
Parameterised Boolean Equation Systems

Jan Friso Groote? and Tim Willemse?†
?Department of Mathematics and Computer Science, Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

†Faculty of Science, Mathematics and Computing Science, University of Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

J.F.Groote@tue.nl , timw@cs.kun.nl

Abstract

Boolean equation system are a useful tool for verifying formulas from modal mu-calculus on transition
systems (see [18] for an excellent treatment). We are interested in an extension of boolean equation
systems with data. This allows to formulate and prove a substantially wider range of properties on much
larger and even infinite state systems. In previous works [11, 15] it has been outlined how to transform a
modal formula and a process, both containing data, to a so-called parameterised boolean equation system,
or equation system for short. In this article we focus on techniques to solve such equation systems.

We introduce a new equivalence between equation systems, because existing equivalences are not
compositional. We present techniques similar to Gauß elimination as outlined in [18] that allow to
solve each equation system provided a single equation can be solved. We give several techniques for
solving single equations, such as approximation (known), patterns (new) and invariants (new). Finally,
we provide several small but illustrative examples of verifications of modal mu-calculus formulas on
concrete processes to show the use of the techniques.

1 Introduction

Boolean Equation Systems (BESs) [18, 19, 23] are systems of the form(σ1X1 = f1) . . . (σNXN = fN),
whereσi is either a least fixpoint symbolµ or a greatest fixpoint symbolν andfi is a propositional formula.
These systems can be seen as generalisations of nested and alternating fixpoint expressions, interpreted over
a Boolean lattice.

BESs have been studied in detail by Vergauwen and Lewi [23], and Mader [18, 19] in the context of
model checking modalµ-calculus formulae. In [19], Mader shows that the model checking problem can be
solved by solving BESs. Furthermore, she provides a complete proof system for solving BESs by means
of algebraic manipulations.

Parameterised Boolean Equation Systems (PBESs) (also known asFirst-Order Boolean Equation Sys-
tems) [11, 15, 24] are sequences of equations of the formσX(d1:D1, . . . , dn:Dn) = ϕ, whereσ is either
a least or a greatest fixpoint symbol,di is a data variable of sortDi andϕ is a predicate formula. The sort
D1 × . . .×Dn is referred to as theparameter-spaceof a parameterised boolean equation.

PBESs form an extension of plain BESs. Groote and Mateescu [11] introduced these PBESs as an
intermediate formalism for model checking processes with (arbitrary) data. Extending on the results of
Mader [18, 19], they showed that their model checking problem could be translated to the problem of solv-
ing PBESs. In [11], they provided four proof rules for approximating the solution of single parameterised
equations: two for the least fixpoint and two for the greatest fixpoint. Furthermore, as a proof of concept,
we showed in [15, 24] that PBESs can be solved automatically by means of a technique that combines the
essentials of Gauß-elimination [18, 19], and approximation (see e.g. [10]).

While the automated approach has proved successful for several practical applications, it also illus-
trates the undecidability of model checking when no restrictions on the involved data-types are made, by
occasionally requiring transfinite approximations of fixpoint expressions (i.e., in such cases, approximation

1

procedures do not terminate). The emphasis on automation set a scene where possible remedies for such
situations where hard to find.

Inspired by this latter observation, we take a different approach altogether in this paper, and focus
on algebraic techniques that help in solving PBESs by hand. While this may seem a step back to some,
being able to solve PBESs by hand provides a better understanding of the techniques that are involved. We
intentionally proved many properties about systems by hand, some of which can be found in the second
part of this paper, with as primary goal to build up experience and skill. As expected this led to effective
techniques to manually solve parameterised boolean equation systems which are reported in the first part
of this paper. Although it is not the focus of this paper, we expect that these techniques will also have a
positive impact on the mechanised and automatic verification of modal formulas on processes in a setting
with data.

The approach we describe in this paper is similar in spirit to the algebraic approach for solving BESs,
taken by Mader [19]. We separate the problems of solving PBESs as a whole, and parameterised boolean
equations in isolation. Central to our approach is the notion of asystem equivalencethat allows us to reason
compositionally about PBESs. While in [19], also a system equivalence is introduced for BESs, it turns
out that this equivalence is not compositional. We illustrate this fact by a simple example in section 3.
Together with system equivalence we introduce system ordering which on several occasions turns out to be
an indispensable tool.

Based on our new notion of system equivalence, we present an overall and complete technique, allowing
to solve all PBESs using syntactic manipulations only, provided the means to solve a single parameterised
boolean equation in isolation are available (section 4.1).

In section 4.2 we investigate various techniques for solving a single parameterised boolean equation.
These include a theorem allowing logical reasoning using predicate calculus and a result allowing to trans-
fer results obtained using parameterised boolean equations to predicate logic. We proceed by restating
results on approximation from [11] in terms of the new system equivalence.

Some of the parameterised boolean equation systems that we encountered were not easily solved using
for instance approximation. But we noticed that many of these had a very similar pattern. For some of
the most general patterns we could give a standard solution. We present this result in section 4.2.3. We,
however, believe that we have only scratched this topic on the surface. We expect a situation comparable
to solving differential equations, where identifying and solving differential equations of a particular form
has become a field of its own. There have been a number of typical parameterised boolean equations that
we have not been able to solve and that deserve a separate investigation.

While invariants are an effective tool in diverse areas, such as process algebras [3] and program anal-
ysis [9], they have not yet been connected to BESs and PBESs. So, we set out to find their counterpart in
parameterised boolean equations. We provide a definition and two theorems to ease their use in concrete
situations. Our notion of an invariant in equation systems plays a very helpful role in many of the examples
in section 5 and so we believe that it will become a similarly effective tool as invariants are elsewhere.

The structure of this paper is as follows. Section 2 introduces the terminology used throughout this
paper, together with a short overview of PBESs, their semantics and several smaller results. In section 3 an
equivalence for PBESs is introduced and compared against the equivalence for BESs that can be found in
the literature. Section 4 then focuses on solving PBESs globally and parameterised boolean equations in
isolation. As an illustration of these techniques, we apply these to several smaller examples in section 5.
Concluding remarks are presented in section 6.

Acknowledgements. We thank Marc Voorhoeve for the counterexample following lemma 4.13, Joost-
Pieter Katoen for suggesting the identity tag generator example and Kees van Hee for indicating that client-
server systems are important systems for which properties should be provable.

2 Definition of a parameterised boolean equation system

We are interested in solving sequences of fixpoint equations where the equations have the form

µX(d1:D1, . . . , dn:Dn) = ϕ

2

whereµ indicates a minimal fixpoint, or

νX(d1:D1, . . . , dn:Dn) = ϕ

whereν indicates that this is a maximal fixpoint equation.
Each equation has a predicate variableX (from a setX of variables) at its left hand side that depends on

zero or more data variablesd1, . . . , dn of sortsD1, . . . , Dn. For simplicity and without loss of generality,
we restrict ourselves to a single variable at the left hand side in all our theoretical considerations. We treat
data in an abstract way. So, we assume that there are non empty data sorts, generally written using letters
D,E, F , that include the sortB of booleans containing⊥ and>, representingfalseandtrue, respectively.
We have a setD of data variables, with typical elementsd, d1, . . ., and we assume that there is some data
language that is sufficiently rich to denote all relevant data terms, such as for instance3 + d1 ≤ d2. For a
closed terme, we assume an interpretation function[[e]] that mapse to the data element it represents. For
open terms we use adata environmentε that maps each variable fromD to a data value of the right sort.
The interpretation of an open terme of sortB, denoted as[[e]]ε is given by[[ε(e)]] whereε is extended to
terms in the standard way.

The right hand side of each equation is apredicate formulacontaining data terms, boolean connectives,
quantifiers over (possibly infinite) data domains and data and predicate variables. Predicate formulaeϕ are
defined by the following grammar:

ϕ ::= b | X(e) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀d:D.ϕ | ∃d:D.ϕ | > | ⊥

whereb is a data term of sortB,X is a predicate variable,d is a data variable of sortD ande is a data term.
Note that negation does not occur in predicate formulae, except as an operator in data terms.

In the sequel it turns out to be necessary to lift predicate formulas to functions from data to formulas.
We use conventional typed lambda calculus to denote such functions. E.g.λd:D.ϕ denotes a function from
elements from data sortD to predicates. Sometimes, the lambda is omitted if that leads to a more compact
notation. For instanceλd:D.X(d) is generally simply written asX.

Predicate formulae are interpreted in a context of a data environmentε and apredicate environment
η:X→(D→B). The semantics of predicate formulae is defined below. For an arbitrary environmentθ
(be it a data environment or predicate environment), we writeθ[v/d] for the environmentθ in which the
variabled has been assigned the valuev. For a predicate formulaϕ, a predicate environmentη and a
data environmentε, we writeϕ(ηε), denoting the formulaϕ in which all free predicate variablesX have
received the valueη(X) and all free data variablesd have received the valueε(d). Environments are
applied to functions, where bound variables are respected.

Definition 2.1 (Semantics of Predicate Formulae).
Let ε be a data environment andη:X→(D→B) be a predicate environment. Theinterpretation[[ϕ]]ηεmaps
a predicate formulaϕ to “true” or “false” and is inductively defined as follows:

[[>]]ηε def= true

[[⊥]]ηε def= false

[[b]]ηε def= [[b]]ε
[[X(e)]]ηε def= η(X)([[e]]ε)
[[ϕ1 ∧ ϕ2]]ηε

def= [[ϕ1]]ηε and[[ϕ2]]ηε
[[ϕ1 ∨ ϕ2]]ηε

def= [[ϕ1]]ηε or [[ϕ2]]ηε

[[∀d:D.ϕ]]ηε def=
{

true, if for all v:D it holds that[[ϕ]]η(ε[v/d])
false, otherwise

[[∃d:D.ϕ]]ηε def=
{

true, if there exists av:D such that[[ϕ]]η(ε[v/d])
false, otherwise

Consider for an arbitrary data sortD, all (total) functionsf :D→B. The set of all such functions is
denoted[D→B]. The orderingv on [D→B] is defined asf v g iff for all d:D, we havef(d) impliesg(d).

3

The set([D→B],v) is a complete lattice. For a subsetA of [D→B], we write(
∧
A) for theinfimumof the

setA and(
∨
A) for thesupremumof the setA.

We denote the set of all predicate environments by[X→(D→B)]. The ordering≤ on [X→(D→B)] is
defined asη ≤ η′ iff for all X∈X , we haveη(X) v η′(X). The set([X→(D→B)],≤) is also a complete
lattice.

Definition 2.2 (Parameterised Boolean Equation System). A parameterised boolean equation system
is inductively defined as follows: the empty parameterised boolean equation system is denotedε, and for
a parameterised boolean equation systemE , also(σX(d:D) = ϕ)E is a parameterised boolean equation
system whereσ∈{µ, ν} is a fixpoint symbol andϕ a predicate formula.

In the remainder of this article, we abbreviate parameterised boolean equation system withequation
systemif no confusion can arise. The set ofbinding predicate variablesin an equation systemE , denoted

by bnd(E), is defined asbnd(ε) def= ∅ andbnd((σX(d:D) = ϕ)E) def= bnd(E) ∪ {X}, i.e. a binding
variable is a variable that occurs at the left-hand side of an equation. An equation systemE is said to
be well-formediff all binding predicate variables ofE are unique. Thus,(νX = >)(µX = ⊥) is not
a well-formed equation system. We only consider well-formed equation systems in this paper. We say
an equation systemE is closedwhenever all predicate variables occurring at the right-hand side of the
equations inE (collected in the setocc(E)) are binding variables, i.e.occ(E) ⊆ bnd(E); if an equation
systemE is not closed, we sayE is open. We say an equationσX(d:D) = ϕ is solvedif ϕ contains no
predicate variables. Likewise, an equation systemE is solvediff all its constituting equations are solved.
We say that a parameterised boolean equation system issolved inX if the predicate variableX does not
occur in any right hand side. Thesolutionof an equation system is defined in the context of a predicate
environmentη and a data environmentε:

Definition 2.3 (Solution of an Equation System). Thesolutionof an equation systemE in the context
of a predicate environmentη and a data environmentε is inductively defined as follows (cf. definition 3.3
of [19]):

[ε]ηε def= η

[(σX(d:D) = ϕ)E]ηε def= [E](η[σX(d:D).ϕ([E]ηε)/X])
whereσX(d:D).ϕ([E]ηε) is defined as

µX(d:D).ϕ([E]ηε) def=
∧
{ψ:D→B | λv:D.[[ϕ]]([E]η[ψ/X]ε[v/d])ε[v/d] v ψ}

νX(d:D).ϕ([E]ηε) def=
∨
{ψ:D→B | ψ v λv:D.[[ϕ]]([E]η[ψ/X]ε[v/d])ε[v/d]}

As an illustration consider the equation system(νX=Y)(µY = X). For a given predicate environment
η, its solutions areη[>/X][>/Y]. Note that the solution for(µY=X)(νX = Y) is η[⊥/X][⊥/Y]. This
illustrates that the sequence in which the equations occur is of importance.

In the remainder of this paper, we consider only parameterised boolean equation systems for which
all data variables that occur at the right hand side of an equation, are bound at the left hand side of this
equation. For this class of parameterised boolean equation systems, we have the following result:

Lemma 2.4. Let η be a predicate environment and letε, ε′ be data environments. LetE be a parameterised
boolean equation system for which all data variables occurring at the right hand side of an equation are
bound in the left hand side. Then[E]ηε = [E]ηε′

From hereon, we use the empty data environment for denoting the solution of an equation system and we
generally omit it.

Equation systems are monotone operators on the set of all predicate environments.

Lemma 2.5. Let η, η′ be predicate environments andE an arbitrary equation system. Thenη ≤ η′ implies
[E]η ≤ [E]η′.

Proof. By induction on the structure ofE . 2

4

In general, the solution of an equation system depends largely on the context in which it is computed (i.e.
the predicate environmentη). However, for closed equation systems, we have the following theorem.

Theorem 2.6. Let E be a closed equation system. Then for all predicate environmentsη andη′, and all
binding variablesX∈bnd(E),

[E]η(X) = [E]η′(X)

The following lemma and corollary say that closed equation systems can be solved independently.

Lemma 2.7. Let E andF be equation systems for which(occ(E) ∪ bnd(E)) ∩ bnd(F) = ∅, and letη be
an arbitrary environment. Then

[EF]η = [F]([E]η)

Proof. We use induction onE .

• SupposeE is empty. Then we must show that[F]η = [F]η, which trivially holds by reflexivity.

• SupposeE equals(σX(d:D)=ϕ)E ′. So, we find that[(σX(d:D)=ϕ)E ′ F]η equals by definition
[E ′ F](η[σX(d:D).ϕ([E ′F]η)/X]). This equals using the induction hypothesis

[F]([E ′]η[σX(d:D).ϕ([F]([E ′]η))/X]). (1)

From the assumption, it follows thatbnd(F) ∩ occ(ϕ)=∅. So,ϕ([F]([E ′]η))=ϕ([E ′]η). Using this
fact and definition 2.3 expression (1) can be shown to be equal to[F]([(σX(d:D)=ϕ)E ′]η) as had
to be shown.

2

Corollary 2.8. Let E be a closed equation system andF be an equation system for whichbnd(E) ∩
bnd(F) = ∅, and letη be an arbitrary environment. Then

[EF]η = [F]([E]η)

Due to the complex nature of the solution to an equation system (especially the treelike recursion whereE
occurs twice in the right hand side in definition 2.3 is tricky), it is not straightforward to solve an equation
system. In the subsequent sections, we present lemmas and theorems that help to solve equation systems
algebraically.

A well known approach to ‘calculate’ the solution for a fixpoint equation is by using a transfinite
approximation.

Lemma 2.9. Let F = σX(d:D).ϕ(ηε) with η a predicate environment andε a data environment. The
transfinite approximationsXα of F are defined by:

for σ = µ for σ = ν
α=β+1 is a successor ordinalXβ+1 = ϕ[Xβ/X] Xβ+1 = ϕ[Xβ/X]
α is a limit ordinal Xα =

∨
β<α

Xβ Xα =
∧

β<α

Xβ

thenσX(d:D).ϕ(ηε) = λv:D.[[Xα]]ηε[v/d] for some sufficiently largeα, where the interpretation of
the infinitary disjunction operator[[

∨
β<αXβ]]ηε is

∨
β<α [[Xβ]]ηε. The interpretation of the infinitary

conjunction operator is similar.

The following result is also useful, as it says that fixpoints can be solved stepwise. This means that the
solution of an equation can partly be substituted without altering the solution of the equation.

Lemma 2.10. Let ϕ(X,Y) be a predicate formula in which the predicate variablesX andY may occur.
LetF = σX(d:D).ϕ(X,X)(η) andG = σX(d:D).ϕ(X,Y)(η[F/Y]) for some predicate environmentη.
ThenF = G.

5

Proof. We treat the case whereσ = µ. The case whereσ = ν is fully dual and has been omitted.
Obviously,F is a solution forX in the second fixpoint. So,G is smaller thanF . SubstitutingG forX in the
first equation yieldsϕ(X,X)(η[G/X]), which by monotonicity is smaller thanϕ(X,Y)(η[G/X][F/Y])
which equalsG. So,G is a pre-fixpoint of the first equation, which implies thatF is smaller thanG,
showingF = G. 2

3 Equivalence of parameterised boolean equation systems

Boolean equation systems(BESs) have been studied in great detail [19]. BESs are instances of our param-
eterised boolean equation systems, i.e. the proposition variables in a BES do not carry data parameters.
We introduce two notions of equivalence. The first equivalence is based on the equivalence between BESs,
and can be found in the literature [19]. We argue that this equivalence is not suitable and introduce an
equivalence that is slightly finer.

Definition 3.1 (Standard System Equivalence and System Ordering).
Let E , E ′ be equation systems. We writeE � E ′ iff for all predicate environmentsη it holds that
[E]η ≤ [E ′]η. We write E ∼ E ′ iff both E � E ′ andE ′ � E . The relation� is referred to as the
standard (equation) system ordering, whereas the relation∼ is referred to as thestandard (equation) sys-
tem equivalence.

Lemma 3.2. The relation� is reflexive, anti-symmetric and transitive. The relation∼ is an equivalence
relation.

Proof. Follows immediately from the definition of� and∼. 2

The standard system equivalence∼ does not allow for compositional reasoning. Consider the two open
BESsµX = Y andνX = Y . It is easy to see thatµX = Y ∼ νX = Y , since both have the same solutions
for all predicate environments. However, this does not imply that the two BESs are equivalent in all
contexts, since the predicate variableY can interfere. For example, if we add the equationνY = X to the
two BESs, the resulting BESs are different, i.e. we have(µX = Y)(νY = X) � (νX = Y)(νY = X),
since the solution to the first BES isX = Y = ⊥, whereas the solution to the second BES isX = Y = >.
To mend this situation, we redefine the standard system equivalence and the standard system ordering.
Throughout this paper we use this new notion and not the one from [19].

Definition 3.3 (System Equivalence and System Ordering).
Let E , E ′ be equation systems. We writeE V E ′ iff for all predicate environmentsη and all equation
systemsF with bnd(F) ∩ (bnd(E) ∪ bnd(E ′)) = ∅, it holds that[EF]η ≤ [E ′F]η. We writeE ≡ E ′ iff
bothE V E ′ andE ′ V E . The relationV is referred to as the(equation) system ordering, whereas the
relation≡ is referred to as(equation) system equivalence.

Lemma 3.4. The relationV is reflexive, anti-symmetric and transitive. The relation≡ is an equivalence
relation.

Proof. The proof that≡ is an equivalence relation follows by definition from the fact thatV is reflexive,
anti-symmetric and transitive. Hence, we concentrate on proving these latter properties.

1. We first show thatV is reflexive. LetE ,F be arbitrary equation systems, s.t.bnd(F)∩bnd(E) = ∅
and letη be an arbitrary environment. Then, by definition, we have[EF]η ≤ [EF]η, i.e.E V E .

2. For anti-symmetry, we reason as follows. LetE , E ′,F be arbitrary equation systems, s.t.bnd(F) ∩
(bnd(E) ∪ bnd(E ′)) = ∅, and letη be an arbitrary environment. Suppose we haveE V E ′. Hence,
by definition[EF]η ≤ [E ′F]η and[E ′F]η ≤ [EF]η. Then by anti-symmetry of≤, we have[EF]η =
[E ′F]η, i.e.E ≡ E ′.

3. Finally, we show thatV is transitive. LetE , E ′, E ′′ be arbitrary equation systems for whichE V E ′
andE ′ V E ′′ hold. LetF be an equation system, s.t.bnd(F) ∩ (bnd(E) ∪ bnd(E ′′)) = ∅ and letη
be an arbitrary environment. We distinguish two cases:

6

(a) Supposebnd(F) ∩ bnd(E ′) 6= ∅. We show that this premise leads to a contradiction. Let
X∈bnd(F) ∩ bnd(E ′), and letF ′ be an arbitrary equation system, s.t.bnd(F ′) ∩ (bnd(E) ∪
bnd(E ′)∪bnd(E ′′)) = ∅. Then by assumption, we have[EF ′]η ≤ [E ′F ′]η for all environments
η, implying [EF ′]η(X) v [E ′F ′]η(X). This can only be the case when[E ′F ′]η(X) = > for
all η, sinceX does not occur inEF ′. Likewise, we have[E ′F ′]η ≤ [E ′′F ′]η for all η, implying
[E ′F ′]η(X) v [E ′′F ′]η(X). This can only be the case when[E ′F ′]η(X) = ⊥ for all η,
sinceX does not occur inE ′′F ′. But we cannot at the same time have[E ′F ′]η(X) = > and
[E ′F ′]η(X) = ⊥ for all η, hence, we have a contradiction.

(b) So we may assume thatbnd(F) ∩ bnd(E ′) = ∅. Then from[EF]η ≤ [E ′F]η and[E ′F]η ≤
[E ′′F]η, we arrive at[EF]η ≤ [E ′′F]η. Hence, we haveE V E ′′, concluding the proof of
transitivity.

2

The system ordering we defined is (unlike the standard system ordering) robust when composing equation
systems from smaller equation systems (see theorem 3.5). This means that if we have the means to solve
equations in isolation, we can use this solved equation for solving equations in a larger context.

Theorem 3.5(Compositionality of Equation Systems).
Let E , E ′,F be equation systems for whichbnd(F) ∩ (bnd(E) ∪ bnd(E ′)) = ∅. Then

1. E V E ′ ⇒ FE V FE ′,

2. E V E ′ ⇒ EF V E ′F .

Proof. The second property follows immediately from the definition ofV. Thus, we concentrate on the
first property. We use induction on the length ofF .

1. AssumeF is the empty equation system. We must show thatE V E ′, but this holds by assumption,

2. Let η be a predicate environment. AssumeF is of the form (σX(d:D)=ϕ)F ′. By definition,
[(σX(d:D)=ϕ)F ′E]η equals[F ′E]η[σX(d:D).ϕ([F ′E]η)/X]. Using the induction hypothesis and
the monotonicity of equation systems over environments, this is at most

[F ′E]η[σX(d:D).ϕ([F ′E ′]η)/X].

Using the induction hypothesis once more, this in turn is at most[F ′E ′]η[σX(d:D).ϕ([F ′E ′]η)/X].
By definition, this is equivalent to[(σX(d:D)=ϕ)F ′E ′]η. Thus

(σX(d:D)=ϕ)F ′E V (σX(d:D)=ϕ)F ′E ′.

2

The previous result immediately carries over to system equivalence.

Corollary 3.6. For all equation systemsE , E ′,F , for whichbnd(F) ∩ (bnd(E) ∪ bnd(E ′)) = ∅, we have

1. E ≡ E ′ ⇒ FE ≡ FE ′,

2. E ≡ E ′ ⇒ EF ≡ E ′F .

In fact, the standard system equivalence and ordering are very much related to the system equivalence and
ordering, as defined in definition 3.3. For closed equation systems the two notions coincide.

Lemma 3.7. Let E andE ′ be closed equation systems. ThenE V E ′ iff E � E ′.

Proof. The implication from left to right holds by definition. Thus, we focus on the implication from
right to left. LetF be an equation system such thatbnd(F) ∩ (bnd(E) ∪ bnd(E ′)) = ∅. Let η be an
arbitrary environment. Since equation systems are monotonic operators,[E]η ≤ [E ′]η implies[F]([E]η) ≤
[F]([E ′]η). SinceE andE ′ are closed, this is equivalent to[EF]η ≤ [E ′F]η (see corollary 2.8). Since this
holds for arbitraryF andη, we also haveE V E ′. 2

7

4 Solving parameterised boolean equation systems

In section 4.1, we identify several rules for calculating with equation systems as a whole and we present a
completeness result that says that if single equations can be solved in one variable a complete parameterised
boolean equation system can be solved. In section 4.2, we present several techniques that can be applied to
solve equations for a single variable.

4.1 Global techniques for solving parameterised boolean equation systems

The focus in this section is on algebraic techniques for solving equation systems as a whole. The first
lemma also appeared in [19] as lemma 6.3 using a slightly different phrasing. It allows to substitute the
right hand side of an equation for the left hand side in all the equations preceding it. In [19], this step
formed an essential part of the so-calledGauß eliminationprocedure to solve boolean equation systems.

Lemma 4.1(Substitution).
Let E be an equation system for whichX,Y 6∈ bnd(E), then:

(σX(d:D) = ϕ)E(σ′Y (e:E) = ψ) ≡ (σX(d:D) = ϕ[ψ/Y])E(σ′Y (e:E) = ψ)

Proof. Let F be an arbitrary equation system andη be an environment. We reason as follows. By
definition 2.3, it suffices to show that:

[E(σ′Y (e:E)=ψ)F]η[σX(d:D).ϕ([E(σ′Y (e:E) = ψ)F]η)/X]
=

[E(σ′Y (e:E)=ψ)F]η[σX(d:D).ϕ[ψ/Y]([E(σ′Y (e:E) = ψ)F]η)/X]

This follows directly from the following observation:

ϕ([E(σ′Y (e:E) = ψ)F]η) = ϕ[ψ/Y]([E(σ′Y (e:E) = ψ)F]η) (2)

We show this by induction on the length ofE . If E is empty (2) can be shown as follows

ϕ([(σ′Y (e:E) = ψ)F]η) =
ϕ([F]η[σ′Y (e:E).ψ([F]η)/Y]) =
ϕ[ψ/Y]([F]η[σ′Y (e:E).ψ([F]η)/Y]) =
ϕ[ψ/Y]([(σ′Y (e:E) = ψ)F]η)

The one but last step follows asσ′Y (e:E).ψ([F]η) is a fixpoint for the equation forY . If E consists of
(σ′′Z(f :F) = χ)E ′, then we derive

ϕ([(σ′′Z(f :F) = χ)E ′(σ′Y (e:E) = ψ)F]η) =
ϕ([E ′(σ′Y (e:E) = ψ)F](η[σ′′Z(f :F).χ([E ′(σ′Y (e:E) = ψ)F]η)/Z])) i.h.=
ϕ[ψ/Y]([E ′(σ′Y (e:E) = ψ)F](η[σ′′Z(f :F).χ([E ′(σ′Y (e:E) = ψ)F]η)/Z])) =
ϕ[ψ/Y]([(σ′′Z(f :F) = χ)E ′(σ′Y (e:E) = ψ)F]η)

This finishes this proof. 2

The sequence in which equations in a parameterised boolean equation system occur is important. It is only
allowed to change this order under very particular circumstances. All the remaining lemmas in this section
deal with reordering of equations.

Lemma 4.2(Migration).
LetσX(d:D) = ϕ be a solved equation, i.e.occ(ϕ) = ∅, andE an equation system, such thatX 6∈ bnd(E),
then:

(σX(d:D) = ϕ)E ≡ E(σX(d:D) = ϕ)

8

Proof. By induction on the size ofE .

1. AssumeE is the empty equation system. Then we must show(σX(d:D) = ϕ) ≡ (σX(d:D) = ϕ),
which holds by reflexivity of≡.

2. AssumeE has the form(σ′Y (e:E) = ψ)E ′. LetF be an arbitrary equation system andη an arbitrary
environment. We calculate as follows. Given thatϕ contains no predicate variables, we have

[(σX(d:D) = ϕ)(σ′Y (e:E) = ψ)E ′F]η
=

[E ′F]η[ϕ/X][(σ′Y (e:E).ψ([E ′F]η[ϕ/X]))/Y]

Again, sinceϕ contains no predicate variables, we haveη[ϕ/X] = η[(σX(d:D).ϕ([E ′F]η))/X].
Then, by definition, we have

[E ′F]η[(σX(d:D).ϕ([E ′F]η)/X][(σ′Y (e:E).ψ([E ′F]η[(σX(d:D).ϕ([E ′F]η))/X]))/Y]
=

[(σX(d:D) = ϕ)E ′F]η[(σ′Y (e:E).ψ([(σX(d:D) = ϕ)E ′F]η))/Y]

Now, applying the induction hypothesis twice, we have

[E ′(σX(d:D) = ϕ)F]η[(σ′Y (e:E).ψ([E ′(σX(d:D) = ϕ)F]η))/Y]
=

[(σ′Y (e:E) = ψ)E ′(σX(d:D) = ϕ)F]η

This concludes the proof. 2

The following theorem states that we have all the requirements to solve an equation system if we can solve
a single equation.

Theorem 4.3(Global completeness). Assume we can derive for arbitrary equations(σX(d:D)=ϕ) ≡
(σX(d:D)=ψ), such thatX does not occur inψ. Then allclosedequation systems can be rewritten to
solvedequation systems using the rules of migration and substitution.

Proof. Consider a closed equation systemE being equal to

(σ1X1(d1:D1)=ϕ1) . . . (σnXn(dn:Dn)=ϕn).

We prove the theorem in two stages. First we transformE to an equivalent equation systemE ′ for which
Xi (1 ≤ i ≤ n) does not occur in anyϕj for j ≤ i. We call this requirement 1. Suppose requirement 1
does not hold. Consider the largesti such thatXi occurs in someϕj for j ≤ i. If Xi occurs inϕi, then by
assumption we can replaceϕi by ψ in E whereXi does not occur inψ maintaining system equivalence.
Using lemma 4.1 (substitution) we can remove all occurrences ofXi in ϕj for j < i. By repeatedly
applying this step we have obtained our desired equation system satisfying requirement 1.
Now, we transformE ′ such that for alli, Xi does not occur in any of theϕj for j > i, too. We call this
requirement 2. Note that any closed equation system satisfying requirement 1 and 2 is solved. Consider
the first equationσiXi(di:Di)=ϕi not satisfying requirement 2. Observe thatϕi does not contain any
predicate variable. So, we can move this equation to the last position of the equation system using lemma
4.2 (migration). Using lemma 4.1 we can substituteϕi for Xi in all other equations. By lemma 4.2
we can move this equation back to its original place. Observe that the newly obtained parameterised
boolean equation system satisfies requirements 1 and 2 fori and is equivalent to the old equation system.
Repeatedly applying this step yields an equation system completely satisfying requirements 1 and 2. As
already observed above, the equation system is thereby solved, proving this theorem. 2

The following lemmas are convenient to reorder the equations in equation systems, but they are not needed
for completeness. Similar lemmas already occurred in [19, lemmas 3.21 and 3.22] for the standard system
equivalence. They carry over to our notion of system equivalence.

9

Lemma 4.4(Switching). Let σX(d:D)=ϕ andσY (e:E)=ψ be equations with the same fixpoint symbol
σ. Then, the following equality holds:

(σX(d:D)=ϕ)(σY (e:E)=ψ) ≡ (σY (e:E)=ψ)(σX(d:D)=ϕ)

Proof. Follows from Bekǐc’s [2] theorem for elimination of simultaneous fixpoints and definition 2.3.
2

Lemma 4.5(Independence). Let ϕ andψ be predicate formulae for whichY does not occur inϕ andX
does not occur inψ, then:

(σX(d:D)=ϕ)(σ′Y (e:E)=ψ) ≡ (σ′Y (e:E)=ψ)(σX(d:D)=ϕ)

Proof. Let η be an arbitrary environment andF an arbitrary equation system. We proceed as follows. By
definition, the environment

[(σX(d:D)=ϕ)(σ′Y (e:E)=ψ)F]η

is equivalent to the environment

[F]η[σX(d:D).ϕ([F]η[σ′Y (e:E).ψ([F]η)/Y])/X][σ′Y (e:E).ψ([F]η)/Y].

Now, sinceY does not occur inϕ, this equals

[F]η[σX(d:D).ϕ([F]η)/X][σ′Y (e:E).ψ([F]η)/Y].

Again, since there is no occurrence ofX in ψ, this is equivalent to

[F]η[σ′Y (e:E).ψ([F]η[σX(d:D).ϕ([F]η)/X])/Y][σX(d:D).ϕ([F]η)/X].

By definition, this is equivalent to

[(σ′Y (e:E)=ψ)(σX(d:D)=ϕ)F]η,

which concludes the proof. 2

In some cases only an approximation of a solution can be found for a particular equation, for instance
σX(d:D)=ϕ V σX(d:D)=ψ. The following two theorems indicate that such an approximation can still
be used to derive the equivalence between two equation systems. First we provide a lemma needed to
facilitate the proof.

Lemma 4.6. Let ϕ, ψ andχ be predicate formulae such that the variableX /∈ occ(ψ). Let F be an
equation system containing an equation of the formσX(d:D)=ϕ and letη be a predicate environment. If

1. (σX(d:D)=ψ) V (σX(d:D)=ϕ) and

2. χ and χ[λd:D.(ψ ∧X(d))/X] are logically equivalent

then

σ′Y (e:E).χ([F]η) = σ′Y (e:E).χ[λd:D.ψ/X]([F]η).

Proof. The first condition says(σX(d:D)=ψ) V (σX(d:D)=ϕ), which we rewrite to a form that
can subsequently be used. So, the condition is equivalent to for all equation systemsG and predicate
environmentsη:

[(σX(d:D)=ψ)G]η ≤ [(σX(d:D)=ϕ)G]η,

which by definition is equivalent to

[G]η[σX(d:D).ψ([G]η)/X] ≤ [G]η[σX(d:D).ϕ([G]η)/X].

10

By applying both sides onX one can see that this is equivalent to

σX(d:D).ψ([G]η) v σX(d:D).ϕ([G]η)

and asX /∈ occ(ψ) this is equivalent to

λd:D.ψ([G]η) v σX(d:D).ϕ([G]η).

So, in other words, the expressions

ψ([G]η) and ψ([G]η) ∧ σX(d:D).ϕ([G]η)(d) (3)

are logically equivalent for alld:D and allG.

Now we turn to the proof of this lemma. Recall thatF is an equation system containing an equation of
the formσX(d:D) = ϕ. We use induction on the size ofF . If F is empty, the theorem holds because the
premise thatσX(d:D)=ϕ is inF , is clearly invalid.
So, assumeF is not empty. We distinguish the following two cases:

• F has the form(σX(d:D)=ϕ)F ′. Hence,

σ′Y (e:E).χ([F]η) =
σ′Y (e:E).χ([(σX(d:D)=ϕ)F ′]η) =
σ′Y (e:E).χ([F ′]η[σX(d:D).ϕ([F ′]η)/X]) =1

σ′Y (e:E).χ[λd:D.ψ ∧X(d)/X]([F ′]η[σX(d:D).ϕ([F ′]η)/X]) =
σ′Y (e:E).χ[λd:D.ψ ∧ σX(d:D).ϕ([F ′]η)(d)/X]([F ′]η[σX(d:D).ϕ([F ′]η)/X]) =2

σ′Y (e:E).χ[λd:D.ψ/X]([F ′]η[σX(d:D).ϕ([F ′]η)/X]) =
σ′Y (e:E).χ[λd:D.ψ/X]([(σX(d:D)=ϕ)F ′]η)

At =1 we use the second condition and at=2 we use (3) andX /∈ occ(ψ).

• F has the form(σ′′Z(f :F)=ξ)F ′ with Z 6= X andσX(d:D) = ϕ in F ′. So, we get

σ′Y (e:E).χ([F]η) =
σ′Y (e:E).χ([(σ′′Z(f :F)=ξ)F ′]η) =
σ′Y (e:E).χ([F ′]η[σ′′Z(f :F).ξ([F ′]η)/X]) i.h.=
σ′Y (e:E).χ[ψ/X]([F ′]η[σ′′Z(f :F).ξ([F ′]η)/X]) i.h.=
σ′Y (e:E).χ[ψ/X]([(σ′′Z(f :F)=ξ)F ′]η) =
σ′Y (e:E).χ[ψ/X]([F]η)

which finishes the proof. 2

Theorem 4.7. Let E be an equation system and letϕ, ψ andχ be predicate formulae such that the variable
X /∈ occ(ψ). If

1. σX(d:D) = ψ V σX(d:D) = ϕ and

2. χ andχ[λd:D.(ψ ∧X(d))/X] are logically equivalent

then

(σ′Y (e:E) = χ)E(σX(d:D) = ϕ) ≡ (σ′Y (e:E) = χ[λd:D.ψ/X])E(σX(d:D) = ϕ)

Proof. Using the definition we must show for all equation systemsF and predicate environmentsη:

[(σ′Y (e:E) = χ)E(σX(d:D) = ϕ)F]η =
[(σ′Y (e:E) = χ[λd:D.ψ/X])E(σX(d:D) = ϕ)F]η.

By definition this is equivalent to

[E(σX(d:D) = ϕ)F]η[σ′Y (e:E).χ([E(σX(d:D) = ϕ)F]η)/Y] =
[E(σX(d:D) = ϕ)F]η[σ′Y (e:E).χ[λd:D.ψ/X]([E(σX(d:D) = ϕ)F]η)/Y].

which is a direct consequence of lemma 4.6. 2

11

Below we state the dual of the previous theorem without proof.

Theorem 4.8. Let E be an equation system and letϕ, ψ andχ be predicate formulae such that the variable
X /∈ occ(ψ). If

1. σX(d:D) = ϕ V σX(d:D) = ψ and

2. χ andχ[λd:D.(ψ ∨X(d))/X] are logically equivalent

then

(σ′Y (e:E) = χ)E(σX(d:D) = ϕ) ≡ (σ′Y (e:E) = χ[λd:D.ψ/X])E(σX(d:D) = ϕ)

4.2 Techniques for finding local solutions

In theorem 4.3 it has been shown that we can solve a parameterised boolean equation system, if we can
solve each equation of the formσX(d:D) = ϕ in X, i.e. if we can find an equivalent equation in whichX
does not occur in the right hand side. In this section, we focus on techniques to find such equations.

We do not strive for completeness in any formal sense here. Our focus in this paper is to yield a
set of rules that allows effective manual verification, and we have shown efficacy by applying our rules
to numerous examples some of which occur in section 5. General incompleteness results indicate that
completeness can only be achieved under particular circumstances. For instance, it is possible to prove
completeness using infinitary logics (see e.g. [17]). But such means are unwieldy for practical purposes
and generally only satisfy a general desire for completeness results. Completeness can also be achieved
for restricted data types. This is useful as such exercises can reveal new verification rules and techniques.
Albeit interesting, we do not treat such questions in this paper and postpone these to further investigations
in the field.

4.2.1 Predicate calculus

A self evident way of solving a single equation is by applying the standard rules of predicate calculus. In
order to use these, we first define logical implication for our setting.

Definition 4.9 (Logical Implication and Logical Equivalence). Letϕ,ϕ′ be arbitrary predicate formulae.
We writeϕ→ϕ′, representinglogical implicationwhich is defined as[[ϕ]]ηε implies [[ϕ′]]ηε for all data
environmentsε and predicate environmentsη. We writeϕ↔ϕ′ as a shorthand forϕ→ϕ′ andϕ′→ϕ.

Note that in this definition we used a data environment, which is only important if free data variables occur
in formulae. In line with the rest of this paper, we omit the data environment elsewhere.

Lemma 4.10. The relation→ is reflexive, anti-symmetric and transitive. The relation↔ is an equivalence
relation.

Well-known rules from predicate logic such as given in table 1, allow symbolic manipulations for trans-
forming and rewriting predicate formulae to simpler predicate formulae. These rules are valid for the
implication arrow as defined in definition 4.9. The following lemma and corollary express how implica-
tions derivable using the rules in table 1 can be used in equation systems. We found that it is not always
easy to solve equations directly. But by weakening or strengthening the equations a little using for instance
lemma 4.11, we can replace an equation by an approximate, which can be easier to solve and which is
sufficient for the purposes at hand.

Lemma 4.11(Monotonicity of Predicate Formulae).
Letϕ andψ be predicate formulae such thatϕ→ψ. Then(σX(d:D) = ϕ) V (σX(d:D) = ψ).

Proof. As ϕ→ψ, [[ϕ]]ηε implies [[ψ]]ηε for any predicate environmentη and data environmentε. So, by
monotonicity,σX(d:D).ϕ([F]η) v σX(d:D).ψ([F]η). Again using monotonicity, we find that

[F]η[σX(d:D).ϕ([F]η)/X] ≤ [F]η[σX(d:D).ψ([F]η)/X].

This is exactly equivalent to what we have to prove. 2

12

Table 1: Transformation rules for predicate formulae. Here,χ, ϕ andψ are predicate formulae.

I1 ϕ ∧ ϕ ↔ ϕ I2 ϕ ∨ ϕ ↔ ϕ
C1 ϕ ∧ ψ ↔ ψ ∧ ϕ C2 ϕ ∨ ψ ↔ ψ ∨ ϕ
A1 ϕ ∧ (ψ ∧ χ) ↔ (ϕ ∧ ψ) ∧ χ A2 ϕ ∨ (ψ ∨ χ) ↔ (ϕ ∨ ψ) ∨ χ
D1 ϕ ∧ (ψ ∨ χ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ χ) D2 ϕ ∨ (ψ ∧ χ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ χ)
Im1 ϕ ∧ ψ → ϕ Im2 ϕ → ϕ ∨ ψ
Ab1 ϕ ∧ (ϕ ∨ ψ) ↔ ϕ Ab2 ϕ ∨ (ϕ ∧ ψ) ↔ ϕ
FT1 ϕ ∨ ⊥ ↔ ϕ FT2 ϕ ∧ > ↔ ϕ
FT3 ϕ ∧ ⊥ ↔ ⊥ FT4 ϕ ∨ > ↔ >
Q1 ∀d:D.ϕ → ϕ Q2 ϕ → ∃d:D.ϕ
Q3 ∀d:D.(ϕ ∧ ψ) ↔ ∀d:D.ϕ ∧ ∀d:D.ψ Q4 ∃d:D.(ϕ ∨ ψ) ↔ ∃d:D.ϕ ∨ ∃d:D.ψ

From lemma 4.11, the following consequence is immediate.

Corollary 4.12. Let ϕ andψ be arbitrary predicate formulae for whichϕ↔ψ. We find that(σX(d:D) =
ϕ) ≡ (σX(d:D) = ψ).

The route from equation systems to formulae only works in restricted cases.

Lemma 4.13. Letϕ andψ be arbitrary predicate formulae such thatX /∈ occ(ϕ)∪occ(ψ). If σX(d:D) =
ϕ V σX(d:D) = ψ thenϕ→ ψ or in other wordsϕ↔ ϕ ∧ ψ orψ ↔ ϕ ∨ ψ.

Proof. By assumption we have

σX(d:D) = ϕ V σX(d:D) = ψ.

So, by definition, for allF andη we find:

[(σX(d:D) = ϕ)F]η ≤ [(σX(d:D) = ψ)F]η.

Again by definition

[F]η[σX(d:D).ϕ([F]η)/X] ≤ [F]η[σX(d:D).ψ([F]η)/X].

If we apply left and right hand side toX and by takingF empty, we may conclude

σX(d:D).ϕ(η) v σX(d:D).ψ(η).

As X does not occur inϕ andψ, we find that the fixpoints equalλd:D.[[ϕ]]η andλd:D.[[ψ]]η. So, for all
d:D:

[[ϕ]]η implies [[ψ]]η.

This is by definition 4.9 equal toϕ→ ψ. 2

Note that the following rephrasing of the theorem isnot true ifX∈ occ(ϕ) ∪ occ(ψ).

(νX(d:D) = ϕ) V (νX(d:D) = ψ) implies (νX(d:D) = ϕ) ≡ (νX(d:D) = ϕ ∧ ψ). (4)

A simple counter example is the following. Taked andD equal ton andN and considerϕ = n<1 and
ψ = X(n+ 1). We find that obviously

(νX(n:N) = n < 1) V (νX(n:N) = X(n+ 1)),

as the solution for the right hand side isX(n) = >. But it does not hold that

(νX(n:N) = n < 1) ≡ (νX(n:N) = X(n+ 1) ∧ n<1)

as the right hand side has solutionX(n) = ⊥ which clearly does not match the solution of the left hand
side. There are other counter examples showing that (4) does not hold whenν is replaced byµ, and/or∧ is
replaced by∨.

13

4.2.2 Iterative approximation

A straightforward but often laborious method for solving an equationσX(d:D) = ϕ in X is by means
of an iterative approximation of the fixpoint solution ofX, which is possible as we are dealing with a
monotonic lattice. One starts with an initial solutionS0 forX being eitherλd:D.⊥ (for σ = µ) or λd:D.>
(for σ = ν). Then the approximate solutions of the formλd:D.Sn+1 = ϕ[Sn/X] are calculated repeatedly.
A stable approximantis an approximant that is logically equivalent to its next approximation. Such stable
approximants are in fact the fixpoint solution to the equation. But in general this procedure does not
terminate, since the lattice(D,v) can have infinite ascending chains. However, using the equation system
ordering approximants that are not stable can still be of use in solving equation systems. This is another
motivation for defining an ordering on equation systems.

Definition 4.14. Let ϕ,ψ be predicate formulae andX a predicate variable. We inductively define
ψ[ϕ/X]k, wherek is of sortN.

1. ψ[ϕ/X]0 def= ϕ, and

2. ψ[ϕ/X]k+1 def= ψ[(ψ[ϕ/X]k)/X].

Thus,ψ[ϕ/X]k represents the result of recursively substitutingϕ forX in ψ. Note that for anyk:N, and all
predicate formulaeψ,ϕ, the expressionψ[ϕ/X]k is a predicate formula. Below we state thatϕ[⊥/X]k and
ϕ[>/X]k are approximations of the solution of an equation and that a stable approximant isthesolution to
an equation.

Lemma 4.15(Approximants as (Pre-)Solutions).
Letϕ be a predicate formula andk:N be an arbitrary natural number. Then

1. (µX(d:D) = ϕ[⊥/X]k) V (µX(d:D) = ϕ).

2. (νX(d:D) = ϕ) V (νX(d:D) = ϕ[>/X]k).

Proof. Follows from the fact that pre-solutions imply/are implied by the solution of the equation system
and lemma 4.11. 2

Lemma 4.16(Stable Approximants as Solutions).
Letϕ be a predicate formula andk:N be a natural number. Then

1. If ϕ[⊥/X]k↔ϕ[⊥/X]k+1 then(µX(d:D) = ϕ[⊥/X]k) ≡ (µX(d:D) = ϕ).

2. If ϕ[>/X]k↔ϕ[>/X]k+1 then(νX(d:D) = ϕ) ≡ (νX(d:D) = ϕ[>/X]k).

A less mechanic but often more efficient version of lemmata 4.15 and 4.16 is lemma 4.17. In the setting
of parameterised boolean equation systems this lemma first appeared in [11]. It allows one to “guess” an
approximate solution to an equation. Only a relatively simple (inductive) check is needed to establish that
this solution indeed approximates the exact solution of the fixpoint equation.

Lemma 4.17(Groote and Mateescu).
Letϕ,ψ be predicate formulae wherek:N is possibly a free variable inϕ andX a free variable inψ. Then:

1. If for all k, ϕ(k)→ψ[⊥/X]k, then(µX(d:D) = ∃k:N.ϕ(k)) V (µX(d:D) = ψ).

2. If ψ[ϕ/X]→ϕ, then(µX(d:D) = ψ) V (µX(d:D) = ϕ).

3. If for all k, ψ[>/X]k→ϕ(k), then(νX(d:D) = ψ) V (νX(d:D) = ∀k:N. ϕ(k)),

4. If ϕ→ψ[ϕ/X], then(νX(d:D) = ϕ) V (νX(d:D) = ψ).

Proof. Along the lines of [11]. 2

The first rule in lemma 4.17 captures the fact that for a least fixpoint, a carefully chosen formula is a smaller
solution to an equation when it is always at most thekth approximant. The second rule describes the case
when we have a solution to an equation (which is not necessarily the least solution). The third and fourth
rules are the dual counterparts of the rules for the greatest fixpoint.

14

4.2.3 Patterns for equation systems

The techniques for finding the solution to equation systems we described in the previous section are not
always efficient or easy to apply. For instance, iterative approximation is not always applicable, as the
following example shows.

Example 4.18. Consider the following greatest fixpoint equation:νX(i:N) = i ≤ N ∧X(i+ 1), where
N is some arbitrary natural number. By approximating, we obtain infinitely many approximants, without
ever reaching the solution. Obviously, the solution to this equation should be∀j:N.i + j ≤ N , which can
be further reduced to⊥.

In order to be able to solve such an equation effectively, we need to resort to a different method altogether.
We study equations of a certain generic form, and provide generic solutions to these equations. Equations,
such as the one from the above example, can then be recognised to be of a certain form, and be solved by
looking them up. We refer to these abstract equations aspatterns. Note that identifying ‘patterns’ is very
common in mathematics, for instance when solving differential equations.

The first pattern is obtained by generalising the equation in the example given above. Note that the
solutions for the minimal and maximal fixpoint equations are dual. Letf :D→D be an arbitrary, total
function. We assume the existence of a functionf :N × D→D, written asfn(d), with the property that
f0(d) = d andfn+1(d) = f(fn(d)).

Theorem 4.19. Let σX(d:D) = ϕ(d)∧ (ψ(d)∨X(f(d))) be an equation, wheref :D→D is an arbitrary
total function andX does not occur inϕ andψ.

1. The solution toX for σ = ν is
∀j:N. ((∀i:N. i < j → ¬ψ(f i(d))) → ϕ(f j(d))),

2. The solution toX for σ = µ is:
∃i:N. ψ(f i(d)) ∧ ∀j:N. (j≤i→ ϕ(f j(d))).

Proof. We first deal withσ = ν. We prove this theorem by directly, but transfinitely, calculating the
fixpoint (lemma 2.9). The finite solutions are given by the following formula:

Xn(d:D) =
n−1∧
j=0

((
j−1∧
i=0

¬ψ(f i(d))) → ϕ(f j(d))).

It is easy to show thatXn is thenth approximation ofX using induction onn. The next approximation
Xω(d) is equal to the maximal solution and given by

Xω(d:D) = ∀n:N.Xn(d)
= ∀n:N.

∧n−1
j=0 ((

∧j−1
i=0 ¬ψ(f i(d))) → ϕ(f j(d)))

= ∀j:N.((
∧j−1

i=0 ¬ψ(f i(d))) → ϕ(f j(d)))
= ∀j:N.(∀i:N.i < j → ¬ψ(f i(d))) → ϕ(f j(d)).

It only remains to be shown that the solution is stable, which can be seen as follows:

ϕ(d) ∧ (ψ(d) ∨Xω(f(d)))
= ϕ(d) ∧ (ψ(d) ∨ ∀j:N.(∀i:N. i<j → ¬ψ(f i+1(d))) → ϕ(f j+1(d)))
= ϕ(d) ∧ (¬ψ(d) → (∀j:N. j>0 → (∀i:N. 1 ≤ i<j → ¬ψ(f i(d))) → ϕ(f j(d))))
= ∀j:N.((∀i:N.i<j → ¬ψ(f i(d))) → ϕ(f j(d)))
= Xω(d)

The proof forσ = µ follows the same lines. The finitary approximations are given by

Xn(d:D) =
n−1∨
i=0

(ψ(f i(d)) ∧
i∧

j=0

ϕ(f j(d))).

15

The first infinitary approximation is calculated as follows

Xω(d:D) = ∃n:N.Xn(d)
= ∃n:N.

∨n−1
i=0 (ψ(f i(d)) ∧

∧i
j=0 ϕ(f j(d)))

= ∃i:N.(ψ(f i(d)) ∧
∧i

j=0 ϕ(f j(d)))
= ∃i:N.(ψ(f i(d)) ∧ ∀j:N.(j≤i→ ϕ(f j(d)))).

Showing thatXω(d) is stable goes in the following way:

ϕ(d) ∧ (ψ(d) ∨Xω(f(d)))
= ϕ(d) ∧ (ψ(d) ∨ ∃i:N.(ψ(f i+1(d))) ∧ ∀j:N.(j≤i→ ϕ(f j+1(d))))
= (ψ(d) ∧ ϕ(d)) ∨ ∃i:N.(ψ(f i+1(d)) ∧ ∀j:N.(j≤i+1 → ϕ(f j(d))))
= ∃i:N.(ψ(f i(d)) ∧ ∀j:N.(j≤i→ ϕ(f j(d))))
= Xω(d).

2

The first pattern above immediately provides us with the solution to the equation of example 4.18, by taking
the functionf :N→N, defined asf(i) = i+ 1, and defining the predicateϕ(i) = i ≤ N andψ(i) = ⊥.

When more than one occurrence ofX occurs in the right hand side of the pattern in theorem 4.19 we
have a straightforward generalisation for which we can find a solution in a similar vein.

In this case we assume that functionsfi:D → D for i < N for some givenN are given. We let
g : N → {0, . . . , N − 1} be an arbitrary function. We assume the existence of functionsf(g, j, d) with the
property thatf(g, 0, d) = d andf(g, j + 1, d) = fg(j)(f(g, j, d)).

Theorem 4.20. LetN :N be some arbitrary natural number and let

σX(d:D) = ϕ(d) ∧
N−1∧
i=0

(ψi(d) ∨X(fi(d)))

be an equation, wherefi:D→D are arbitrary total functions andX does not occur inϕ andψi.

1. The solution toX for σ = ν is
∀j:N.∀g:N→{0, . . . , N−1}. ((∀i:N.i<j→¬ψg(i)(f(g, i, d)))→ϕ(f(g, j, d))),

2. The solution toX for σ = µ is
∃j:N.∃g:N→{0, . . . , N−1}. ((∀i:N.i<j→¬ψg(i)(f(g, i, d))) ∧ ϕ(f(g, j, d))),

Proof. We exactly follow the structure of the proofs of theorem 4.19 and we provide only the proof for
σ = ν here. First we define the finitary approximations:

Xn(d) = ∀g:N→{0, . . . , N−1}.
n−1∧
j=0

((
j−1∧
k=0

¬ψg(i)(f(g, k, d)))→ϕ(f(g, j, d))).

In order to see thatXn(d) is thenth approximation observe that

X0(d) = >

and

ϕ(d) ∧
∧N−1

i=0 (ψi(d) ∨Xn(fi(d)))
= ϕ(d) ∧

∧N−1
i=0 (ψi(d) ∨ ∀g.

∧n−1
j=0 ((

∧j−1
k=0 ¬ψg(k)(f(g, i, fi(d))))→ϕ(f(g, j, fi(d)))))

= ∀g.
∧N−1

i=0 ϕ(d) ∧ (ψi(d) ∨
∧n−1

j=0 ((
∧j−1

k=0 ¬ψg(k)(f(g, k, fi(d))))→ϕ(f(g, j, fi(d))))
=∗ ∀h.ϕ(d) ∧ (ψg(k)(d) ∨

∧n−1
j=0 ((

∧j−1
k=0 ¬ψh(k+1)(f(h, k+1, d)))→ϕ(f(n, j+1, d)))

= ∀h.
∧n−1

j=0 ϕ(d) ∧ (ψh(0)(d) ∨ ((
∧j−1

k=0 ¬ψh(k+1)(f(h, k+1, d)))→ϕ(f(h, j+1, d))))
= ∀h.

∧n−1
j=0 ϕ(d) ∧ ((

∧j
k=0 ¬ψh(k)(f(h, k, d)))→ϕ(f(h, j+1, d)))

= ∀h.
∧n−1

j=0 ϕ(d) ∧ ((
∧j

k=0 ¬ψh(k)(f(h, k, d)))→ϕ(f(h, j+1, d)))
= ∀h.

∧n
j=1 ϕ(d) ∧ ((

∧j−1
k=0 ¬ψh(k)(f(h, k, d)))→ϕ(f(h, j, d)))

= ∀h.
∧n

j=0((
∧j−1

k=0 ¬ψh(k)(f(h, k, d)))→ϕ(f(h, j, d)))
= Xn+1(d)

16

where at∗ we introduceh:N→{0, . . . , N−1} such thati = h(0) and g(l) = h(l+1) for all l. The
universally bound functiong above and below has typeg:N→{0, . . . , N−1}.
Next we calculate the first infinitary approximation, which happens to be equal to the solution of the
equation.

Xω(d) = ∀n:N.Xn(d)
= ∀n:N.∀g.

∧n−1
j=0 ((

∧j−1
k=0 ¬ψg(k)(f(g, k, d)))→ϕ(f(g, j, d)))

= ∀j:N.∀g.((∀k:N.(k<j→¬ψg(k)(f(g, k, d))))→ϕ(f(g, j, d)))

Finally, we show that the first infinitary approximation is stable, which proves that it is indeed the maximal
fixpoint solution for this equation.

ϕ(d) ∧
∧N−1

i=0 (ψi(d) ∨Xω(fi(d)))
= ϕ(d) ∧

∧N−1
i=0 (ψi(d) ∨ ∀j:N.∀g.((∀k:N.(k<j→¬ψg(k)(f(g, k, f(d)))))→ϕ(f(g, j, fi(d)))))

= ∀g.
∧N−1

i=0 ϕ(d) ∧ (ψi(d) ∨ ∀j:N.((∀k:N.(k<j→¬ψg(k)(f(g, k, fi(d)))))→ϕ(f(g, j, fi(d)))))
=?? ∀h.ϕ(d) ∧ (ψh(0)(d) ∨ ∀j:N.((∀k:N.(k<j→¬ψh(k+1)(f(g, k+1, d))))→ϕ(f(h, j+1, d))))
= ∀h.∀j:N.ϕ(d) ∧ ((∀k:N.(k<j+1→¬ψh(k)(f(g, k, d))))→ϕ(f(h, j+1, d)))
= ∀h.∀j:N.(∀k:N.(k<j→¬ψh(k)(f(g, k, d))))→ϕ(f(h, j, d))
= Xω(d).

See for the?? the remark marked with the∗ above. 2

The patterns that we considered in this section are inspired by the examples in section 5. We expect
that these will be encountered very often when solving parameterised boolean equation systems that will
occur when proving the validity of modal formulas on large examples. What we actually think is that it
will be fruitful to build a library of patterns and include these in tools that automatically solve boolean
parameterised boolean equation systems. This has for instance been done in computer algebra systems
with mathematical formulae.

However, finding and in particular solving these patterns might turn out to be difficult. A pattern that
we encountered but were not able to solve thus far is the following:

σX(d:D) = ϕ(d) ∧ ∀e:E.ψ(d, e) ∨X(f(d, e)))

for arbitrary data sortE. Actually, — and we pose this as a very interesting open question — it might very
well be possible to device a method to solve all single fixed point equations of the formσX(d:D) = ϕ
by replacingϕ by a first order formula in whichX does not occur. Using Gauß elimination, this would
yield a complete method that allows to transform each parameterized boolean equation system to a first
order formula. Solving the equation system would then be equivalent to determine whether the formula is
a tautology. The advantage of this transformation is that it moves the relatively unknown field of model
checking (with data) and parameterised equation systems to the well studied field of first order logic.

4.2.4 Invariants

Invariants characterise ‘the reachable parameter space’ of a parameterised boolean equation. As in the
verification of programs they can be used to prove properties that only hold within the reachable state
space. Within parameterised boolean equation systems they can be used to simplify equations with a
particular parameter instantiation.

A formal definition of an invariant is given below. In our setting the definition looks uncommon, but
still expresses what is ordinarily understood as an invariant. Note that our invariants only have the transfer
property, and do not involve an initial state.

Definition 4.21 (Invariant). Let σX(d:D) = ϕ be an equation and letI:D→B be a predicate formula in
which no predicate variable occurs. Then,I is an invariant ofX iff

(I ∧ ϕ) ↔ (I ∧ ϕ[(λe:D.I[e/d] ∧X(e))/X])

17

Basically, a predicate formula is an invariant iff, for that part of the parameter space of the equation for
which the invariant holds, the solution is not changed by adding the invariant.

Note that in general this affects the solution of the equation, as the solution with and without the
invariant only coincide in those situations for which the invariant holds. Nevertheless, invariants can be
used for simplifying an equation system by calculating with the equation system in which the invariant is
used, as expressed by the following theorem. First an auxiliary lemma is proven, and subsequently the
invariance rule is given that indicates how invariants can be used.

Lemma 4.22. Let σX(d:D) = ϕ andσY (d:D) = I(d) ∧ ϕ[Y/X] be equations such thatY /∈ occ(ϕ)
and letI:D → B be an invariant ofX. For alld:D for which I(d) is valid, it holds that

(σX(d:D).ϕ(η))(d) = (σY (d:D).(I(d) ∧ ϕ[Y/X])(η))(d).

Proof. We prove this lemma by a transfinite approximation (see lemma 2.9). So, we letXα andYα be the
αth approximation forX andY respectively, whereα is an ordinal, and we show thatI(d) implies

Xα(d) = Yα(d).

We find:

• Forα = 0, we must distinguish betweenσ = ν andσ = µ. If σ = ν it holds thatX0(d) = Y0(d) =
>. Forσ = µ we find thatX0(d) = Y0(d) = ⊥.

• Forα = β + 1 a successor ordinal we find under the assumption thatI(d) holds:

Yβ+1(d) = ϕ(Yβ(d))
invariant= ϕ(I(d) ∧ Yβ(d))

i.h.= ϕ(I(d) ∧Xβ(d))
invariant= ϕ(Xβ(d))

= Xβ+1(d)

• Forα a limit ordinal andσ = µ we find

Yα(d) =
∨

β<α

Yβ(d) i.h.=
∨

β<α

Xβ(d) = Xα(d)

The case withσ = ν is dual and goes in the same way.

So, we have shown thatXα(d) = Yα(d). Now, as we know thatXα andYα are the minimal/maximal
solutions for a sufficiently largeα, the lemma follows. 2

Theorem 4.23(Invariance Rule). Let σX(d:D) = ϕ be an equation such thatY /∈ occ(ϕ) for some
predicate variableY and letI:D→B be an invariant ofX. Then

σX(d:D) = ϕ
σY (d:D) = I(d) ∧ ϕ[Y/X]

≡
σX(d:D) = (I(d) ∧ Y (d)) ∨ (¬I(d) ∧ ϕ)
σY (d:D) = I(d) ∧ ϕ[Y/X]

Proof. We writeB for σY (d:D) = I(d) ∧ ϕ[Y/X]. According to definition 3.3 we must show for allη
andF :

[(σX(d:D) = ϕ) B F]η = [(σX(d:D) = (I(d) ∧ Y (d)) ∨ (¬I(d) ∧ ϕ)) B F]η

By definition 2.3 this is equivalent to:

[BF]η[σX(d:D).ϕ([BF]η)/X] = [BF]η[σX(d:D).((I(d) ∧ Y (d)) ∨ (¬I(d) ∧ ϕ))([BF]η)/X].

18

This in turn follows from

σX(d:D).ϕ([BF]η) = σX(d:D).((I(d) ∧ Y (d)) ∨ (¬I(d) ∧ ϕ))([BF]η).

Distribution of the substitution leads to

σX(d:D).ϕ([BF]η) = σX(d:D).((I(d) ∧ (Y (d)([BF]η))) ∨ ¬(I(d) ∧ (ϕ([BF]η)))).

BecauseY does not occur inϕ, this subsequently reduces to:

σX(d:D).ϕ([F]η) = σX(d:D).((I(d) ∧ (Y (d)([BF]η))) ∨ (¬I(d) ∧ (ϕ([F]η)))). (5)

It holds thatY (d)([BF]η) equals(σY (d:D).(I(d) ∧ ϕ[Y/X])([F]η))(d). Using lemma 4.22 this is equal
to I(d) ∧ (σX(d:D).ϕ([F]η))(d). So, equation (5) is equal to

σX(d:D).ϕ([F]η) = σX(d:D).(I(d) ∧ (σX(d:D).ϕ([F]η))(d)) ∨ ¬I(d) ∧ (ϕ([F]η))).

Now observe that the right hand side of this equation equals the left hand side, except that the solution for
X has been partially substituted. Using lemma 2.10 both sides are equal. 2

A disadvantage of the previous theorem is that it requires an extra equation. Therefore, we provide a
theorem below that allows the use of an invariant without this additional equation. But first an auxiliary
lemma is given:

Lemma 4.24. Let σX(d:D) = ϕ andσ′Y (e:E) = ψ be equations and letI:D → B be an in invariant of
X. LetK be a parameterised boolean equation system. If for some predicate formulaχ with X /∈ occ(χ)

1. (σX(d:D) = ϕ ∧ I(d)) ≡ (σX(d:D) = χ),

2. (σ′Y (e:E) = ψ) ≡ (σ′Y (e:E) = ψ[λd:D.I(d) ∧X(d)/X]) and

3. σX(d:D) = ϕ is inK.

then

σ′Y (e:E).ψ[K]η = σ′Y (e:E).ψ[λd:D.χ/X][K]η.

Proof. This lemma is proven with induction on the length ofK. If K is empty,σX(d:D) = ϕ cannot
occur inK and the lemma holds as condition 3 is invalid.

If K is not empty, we distinguish two cases:

1. K equals(σX(d:D) = ϕ)K′. So, we must show:

σ′Y (e:E).ψ[(σX(d:D) = ϕ)K′]η =
σ′Y (e:E).ψ[K′]η[σX(d:D).ϕ([K′]η)/X] =?

σ′Y (e:E).ψ[λd:D.I(d) ∧ σX(d:D).ϕ([K′]η)(d)/X][K′]η[σX(d:D).ϕ([K′]η)/X] =??

σ′Y (d:D).ψ[σX(d:D).(I(d) ∧ ϕ)([K′]η)/X][K′]η[σX(d:D).ϕ([K′]η)/X] =???

σ′Y (e:E).ψ[σX(d:D).χ([K′]η)/X][K′]η[σX(d:D).ϕ([K′]η)/X] =
σ′Y (e:E).ψ[χ/X][K′]η[σX(d:D).ϕ([K′]η)/X] =
σ′Y (e:E).ψ[χ/X]([(σX(d:D) = ϕ)K′]η)

At ? condition 2 is used. At?? lemma 4.22 is used. At??? condition 1 is used.

2. K equals(σ′′Z(f :F) = ξ)K′ with Z 6= X. We find

σ′Y (e:E).ψ[(σ′′Z(f :F) = ξ)K′]η =
σ′Y (e:E).ψ[K′]η[σ′′Z(f :F).ξ([K′]η)/Z] =?

σ′Y (e:E).ψ[χ/X][K′]η[σ′′Z(f :F).ξ([K′]η)/Z] =
σ′Y (e:E).ψ[χ/X][(σ′′Z(f :F) = ξ)K′]η

At ? we use the induction hypothesis.

19

2

The theorem below says that ifχ is a solution for the equationσX(d:D) = ϕ under invariantI (condition
1) andX is used in an equationσ′Y (e:E) = ψ in a situation whereI impliesX (condition 2), then we
may substitute solutionχ for X in ψ.

Theorem 4.25. Let σX(d:D) = ϕ andσ′Y (e:E) = ψ be equations and letI:D → B be an invariant of
X. Let E be a parameterised boolean equation system such that{X,Y } 6⊆ bnd(E). If for some predicate
formulaχ such thatX /∈ occ(χ)

1. (σX(d:D) = ϕ ∧ I(d)) ≡ (σX(d:D) = χ) and

2. (σ′Y (e:E) = ψ) ≡ (σ′Y (e:E) = ψ[λd:D.I(d) ∧X(d)/X]).

then

(σ′Y (e:E) = ψ)E(σX(d:D) = ϕ) ≡ (σ′Y (e:E) = ψ[λd:D.χ/X])E(σX(d:D) = ϕ)

Proof. By definition we must show for allF andη that

[(σ′Y (e:E) = ψ)E(σX(d:D) = ϕ)F]η = [(σ′Y (e:E) = ψ[λd:D.χ/X])E(σX(d:D) = ϕ)F]η.

AbbreviateE(σX(d:D) = ϕ)F with K. We can rewrite the previous equation to

[K]η[σ′Y (e:E).ψ[K]η/Y] = [K]η[σ′Y (e:E).ψ[λd:D.χ/X][K]η/Y]

which follows from

σ′Y (e:E).ψ[K]η = σ′Y (e:E).ψ[λd:D.χ/X][K]η

which matches the conclusion of lemma 4.24. 2

5 Applications

In this section, we study properties of several small but characteristic reactive systems. Note that, although
the systems that we study are small in size, their behaviours are in many cases quite complex.

We study the systems by proving the validity of certain modal formulas governing their behaviour.
We translate the process descriptions and the formulas to parameterised boolean equation systems that are
subsequently solved. For a detailed account on how these equations can be derived from a process and a
formula, we refer to [11, 15, 24]. For the remainder of this paper, we assume the reader is familiar with
the use of the specification languageµCRL [13, 14], and the use of thefirst-order modalµ-calculuswith
data [11, 15] to specify logical properties of systems. We use natural numbers as the main data type in the
examples as natural numbers are very common. More complex data types can be used similarly.

5.1 A one-place buffer

The first system we study is a one-place buffer. We study two properties that are not commonly studied
on buffers, namely that if the input stream of the buffer consists of identical values, the output stream also
consists of identical values and if the input stream is increasing, then the output stream is also increasing.
These properties need data in modal logic to be expressed.

The buffer is represented by theµCRL processBuffer(see below). It reads natural numbers one-by-one
from an infinite stream using actionr, and it outputs a stream of data using actions (see figure 1).

proc Buffer(b:B, n:N) =
∑
m:N

r(m) · Buffer(⊥,m) / b . s(n) · Buffer(>, n)

where the initial state isBuffer(>, n) for an arbitraryn∈N.

20

r

s

152

4 6 3

Buffer

Figure 1: A One-Place Buffer System

A constant input stream. The first property we set out to investigate is the following: provided that the
input is a stream of the formkω, for some natural numberk, then the output is also of the formkω. In other
words, the buffer does not perform any transformations on its input when this is a constant input stream.

The property requires keeping track of the value that appears in the input stream. It is expressed by
the following formula. We use fixpoint variables with a tilde (X̃) to stress the difference with variables in
equation systems.

∀k:N. (νX̃.∀l:N. [r(l)](l=k → X̃) ∧ [s(l)](l = k ∧ X̃))

The property and the process can in the standard way be translated to a parameterised equation system.
The property holds if∀k:N.X(b, n, k) holds whereX is given by

νX(b:B, n, k:N) = ∀l:N. (∀m:N.(b ∧m=l→ (l=k → X(⊥,m, k)))∧
(¬b ∧ l=n→ (l = k ∧X(>, n, k)))).

We can eliminate the quantifiers by substitution. We get using corollary 4.12:

νX(b:B, n, k:N) = (b→ X(⊥, k, k)) ∧ (¬b→ (n = k ∧X(>, n, k))).

This equation can be solved using a simple approximation:

X0(b, n, k) = >,
X1(b, n, k) = ¬b→ n=k,
X2(b, n, k) = (b→ (¬⊥ → k=k)) ∧ (¬b→ (n=k ∧ (¬> → n=k)))

= ¬b→ n = k.

AsX1(b, n, k) is stable, we found the solution. So, a buffer preserves a constant input stream if∀k:N.(¬b→
n = k), which is equivalent tob, which is indeed what could be expected.

An ascending input stream. The second property we study is the following. If the input stream is
ascending, is the produced stream also ascending? This property can be expressed using two variables to
remember the last read input and the last produced output. It is formalised by the following modal formula:

(νX̃(in, out :N).∀l:N.([r(l)](l≥in → X̃(l, out)) ∧ [s(l)](l≥out ∧ X̃(in, l))))(0, 0).

The ascending stream property holds on the processBuffer if X(b, n, 0, 0) holds whereX is given by:

νX(b:B, n, in,out:N) = ∀l:N. (∀m:N.(b ∧ l=m→ (l≥in → X(⊥,m, l, out)))∧
(¬b ∧ l=n→ (l≥out ∧X(>, n, in, l)))))).

The right hand side of this fixpoint equation can be simplified using laws of predicate logic. So, with
corollary 4.12 we find:

νX(b:B, n, in,out:N) = ∀l:N.(b→ (l≥in → X(⊥, l, l, out)))∧ (¬b→ (n≥out ∧X(>, n, in, n))).

21

The approximation of this equation is straightforward:

X0(b, n, in, out) = >,
X1(b, n, in, out) = ¬b→ n≥out ,
X2(b, n, in, out) = ∀l:N.(b→ (l≥in → l≥out)) ∧ (¬b→ n≥out),

= (b→ in≥out) ∧ (¬b→ n≥out)
X3(b, n, in, out) = ∀l:N.(b→ (l≥in → l≥out)) ∧ (¬b→ (n≥out ∧ in≥n))

= (b→ in≥out) ∧ (¬b→ in≥n ∧ n≥out),
X4(b, n, in, out) = ∀l:N.(b→ (l≥in → l≥l ∧ l≥out)) ∧ (¬b→ in≥n ∧ n≥out))

= (b→ in≥out) ∧ (¬b→ in≥n ∧ n≥out).

Note thatX3(b, n, in, out) is stable. Therefore it is the solution of the fixpoint equation. So, the ascending
chain property holds ifX(b, n, 0, 0) is valid. By substituting the solution ofX, this boils down to¬b →
n=0.

5.2 Merging infinite streams

Combining several input streams into a single stream is a technique that is found frequently in streaming
media applications. The way streams are combined depends on a particular application. Here, we study
a small system that reads data from two (infinite) input streams, one-by-one, and produces a new output
stream that is locally ascending, see figure 2. Our particular merge system is described by the four process

356

8 5 1

152

r1

Merge s

r2

Figure 2: Combining Two Input Streams into a Single Output Stream

equations below. The initial process isMerge. It reads data from streami via actionri, wherei∈{1, 2},
and the output is produced via actions.

Merge =
∑

m:N (r1(m) ·Merge1(m) + r2(m) ·Merge2(m))
Merge1(n:N) =

∑
m:N r2(m) ·Merge3(n,m)

Merge2(m:N) =
∑

n:N r1(n) ·Merge3(n,m)
Merge3(n,m:N) = s(n) ·Merge2(m) / n ≤ m . s(m) ·Merge1(n)

To illustrate its behaviour, consider the input streams as depicted in figure 2, and ignore the output stream
that is depicted. On this input stream, it first reads the values3 and1 in random order, via actionsr1 and
r2, respectively. Since1 ≤ 3, the value1 is produced as output via actions and the value2 is read from
input stream2, and produced as output, since2 ≤ 3. Subsequently, value5 is read from stream2 and the
value3 is produced as output, after which the value5 is read from input stream1. Now, the merge process
decides non-deterministically from which of the two streams it reads next, and it outputs the value5.

Clearly, on ascending input streams, the merge system should produce an ascending output. This is
expressed by the following formula:

(νX̃(in1, in2, out :N).∀l:N. ([r1(l)](l ≥ in1 → X̃(l, in2, out))∧
[r2(l)](l ≥ in2 → X̃(in1, l, out))∧
[s(l)](l ≥ out ∧ X̃(in1, in2, l))))(0, 0, 0)

Note that the processMerge must first be converted to linear form if we are to verify this property.
This is fairly straightforwardly achieved by introducing an additional parameterσ:N. ProcessMergei is
represented byσ = i, whereasσ = 0 represents processMerge itself. Combining the resulting linear

22

process specification with the above formula according to the translation of [11, 15, 24] and after applying
some simplifications, we obtain the following equation.

νX(σ, n,m, in1, in2, out :N) = (σ = 0 → (∀l:N. l ≥ in1 → X(1, l,m, l, in2, out)))∧
(σ = 0 → (∀l:N. l ≥ in2 → X(2, n, l, in1, l, out)))∧
(σ = 1 → (∀l:N. l ≥ in2 → X(3, n, l, in1, l, out)))∧
(σ = 2 → (∀l:N. l ≥ in1 → X(3, l,m, l, in2, out)))∧
(σ = 3 ∧ n ≤ m) → (n ≥ out ∧X(2, n,m, in1, in2, n))∧
(σ = 3 ∧m ≤ n) → (m ≥ out ∧X(1, n,m, in1, in2,m))

where the ascending input/output property holds ifX(σ, n,m, 0, 0, 0) holds.
A closer inspection of the equation reveals a striking similarity in the use of the variablesn andin1,

and, likewise, in the variablesm andin2. This is in fact no coincidence. In the linear process, representing
processMerge, the variablesn andm register the last read values of stream1 and stream2, respectively.
The variablesin1 and in2, appearing in the modal formula have a similar purpose. This redundancy is
identified by the invariant(n = in1) ∧ (m = in2). Furthermore, the variableout satisfies the invariant
out ≤ min(in1, in2). It is straightforward to verify that both properties are invariants in the sense of
definition 4.21. Thus, rather than immediately solving this equation, it pays to solve the equation with the
invariant.

νXI(σ, n,m, in1, in2, out :N) = (n=in1 ∧m=in2 ∧ out≤min(in1, in2))∧
(σ = 0 → (∀l:N. l ≥ in1 → XI(1, l,m, l, in2, out)))∧
(σ = 0 → (∀l:N. l ≥ in2 → XI(2, n, l, in1, l, out)))∧
(σ = 1 → (∀l:N. l ≥ in2 → XI(3, n, l, in1, l, out)))∧
(σ = 2 → (∀l:N. l ≥ in1 → XI(3, l,m, l, in2, out)))∧
(σ = 3 ∧ n ≤ m) → (n ≥ out ∧XI(2, n,m, in1, in2, n))∧
(σ = 3 ∧m ≤ n) → (m ≥ out ∧XI(1, n,m, in1, in2,m))

It is straightforward to approximate this equation.

X0(σ, n,m, in1, in2, out) = >,
X1(σ, n,m, in1, in2, out) = n=in1 ∧m=in2 ∧ out≤min(in1, in2).

The approximationX1 is stable and hence it is the solution forXI .
Now we cannot use this solution to construct a solution forX(σ, n,m, 0, 0, 0), simply because it does

not satisfy the invariant. However, if we considerX(σ, 0, 0, 0, 0, 0), then using theorem 4.25 we can use
the solution forXI as the solution forX. More concretely,X(σ, 0, 0, 0, 0, 0) is always true.

Approximating the fixpoint equation forX directly does not terminate as quickly and is awkward due
to universal quantifier that remains present in the approximations.

5.3 An identity tag generator

Many applications depend on a mechanism that produces identity tags for objects. Illustrative examples of
such tags are the identity numbers on passports, phone-numbers, but also IP-addresses and message-header
tags in e-mails. In essence, the mechanism for producing identity tags is a process that writes an infinite
stream of identities. We represent these identities by means of natural numbers, see figure 3.

3 6 9

Generator

s

Figure 3: Identity tag generator.

23

The processGenerator is a generic process that generates identity tags according to some predefined
function that is passed as a parameter to processGenerator . The generator is initialised with the valuei.

proc Generator(f :N→N, i:N) = s(i) ·Generator(f, f(i))

Thus, by executing processGenerator(succ, 0), wheresucc is the successor function for natural num-
bers, we can generate the natural numbers. Most applications, using the generator, rely on the generator
to produce unique tags. Thus, any two outputs of the system should be different. This is expressed by
the following modal formula. It says that always in the future whenever a tagm is generated, every tagn
generated later is not equal tom.

νX̃.([>]X̃ ∧ ∀m:N.[s(m)]νỸ .([>]Ỹ ∧ ∀n:N.[s(n)]m 6= n))

An alternative but more complex approach would be to store all outputs in a set and check that each tag
being generated does not occur in the set. The fact that this is not needed in the above modal formula is
due to the greatest fixpoint operators, which reasons about infinite runs of a system. Verifying this modal
formula on processGeneratorallows us to find the conditions on the generator function that ensures all
produced tags are unique. In order to do so, we need to solve the following equation system:

νX(f :N→N, i:N) = X(f, f(i)) ∧ ∀m:N.(m = i) → Y (f, f(i),m),
νY (f :N→N, i,m:N) = Y (f, f(i),m) ∧ ∀n:N.(n = i) → m 6= n.

Obviously, all universal quantifiers can be removed in the equations above. Thus, we can rewrite this
equation system to the following equivalent equation system.

νX(f :N→N, i:N) = X(f, f(i)) ∧ Y (f, f(i), i),
νY (f :N→N, i,m:N) = Y (f, f(i),m) ∧m 6= i.

These equations are both of the form of the pattern of theorem 4.19. Hence, the solution toY is∀j:N. f j(i) 6=
m. The solution toX is∀j′:N.∀j:N. f j+j′+1(i) 6= f j′

(i), which is logically equivalent to∀j:N.∀j′:N. j 6=
j′ → f j(i) 6= f j′

(i). Of course, this is exactly the requirement we expected, but it is nice to see that we
can also systematically derive it.

5.4 A token ring

Synchronisation and mutual exclusion between processes in a network can be achieved by passing tokens.
By abstracting from the behaviours of these processes, we can study the mechanisms to pass tokens in
isolation. Networks using tokens usually have a ring topology and are calledtoken ring networks. In
figure 4, we depict a token ring configuration for two tokens and six processes.

⊥ ⊥

>>

⊥ ⊥

2

45

36

1

Figure 4: Token Ring system forN = 6 with two tokens.

We represent an arbitrary configuration in a token ring of sizeN by means of subsets of the setN =
{0, . . . , N−1}. If there is at least one token at processj, the valuej is in this subset. We define the operator

24

�j :2N→2N as�j (R) def= (R \ {j}) ∪ {(j + 1)modN} indicating that tokens move from processj to
process(j + 1)modN . ProcessRingdescribes a very simple token passing mechanism inµCRL.

proc Ring(R:2N) =
∑
j:N

token(j) · Ring(�j (R)) / j∈R ∧ j<N . δ

Basically, processRing executes atoken(j) action, for somej, whenever processj passes its token to
the next process in the ring. The condition/j∈R ∧ j<N . δ says that this can only occur ifj is an
element ofR and j is smaller thanN , or in other words if processj has at least one token. One of
the characteristics of this token passing mechanism is that it candeletetokens. To see that, take the
configuration of figure 4 where> indicates the presence of a token. Consider the following sequence of
actions:token(3) token(4) token(5). At this point, there is only one token left in the token ring.

Given the simplicity of this system, it is not hard to see that there will always remain at least one
token in the system. In fact, for processRing(R), the invariantI(R) ≡ R 6= ∅ can be proven fairly
straightforwardly. However, we cannot immediately draw the conclusion that this process is fair in the
sense that every process will always eventually hand over a token. This property is formally expressed by
the following (first-order) modalµ-calculus formula.

∀k:N. k<N → (νX̃.[>]X̃ ∧ µỸ .(〈token(k)〉> ∨ ([>]Ỹ ∧ 〈>〉>)))

Combining the modal formula with the process expression using the translation given in [11, 15, 24], we
obtain the following equation system for arbitraryk∈N :

νX(R:2N , k:N) = ∀j:N. (j∈R ∧ j<N → X(�j (R), k)) ∧ Y (R, k)
µY (R:2N , k:N) = (∃j:N. j∈R ∧ j<N ∧ j = k) ∨ ((∃j:N. j∈R ∧ j<N)∧

(∀j:N. j∈R ∧ j<N → Y (�j (R), k)))
(6)

Note that after solving this equation system, the expression∀k:N.k < N → X(R, k) answers whether the
token ring is fair. The equation forY can be rewritten to

µY (R:2N , k:N) = ((k∈R ∧ k<N) ∨ (∃j:N.j∈R ∧ j < N))∧∧
j<N ((k /∈ R ∨ k≥N) ∧ j∈R→ Y (�j (R), k)).

Using theorem 4.20 this equation can be solved, yielding

µY (R:2N , k:N) = ∃j:N.∃g:N → {0, . . . , N−1}.((∀i:N.i<j → (k /∈�(g, i, R) ∨ k≥N)∧
g(i)∈ �(g, i, R)) ∧ ((k∈ � (g, j, R) ∧ k<N) ∨ (∃j′:N.j′∈ � (g, j, R) ∧ j′<N))).

The right hand side of this equation can be simplified using the rules of predicate calculus. We get (using
corollary 4.12):

µY (R:2N , k:N) = ∃j:N.(j∈R ∧ j<N).

The solution forY can now be substituted in the first equation obtaining:

νX(R:2N , k:N) = ∀j:N.(j∈R ∧ j < N → X(�j (R), k)) ∧ ∃j′:N.(j′∈R ∧ j′<N).

We solve this equation by iteration

X0(R, k) = >,
X1(R, k) = ∃j′:N.(j′∈R ∧ j′<N),
X2(R, k) = ∀j:N.(j∈R ∧ j < N → ∃j′:N.(j′∈ �j (R) ∧ j′<N)) ∧ ∃j′′:N.(j′′∈R ∧ j′′<N)

= ∃j:N.(j∈R ∧ j<N).

Hence, the solution of the system is

νX(R:2N , k:N) = ∃j:N.(j∈R ∧ j<N),
µY (R:2N , k:N) = ∃j:N.(j∈R ∧ j<N),

And so, the token ring is fair if∀k:N.k<N → ∃j:N.(j∈R ∧ j<N). This can be slightly simplified to
N=0 ∨ ∃j:N.(j∈R ∧ j<N).

25

5.5 A lossy channel

Consider a simple lossy channel that reads information from a stream, and tries to send it to the other side
where a message is lost occasionally.

C> =
∑

m:N r(m) · C⊥(m)
C⊥(m:N) = s(m) · C> + l · C>

We wish to verify that when data is not always lost, messages eventually get across. We formulate this
using the following modal formula

νX̃.([>]X̃ ∧ (µỸ .[>]Ỹ ∨ 〈l〉> ∨ ∃m:N.〈s(m)〉>))

We first translate the process to linear form:

C(b:B,m:N) =
∑

k:N r(k) · C(⊥, k) / b . δ
s(m) · C(>,m) / ¬b . δ
l · C(>,m) / ¬b . δ

The processC> is equal toC(>,m) for anym:N andC⊥(m) is equal toC(⊥,m).
The equation system we obtain is the following:

νX(b:B,m:N) = (∀k:N.(b→ X(⊥, k)) ∧ (¬b→ X(>,m))) ∧ Y (b,m)
µY (b:B,m:N) = (∀k:N.(b→ Y (⊥, k)) ∧ (¬b→ Y (>,m))) ∨ ¬b ∨ ∃m′:N.¬b ∧m=m′

Approximation quickly leads to a solution without involvingm:

Y0(b,m) = ⊥,
Y1(b,m) = ¬b ∧ (b ∨ ¬b) = ¬b,
Y2(b,m) = (¬b→ ¬b) ∨ ¬b = >,
X0(b,m) = >

whereX0(b,m) = > is a stable solution. Thus, in whatever state the processC starts, messages always
get across if not always lost.

A slightly more involved property, taken from [6, page 309], says that delivery via actions(m) is fairly
treated if there are no paths wheres(m) is enabled infinitely often, but occurs only finitely often:

νX̃.µỸ .νZ̃.∀m:N.[s(m)]X̃ ∧ (∃m:N.〈s(m)〉> → ([l]Ỹ ∧∀m:N.[r(m)]Ỹ))∧ [l]Z̃ ∧∀m:N.[r(m)]Z̃

This formula together with processC are translated to the following equation system

νX(b:B,m:N) = Y (b,m)
µY (b:B,m:N) = Z(b,m)
νZ(b:B,m:N) = (¬b→ X(>,m)) ∧ (¬b→ ((¬b→ Y (>,m)) ∧ ∀k:N.(b→ Y (⊥, k))))∧

((¬b→ Z(>,m)) ∧ ∀k:N.(b→ Z(⊥, k)))
= (¬b→ X(>,m) ∧ Y (>,m) ∧ Z(>,m)) ∧ (b→ ∀k:N.Z(⊥, k))

We approximateZ and find a stable solution in three steps:

Z0(b:B,m:N) = >,
Z1(b:B,m:N) = ¬b→ X(>,m) ∧ Y (>,m),
Z2(b:B,m:N) = (¬b→ X(>,m) ∧ Y (>,m)) ∧ (∀k:N.X(>, k) ∧ Y (>, k))

= ∀k:N.X(>, k) ∧ Y (>, k).

We substitute the solution forZ in the second equation obtaining the following fixpoint equation:

µY (b:B,m:N) = ∀k:N.X(>, k) ∧ Y (>, k).

Using one approximation step it is easily seen that the solution of this equation isY (b,m) = ⊥. So,
substitution of this solution in the first equation yieldsX(b,m) = ⊥. The property does not hold for our
process.

26

5.6 A client-server model

Here we verify a property of a simplified client server system.

(ordered) goods

payments and orders

accounts accounts

Client Server

outstanding outstanding

Figure 5: Placing orders and transfering money

A client can place a number of orders using actionoc, and pay for these later, using actionpc. A
server keeps track of the outstanding accounts of the client; as long as the outstanding accounts are below
a certain thresholdT , the server accepts all orders that fall within the budget of the client, using actionos.
The server receives payment of the outstanding accounts via actionps. Whenever the outstanding account
of the client is above thresholdT , the server issues a warning via actionws. The communications via the
client and the server proceed as follows: actionspc andps communicate to actionp, whereas actionsoc

andos communicate to actiono. The total system is given below inµCRL:

ClientServer(nc, ns:N) = ∂{oc,os,pc,ps}(Client(nc)‖Server(ns))
Client(n:N) =

∑
m:N oc(m) · Client(n+m)+∑
m:N pc(m) · Client(n−m) / n≥m . δ

Server(n:N) =
∑

m:N os(m) · Server(n+m) / n+m≤T . δ+∑
m:N ps(m) · Server(n−m)+

ws · Server(n) / n>T . δ

A desirable property of client-server system is that it prevents the clients from placing too many orders
and having a too large debt. The client-server system we specified issues a warning on these occassions.
In order to check whether the client-server system behaves decently, we must show that no warnings are
issued. Thus, the property we are interested in is:

νX̃.([>]X̃ ∧ [ws]⊥)

The verification of this property proceeds as follows. We rewrite the client-server process to linear form
in effect removing all parallelism from the specification. The resulting linear process is combined with the
modal formula, yielding the following equation.

νX(nc, ns:N) = (∀m:N. (ns+m ≤ T → X(nc+m,ns+m))∧
(nc ≥ m→ X(nc−m,ns−m)))∧
(ns > T → X(nc, ns)) ∧ ns ≤ T

Using approximation, the solution of this equation is obtained by two iterations.

X0(nc, ns) = >,
X1(nc, ns) = ns ≤ T.

The solutionX1 is stable. Thus, as long as initially, the outstanding account at the server is less thanT ,
this client server model works as desired.

27

6 Conclusions

We set out to develop a theory that allows to manually solve parameterised boolean equation systems. Our
main motivation came from work reported in [15] where a symbolic model checker is described that works
by fixpoint approximation and automated reasoning (actually an equality BDD package that also allows
rewriting [12]). This was successful in the sense that automatically properties of large and infinite state
systems could be proven. But we found that automated reasoning and finite approximations were often
insufficient. We believe that ultimately an interplay between manual and automated techniques will turn
out to be most effective, and therefore started this investigation.

Regarding the general theory in this paper we have some mixed feelings. Most theorems and corollaries
have a nice and usable shape and these work very smoothly in the applications. But most proofs had to be
given using definition 2.3 which is very hard to comprehend. We would appreciate a much more insightful
basic theory but do not know how to provide it. Such a theory could also help us to avoid the pitfalls of
fixpoint equations. More than once we went awry formulating and believing conjectures that turned out to
be utterly untrue.

Regarding the use of the theory the patterns, approximations and invariants are real marbles. It remains
to be seen how the theory evolves under the strain of more involved verifications and most likely requires
adaptation and strengthening. One of the most eye-catching questions is whether the patterns in section
4.2.3 can be generalised to arbitrary right hand sides, providing a universal way of solving parameterised
equation systems or whether a whole plethora of techniques for many different forms will be developed.

Related work. The first accounts of using fixpoints for reasoning about programs date back to 1969,
when Scott and de Bakker [21] defined theµ-calculus. Theµ-calculus has aµ-operator that acts as a
binder for relation variables, and is used to express recursion and iteration. Like parameterised boolean
equation systems, theµ-calculus is a first-order formalism. Several theoretical results have been obtained
for theµ-calculus (see e.g. [17]), but gradually, the propositional version became more popular.

With respect to the model checking problem for processes with data, several other approaches are note-
worthy. Bradfield and Stirling [5, 6, 22] lay the foundations for finite and infinite state model checking
based on the modalµ-calculus usingtableau systems. Furthermore, the ideas of using Petri nets in combi-
nation with model checking are described. As explained in [19], the techniques using tableaus and boolean
equation systems are closely related, but boolean equation systems require less overhead.

In a similar vein, Gurovet al. [16], and Rathke and Hennessy [20] define (independently from each
other) first-order extensions of the modalµ-calculus and usesymbolic transition systemsas the underlying
models. Both Gurovet al. [16] and Rathke and Hennessy [20], provide tableau systems and proof systems,
and in [20] completeness and soundness is shown. The main concern in [16] is that of compositionality.
To the best of our knowledge, neither techniques have led to the development of tool support. From a
theoretical point of view, it would be interesting to compare the expressive power of the logics of [16,
20, 11], as there appear to be some differences. For instance, the grammar in [20] prohibits the use of
a diamond modality in combination of a fixpoint operator. Thus, the expressionµX.〈>〉X (where> is
the set ofall possible actions) appears to be excluded by the grammar of the logic, whereas it is a valid
expression in the logic of [11].

In contrast to these general approaches there is work that considers subclasses of systems or logical
properties. The main focus in these approaches is mainly on decidability. Noteworthy approaches are CLU
by Bryantet al. [7], the use of regular expression [1] and queue representations [4] for communication
protocols and Pressburger arithmetic [8] for process networks.

References

[1] P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with unbounded, lossy fifo
channels. In A.J. Hu and M.Y. Vardi, editors,10th International Conference on Computer Aided
Verification, CAV’98, volume 1427 ofLecture Notes in Computer Science, pages 305–318. Springer-
Verlag, 1998.

28

[2] H. Bekič. Definable operations in general algebras, and the theory of automata and flow charts. In
C.B. Jones, editor,Programming Languages and Their Definition - Hans Bekič (1936-1982), volume
177 ofLecture Notes in Computer Science, pages 30–55. Springer-Verlag, 1984.

[3] M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In B. Jonsson and J. Parrow, ed-
itors,Proceedings Concur’94, Uppsala, Sweden, volume 836 ofLecture Notes in Computer Science,
pages 401–416. Springer-Verlag, 1994.

[4] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of qdds. In P. van Hentenryck, editor,
Static Analysis,4th International Symposium, SAS’97, volume 1302 ofLecture Notes in Computer
Science, pages 172–186. Springer-Verlag, 1997.

[5] J.C. Bradfield.Verifying Temporal Properties of Systems. Progress in Theoretical Computer Science.
Birkhäuser, 1992.

[6] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction. In, J.A. Bergstra, A. Ponse
and S.A. Smolka, editors, Handbook of process algebra, pp. 293–330, Elsevier, 2001.

[7] R.E. Bryant, S.K. Lahiri, and S.A. Seshia. Modeling and verifying systems using a logic of counter
arithmetic with lambda expressions and uninterpreted functions. In14th International Conference on
Computer Aided Verification, CAV 2002, volume 2404 ofLecture Notes in Computer Science, pages
78–92. Springer-Verlag, 2002.

[8] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state systems using press-
burger arithmetic. In O. Grumberg, editor,9th International Conference on Computer Aided Verifica-
tion, CAV’97, volume 1254 ofLecture Notes in Computer Science, pages 400–411. Springer-Verlag,
1997.

[9] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D. Jones, editors,
Program Flow Analysis: Theory and Applications, chapter 10, pages 303–342. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, USA, 1981.

[10] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional mu-calculus.
In First IEEE Symposium on Logic in Computer Science, LICS’86, pages 267–278. IEEE Computer
Society Press, 1986.

[11] J.F. Groote and R. Mateescu. Verification of temporal properties of processes in a setting with data.
In A.M. Haeberer, editor,AMAST’98, volume 1548 ofLNCS, pages 74–90. Springer-Verlag, 1999.

[12] J.F. Groote and J.C. van de Pol. Equational Binary Decision Diagrams. In proceedings of LPAR 2000,
Reunion Island, LNAI 1955, pp. 161-178, 2000.

[13] J.F. Groote and A. Ponse. The syntax and semantics ofµCRL. In A. Ponse, C. Verhoef, and S.F.M.
van Vlijmen, editors,Algebra of Communicating Processes ’94, Workshops in Computing Series,
pages 26–62. Springer Verlag, 1995.

[14] J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra, A. Ponse, and
S.A. Smolka, editors,Handbook of Process Algebra, chapter 17, pages 1151–1208. Elsevier (North-
Holland), 2001.

[15] J.F. Groote and T.A.C. Willemse. A checker for modal formulas for processes with data. Technical
Report CSR 02-16, Eindhoven University of Technology, Department of Mathematics and Computer
Science, 2002.

[16] D. Gurov, S. Berezin, and B. Kapron. A modalµ-calculus and a proof system for value-passing
processes. InProceedings Infinity, Workshop on Verification of Infinite State Systems, Pisa, pages
149–163, 1996.

29

[17] D. Kozen. Results on the propositional mu-calculus.Theoretical Computer Science, 27:333–354,
1983.

[18] A. Mader. Modalµ-calculus, model checking and gaußelimination. In E. Brinksma, R.W. Cleaveland,
K.G. Larsen, T. Margaria, and B. Steffen, editors,Tools and Algorithms for Construction and Analysis
of Systems, First International Workshop, TACAS ’95, Aarhus, Denmark, volume 1019 ofLecture
Notes in Computer Science, pages 72–88. Springer-Verlag, 1995.

[19] A. Mader. Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Technical
University of Munich, 1997.

[20] J. Rathke and M. Hennessy. Local model checking for value-passing processes. InIn proceedings of
TACS’97, the International Symposium on Theoretical Aspects of Computer Software, Sendai 1997,
1997.

[21] D.S. Scott and J.W. de Bakker. A theory of programs, 1969.

[22] C. Stirling. Modal and Temporal Properties of Processes. Texts in Computer Science. Springer-
Verlag, 2001.

[23] B. Vergauwen and J. Lewi. Efficient local correctness checking for single and alternating boolean
equation systems. In S. Abiteboul and E. Shamir, editors,Proceedings ICALP’94, volume 820 of
Lecture Notes in Computer Science, pages 302–315. Springer-Verlag, 1994.

[24] T.A.C. Willemse.Semantics and Verification in Process Algebras with Data and Timing. PhD thesis,
Eindhoven University of Technology, February 2003.

30

