T,m)) A (VEN.X(T,k) AY(T,k))
=VENX(T,k) ANY(T, k).
We substitute the solution fdf in the second equation obtaining the following fixpoint equation:
pY (b:B,m:N) = VEN.X (T, k) AY(T, k).

Using one approximation step it is easily seen that the solution of this equatidtbjsn) = L. So,
substitution of this solution in the first equation yield$b, m) = L. The property does not hold for our
process.
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5.6 A client-server model

Here we verify a property of a simplified client server system.

(ordered) goods
4—

( Client 1 ( Server 1
t outstanding J t outstanding J
accounts accounts
—_—

payments and orders
Figure 5: Placing orders and transfering money

A client can place a number of orders using actignand pay for these later, using actipn A
server keeps track of the outstanding accounts of the client; as long as the outstanding accounts are below
a certain threshold’, the server accepts all orders that fall within the budget of the client, using agtion
The server receives payment of the outstanding accounts via agtighenever the outstanding account
of the client is above thresholfi, the server issues a warning via actiopn The communications via the
client and the server proceed as follows: actippgndp, communicate to actiop, whereas actions,
andos communicate to action. The total system is given below jfCRL:

ClientServer (ne, ns:N) = 0o, o, p. p.} (Client(n.)|| Server(ns))
Client(n:N) = %" oc(m) - Client(n+m)+

Y ey De(m) - Client(n—m) <n>m> 0
Server(n:N) =" os(m) - Server(n+m) an+m<T > i+

Yo Ps(m) - Server(n—m)+

ws - Server(n) <n>T >0

A desirable property of client-server system is that it prevents the clients from placing too many orders
and having a too large debt. The client-server system we specified issues a warning on these occassions.
In order to check whether the client-server system behaves decently, we must show that no warnings are
issued. Thus, the property we are interested in is:

vX.([T]X A [ws]L)

The verification of this property proceeds as follows. We rewrite the client-server process to linear form
in effect removing all parallelism from the specification. The resulting linear process is combined with the
modal formula, yielding the following equation.

vX(ne,ng:N) = (VmN. (ng+m <T — X (ne+m,ns+m))A
(ne >m — X(ne—m,ns—m)))A
(ng >T — X(ne,ns)) Ang <T
Using approximation, the solution of this equation is obtained by two iterations.

XO(ncvns) =T,
Xl(ncans) =ns <T.

The solutionX; is stable. Thus, as long as initially, the outstanding account at the server is lesg, than
this client server model works as desired.
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6 Conclusions

We set out to develop a theory that allows to manually solve parameterised boolean equation systems. Our
main motivation came from work reported in [15] where a symbolic model checker is described that works
by fixpoint approximation and automated reasoning (actually an equality BDD package that also allows
rewriting [12]). This was successful in the sense that automatically properties of large and infinite state
systems could be proven. But we found that automated reasoning and finite approximations were often
insufficient. We believe that ultimately an interplay between manual and automated techniques will turn
out to be most effective, and therefore started this investigation.

Regarding the general theory in this paper we have some mixed feelings. Most theorems and corollaries
have a nice and usable shape and these work very smoothly in the applications. But most proofs had to be
given using definition 2.3 which is very hard to comprehend. We would appreciate a much more insightful
basic theory but do not know how to provide it. Such a theory could also help us to avoid the pitfalls of
fixpoint equations. More than once we went awry formulating and believing conjectures that turned out to
be utterly untrue.

Regarding the use of the theory the patterns, approximations and invariants are real marbles. It remains
to be seen how the theory evolves under the strain of more involved verifications and most likely requires
adaptation and strengthening. One of the most eye-catching questions is whether the patterns in section
4.2.3 can be generalised to arbitrary right hand sides, providing a universal way of solving parameterised
equation systems or whether a whole plethora of techniques for many different forms will be developed.

Related work. The first accounts of using fixpoints for reasoning about programs date back to 1969,
when Scott and de Bakker [21] defined thecalculus. Theu-calculus has a-operator that acts as a
binder for relation variables, and is used to express recursion and iteration. Like parameterised boolean
equation systems, the-calculus is a first-order formalism. Several theoretical results have been obtained
for the u-calculus (see e.g. [17]), but gradually, the propositional version became more popular.

With respect to the model checking problem for processes with data, several other approaches are note-
worthy. Bradfield and Stirling [5, 6, 22] lay the foundations for finite and infinite state model checking
based on the modal-calculus usindableau systemd-urthermore, the ideas of using Petri nets in combi-
nation with model checking are described. As explained in [19], the techniques using tableaus and boolean
equation systems are closely related, but boolean equation systems require less overhead.

In a similar vein, Gurowet al. [16], and Rathke and Hennessy [20] define (independently from each
other) first-order extensions of the mogatalculus and ussymbolic transition systenas the underlying
models. Both Guroet al.[16] and Rathke and Hennessy [20], provide tableau systems and proof systems,
and in [20] completeness and soundness is shown. The main concern in [16] is that of compositionality.
To the best of our knowledge, neither techniques have led to the development of tool support. From a
theoretical point of view, it would be interesting to compare the expressive power of the logics of [16,
20, 11], as there appear to be some differences. For instance, the grammar in [20] prohibits the use of
a diamond modality in combination of a fixpoint operator. Thus, the expregsioT)X (whereT is
the set ofall possible actionsappears to be excluded by the grammar of the logic, whereas it is a valid
expression in the logic of [11].

In contrast to these general approaches there is work that considers subclasses of systems or logical
properties. The main focus in these approaches is mainly on decidability. Noteworthy approaches are CLU
by Bryantet al. [7], the use of regular expression [1] and queue representations [4] for communication
protocols and Pressburger arithmetic [8] for process networks.
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