ТЕПЛОМАССООБМЕН

УДК 536.46:662.612

С.Г. Орловская, В.В. Калинчак, О.Н. Зуй, М.Н. Чесноков Одесский национальный университет им. И.И. Мечникова, г. Одесса

Тепломассообмен и кинетика химических превращений монодисперсной газовзвеси пористых углеродных частиц с учетом стефановского течения

Исследованы нестационарный тепломассообмен и кинетика химических превращений монодисперсной газовзвеси пористых углеродных частиц с учетом стефановского течения. Приведен анализ влияния внутрипористого реагирования на характеристики высокотемпературной стадии (время горения, максимальная температура частиц), период индукции и критические параметры самопроизвольного потухания частиц в газовзвеси (критические диаметр и плотность углеродной частицы).

Исследование устойчивых режимов высокотемпературного тепломассообмена (ТМО) и кинетики химических превращений частиц углерода и металлов в условиях газовзвеси является актуальной задачей, что связано с необходимостью разработки эффективных методов использования дисперсных систем в различных технологических процессах. Важной задачей есть управление процессом горения диспергированного топлива с помощью изменения режимных параметров с целью создания ресурсосберегающих и экологически чистых технологий переработки топлив. В связи с этим очень важным, с точки зрения охраны окружающей среды, есть исследование критических режимов самопроизвольного потухания, которые определяют полноту преобразования топлив в реакционных камерах, так как не переработанные частицы угля выбрасываются в атмосферу и создают экологически опасную ситуацию.

Углеродная частица прорезана огромным количеством микротрещин и пор, которые, соединяясь между собой, образуют большую внутреннюю поверхность [1 – 4]. Кислород проникает в поры и при определенных температурах вступает в химическую реакцию с углеродом. Поэтому горение углеродных частиц обусловлено химическим реагированием, как на внешней поверхности частицы, так и внутри – на поверхности пор.

Целью работы является исследование влияния внутреннего реагирования на характеристики высокотемпературного тепломассообмена, критические режимы воспламенения и потухания газовзвесей углеродных частиц при различных массовых концентрациях топлив.

В условиях газовзвеси нестационарный тепломассообмен и химическое превращение частиц происходят при изменяющихся с течением времени температуры газа и концентрации кислорода. Химическое взаимодействие углеродной частицы с кислородом сухого воздуха можно представить в виде двух параллельных гетерогенных реакций [1]:

C+O₂=CO₂ (I), 2C+O₂=2CO (II). Процессы, происходящие в пограничном слое вблизи горящей поверхности, наиболее просто учитываются в пределах теории приведенной пленки. Считается, что в пределах условной пограничной пленки осуществляется только молекулярный перенос. В связи с этим основной газовый поток однороден и в областях, близких к приведенной пленке, отсутствуют градиенты температуры и парциальных давлений. Пользуясь понятием приведенной пленки, определим критерий Нуссельта, задающий условия теплообмена между частицей и газом, с учетом стесненности газовзвеси:

Nu =
$$2\left(1 - \frac{d}{d_{cell}}\right)^{-1}$$
, $d_{cell} = \left(\frac{6}{\pi C_N}\right)^{\frac{1}{3}}$, $C_N = \frac{N}{V_g}$,

где d_{cell} - диаметр газовой ячейки, окружающей каждую отдельную частицу, м; d - диаметр частицы, м; V_g - объем газовзвеси, м³; *N* - число частиц, C_N - числинная концентрация частиц в газовзвеси, м⁻³ при d_{cell} >> d, Nu = 2 .

При Bi << 1 уравнение нестационарной теплопроводности для углеродной частицы, на поверхности которой протекают параллельные экзотермические химические реакции (I) и (II) и осуществляется конвективно-молекулярный теплообмен с газовой фазой и излучением со стенками реакционной установки, принимает вид:

$$\frac{c\rho d}{6} \frac{\partial T}{\partial t} = q_{ch} - q_{\lambda,sf} - q_{w}, \ T(t=0) = T_{b},$$
(1)

где с - удельная теплоемкость частицы, Дж/кг К; ρ - плотность частицы, кг/м³; T, T_b – соответственно, текущая и начальная температуры частицы, К; t -время, c; q_{ch} – суммарная плотность химического тепловыделения на поверхности и в порах частицы, Bт/м2; q_{λ.sf} - плотность теплового потока, молекулярноконвективным путем и стефановским течением, Bт/м²; q_w - плотность теплового потока излучением от частицы к стенкам реакционной установки, Bт/м².

Суммарная плотность химического тепловыделения состоит из плотностей тепловыделения за счет химических реакций на внешней $q_{ch,s}$ и внутренней $q_{ch,v}$ поверхностях частицы:

$$q_{ch} = q_{ch,s} + q_{ch,v}.$$
 (2)

- 1

Плотности химического тепловыделения в результате поверхностного и внутреннего реагирования определяются концентрациями кислорода на поверхности и в объеме частицы:

$$q_{ch,s} = (Q_1 k_1 + Q_2 k_2) \rho_g C_{O_2,s}, \quad q_{ch,v} = (Q_1 k_1 + Q_2 k_2) \rho_g \left\langle C_{O_2} \right\rangle_v \frac{F_v d}{6}, \quad (3)$$

$$k_1 = k_{01} exp\left(-\frac{E_1}{RT}\right), \quad k_2 = k_{02} exp\left(-\frac{E_2}{RT}\right),$$

$$\rho_{g} = \rho_{g0} \frac{T_{0}}{T_{*}}, \quad T_{*} = \frac{T + T_{g}}{2},$$

где Q₁, Q₂ – тепловые эффекты химических реакций (I) и (II), рассчитанные на единицу массы кислорода, Дж/кг O₂; k₁, k₂ – константы скоростей химических реакций (I) и (II), м/с; ρ_g - плотность газовой смеси, кг/м3; ρ_{g0} - плотность газовой смеси при T0; C_{O2,8} – относительная массовая концентрация кислорода на поверхности углеродной частицы; $\langle C_{O_2} \rangle_v$ – среднее по объему частицы значение концентрации кислорода; F_v – удельная поверхность пор, м⁻¹; k₀₁, k₀₂ – предэкспоненциальные множители для (I) и (II) реакций, м/с; E₁, E₂ - энергии активации для (I) и (II) реакций, Дж/моль; R = 8,31 – универсальная газовая постоянная, Дж/моль К; T_g - температура газа, К.

В [5, 6] показано, что средняя по объему относительная концентрация кислорода определяется через значение концентрации окислителя на поверхности частицы

$$\left\langle C_{O_2} \right\rangle_v = C_{O_2,s} \frac{k_v}{(k_1 + k_2)} \frac{6}{F_v d}, \quad k_v = \frac{D_v}{r_s} \left(Se_v cth Se_v - 1 \right), \quad Sev = \sqrt{\frac{(k_1 + k_2)d^2 F_v}{4D_v}}, \quad (4)$$

где k_v - эффективная константа внутреннего реагирования, м/с; Se_v – критерий Семенова; D_v – коэффициент внутренней диффузии, м/с².

Подставив (4) в (3) и учитывая (2), получим

$$q_{ch,v} = \rho_{g} C_{O_{2},s} (k_{1}Q_{1} + k_{2}Q_{2}) P_{v} ,$$

$$q_{ch} = (k_{1}Q_{1} + k_{2}Q_{2}) (P_{v} + 1) \rho_{g} C_{O_{2},s}, P_{v} = \frac{k_{v}}{k_{1} + k_{2}},$$
(5)

где Р_v - величина, которая учитывает внутреннее реагирование.

С появлением на поверхности углеродной частицы новых масс газообразных продуктов химических реакций (I) и (II), возникает стефановское течение, которое приводит к появлению дополнительного массового и теплового потоков, направленных от поверхности частицы. В работах [6 - 8] показано, что высокотемпературный тепломассообмен и химическое превращение углеродных частиц в воздухе нужно рассматривать с учетом стефановского течения на их поверхностях.

При химических реакциях на поверхности частицы потоки исходных веществ к поверхности и потоки продуктов реакции от поверхности связаны стехиометрическим соотношением. Инертные газообразные вещества, которые не участвуют в процессе, не должны перемещаться в направлении, нормальном к поверхности, на которой протекает процесс. В этом направлении суммарное давление компонент должно сохраняться неизменным. При этих условиях могут быть найдены направление и скорость стефановского течения.

Концентрация кислорода на поверхности частицы *С*_{*O*₂,*s*} находится из равенства плотности массового потока кислорода суммарной скорости внешнего и внутреннего реагирования по кислороду

$$C_{O_{2},s} = \frac{\beta}{\beta + (k_{1} + k_{2} + U_{sf})(P_{v} + 1)} C_{O_{2},\infty}, \quad U_{sf} = \frac{M_{C}}{M_{O_{2}}} (k_{1} + 2k_{2}) C_{O_{2},\infty}, \quad (6)$$

где U_{sf} - скорость стефановского течения при протекании химических реакций в кинетической области для сплошной частицы, м/с; $C_{O_{2,\infty}}$ - относительная массовая концентрация кислорода в газе, окружающем частицу; M_C , M_{O_2} - молярные массы углерода и кислорода, кг/моль; β - коэффициент массообмена неподвижной частицы, м/с.

Подставив (6) в (5), определим суммарную плотность химического тепловыделения

$$q_{ch} = (Q_1 k_1 + Q_2 k_2) \rho_g C_{O_{2,\infty}} (P_v + 1) \left(\frac{(k_1 + k_2 + U_{sf})(P_v + 1)}{\beta} + 1 \right)^{-1}.$$
 (7)

В [6] получено выражение для плотности теплового потока на поверхности частицы $q_{\lambda,sf}$, которая определяется молекулярно-конвективным механизмом переноса тепла q_{λ} и переноса тепла стефановским потоком q_{sf} :

$$q_{\lambda,sf} = \alpha \left[\left(T - T_g \right) + \frac{\xi_{sf}}{2} \left(T + T_g \right) \right], \quad \alpha = \frac{Nu \lambda_g}{d}, \quad (8)$$

$$\xi_{sf} = \frac{U_{sf} \left(P_v + 1 \right)}{\beta + \left(k_1 + 2k_2 + U_{sf} \right) \left(P_v + 1 \right)}, \quad \lambda_g = \lambda_{g0} \left(\frac{T_*}{T_0} \right)^{0.75},$$

где λ_{g} - коэффициент теплопроводности газа, Вт/м К; λ_{g0} - коэффициент теплопроводности при T₀; ξ_{sf} - безразмерная скорость стефановского течения на поверхности частицы; α - коэффициент теплообмена частицы, Вт/м²К.

Проведем оценку роли теплопередачи излучением от частиц к стенкам реакционной установки так, как это сделано в [9]:

$$\alpha_{w} \sim \sigma T^{3} \frac{\ell}{L},$$

где α_w - эффективный коэффициент теплоотдачи излучением, Вт/м² К; σ = 5.67·10⁻⁸ Вт/м² К⁴ – постоянная Стефана - Больцмана; L – характерный размер сосуда (в данном случае это диаметр газовзвеси L=dg); ℓ – длина свободного пробега излучения зависит от диаметра и массовой концентрации частиц:

$$\ell \sim d\left(\frac{\rho}{\rho_g}\right) (B^{-1}-1), \quad B = \frac{Nm}{Nm+m_g},$$

где В – относительная массовая концентрация топлива; m – масса частицы, кг; m_g – масса газа в объеме газовзвеси, кг.

Если $\ell \leq d_g$, то теплообмен излучением каждой отдельной частицы со стенками необходимо учитывать в следующем виде:

$$q_w = \varepsilon_{ef} \sigma (T^4 - T_w^4), \qquad \varepsilon_{ef} = \varepsilon (1 - \exp(-\ell/d_g)),$$

где q_w – плотность теплового потока излучением на поверхности частицы, Вт/м²; ε_{ef} - эффективный коэффициент интегральной излучательной способности; ε - коэффициент черноты углерода; T_w – температура стенок реакционной установки, K; d_g — диаметр газовзвеси, м.

Проведенные оценки показали, что для исследуемых размеров газовзвеси ($d_g = 0.1 \text{ м}$) и относительных массовых концентрацией углеродного топлива, рассматриваемых нами, $B = 1.4 \cdot 10-3 \div 0.23$, отношение $\frac{\ell}{d_g}$ лежит в пределах 1000÷30. Следовательно, тепловой поток излучением с единицы поверхности

частицы к стенкам реакционной установки определим в виде:

$$q_w = \varepsilon \sigma (T^4 - T_w^4).$$
 (9)

Временные зависимости диаметра и плотности пористой частицы представим в виде [6]:

$$-\frac{1}{2}\frac{\partial(d)}{\partial t} = \frac{M_{\rm C}}{M_{\rm O_2}} (k_1 + 2k_2) C_{\rm O_2,s} \rho_{\rm g}, \qquad d(t=0) = d_{\rm b}, \qquad (10)$$

$$-\frac{1}{6}d\frac{\partial(\rho)}{\partial t} = \frac{M_{C}}{M_{O_{2}}}(k_{1}+2k_{2})C_{O_{2},s}P_{v}\rho_{g}, \qquad \rho(t=0) = \rho_{b}, \qquad (11)$$

где d_b – начальный диаметр частицы, м; ρ_b - начальная плотность частицы, кг/м³.

Дифференциальное уравнение, задающее временную зависимость температуры газа, записывается с учетом теплообмена газа с частицами и окружающей средой:

$$c_{g} \rho_{g} \frac{\partial T_{g}}{\partial t} = \alpha SC_{N} \left[\left(T - T_{g} \right) + \frac{\xi_{sf}}{2} \left(T + T_{g} \right) \right] - \alpha_{g} F_{g} \left(T_{g} - T_{g\infty} \right), \quad T_{g} \left(t = 0 \right) = T_{g\infty}, \quad (12)$$
$$\alpha_{g} = \frac{Nu_{g} \lambda_{g}}{d_{g}}, \quad F_{g} = \frac{S_{g}}{V_{g}},$$

где с_g – удельная теплоемкость газа, Дж/кг К; Т_{g∞}-температура газовой среды, окружающей газовзвесь, К; α_g - коэффициент теплообмена газовзвеси с окружающей средой, Вт/м²·К; Nu_g - критерий Нуссельта, задающий теплообмен газовзвеси с окружающей средой; (для неподвижной газовзвеси Nu_g=2); F_g-удельная поверхность газовзвеси, м⁻¹; S, S_g – поверхность частицы и газовзвеси, м².

Масса кислорода в объеме газовзвеси уменьшается в результате потребления его в химических превращениях на поверхности частиц. Для открытой газовзвеси, при наличии внешнего массообмена между ее поверхностью и окружающей средой, уравнение временной зависимости концентрации кислорода можно записать в виде:

$$-\frac{\partial C_{O_2}}{\partial t} = C_N SC_{O_2,s} (k_1 + k_2 + k_v) - F_g \beta_g (C_{O_2,\infty} - C_{O_2}), \quad C_{O_2} (t = 0) = C_{O_2,\infty}, \quad (13)$$

23

$$\beta_{g} = \frac{Nu_{g}D_{g}}{d_{g}}$$
, $D_{g} = \frac{\lambda_{g}}{c_{g}\rho_{g}}$

где $\beta_{\rm g}$ - коэффициент массообмена газовзвеси с окружающей средой, м/с.

Уравнения (1), (4), (6) – (13) описывают нестационарный высокотемпературный тепломассообмен и кинетику химического превращения в монодисперсной газовзвеси пористых углеродных частиц с учетом внутреннего реагирования и стефановского течения на их поверхности. Решение представленной физико-математической модели позволяет проанализировать влияние внутрипористого реагирования, скорости стефановского течения, температуры газа и стенок реакционной установки на характеристики высокотемпературного тепломассообмена газовзвеси частиц, определить критические параметры газовзвеси, при которых происходит ее воспламенение и самопроизвольное потухание.

Рассмотрим монодисперсную газовзвесь углеродных частиц заданной массовой концентрации. Массовая концентрация зависит от диаметра частиц и их численной концентрации.

$$C_{\rm m} = \frac{1}{6}\pi \cdot d^3 \cdot \rho \cdot C_{\rm N}$$

Проанализируем влияние внутрипористого реагирования на характеристики высокотемпературного ТМО газовзвеси углеродных частиц.

Расчеты проводились для антрацита марки АШ при следующих параметрах: $Q_1 = 12.34375 \times 10^6$, $Q_2 = 6.843750 \times 10^6$ Дж/кг O_2 ; $k_{01} = 1.3 \times 10^5$, $k_{02} = 4.5 \times 10^4$ м/с; $E_1 = 140030$, $E_2 = 154000$ Дж/моль; $F_v = 3 \times 10^7$ м⁻¹, $D_v = 7.5 \times 10^{-8}$ м²/с. Постоянные значения $\rho_{g0} = 0.277$ кг/м³; $\lambda_{g0} = 8.19 \times 10^{-2}$ Вт/(м·К) определялись для $T_0 = 1273$ К.

На рис. 1 изображены временные зависимости температуры, диаметра, производной температуры и плотности пористой и сплошной частиц, а также температура газа и концентрация окислителя на их поверхности для газовзвеси с коэффициентом избытка кислорода в воздухе $\eta = 2.75$, указывающим на то, что кислорода в воздухе достаточно для полного сгорания углерода. Экстремумы на временных зависимостях производной от температуры частиц указывают на изменение режимов ТМО и кинетики химических реакций и определяют моменты воспламенения и потухания частиц. Когда производная dT/dt (рис. 1, в) достигает максимального значения (т. I) происходит воспламенение частиц, а время от момента ее нагрева до момента воспламенения определяется как период индукции, t_{ind}. После воспламенения температура частицы увеличивается, достигает максимального значения, а потом уменьшается вследствие перехода химической реакции в диффузионный режим протекания и увеличения теплового потока. Последний случай является причиной потухания частиц при достижении ними критического диаметра потухания d_E (рис. 1, б). В момент потухания теплопотери от частицы максимально превышают теплоприход вследствие экзотермических химических реакций, поэтому в этот момент наблюдается минимум производной в области отрицательных значений (точка Е – точка потухания, рис. 1, в). Время от момента воспламенения (точка I) до момента потухания (точка E) есть время горения частицы (рис. 1, в).

Из зависимости плотности частицы от времени, мы наблюдаем, что для пористой частицы в процессе горения уменьшается ее плотность, и в момент потухания возникает изгиб (точка Е) вследствие уменьшения скорости химической реакции. Но т.к. в данном случае внутренняя поверхность пор ($F_v = 3 \cdot 10^7 \text{ м-1}$) достаточно большая и температура частиц высокая, то протекание химической реакции в порах приводит к выгоранию углерода и дальнейшему уменьшению плотности. Для меньших значений F_v после потухания плотность уменьшается очень медленно. Таким образом, самопроизвольное потухание пористых частиц происходит вследствие достижения ее диаметром, плотностью, а, следовательно, и массой критических значений.

Из рис. 1, д видно, что температура газа в начальный момент на стадии воспламенения немного уменьшается из-за отдачи энергии холодным частицам газовзвеси, а потом увеличивается в результате нагрева его химически реагирующими частицами.

Сравнивая зависимости для газовзвеси пористых (кривые 1) и сплошных (кривые 2) частиц, мы видим, что период индукции газовзвеси пористых частиц меньше в 1,5 раза периода индукции газовзвеси сплошных частиц (рис. 1, а). Из зависимости $C_{O_{2,5}}(t)$ видно, что концентрация кислорода на поверхности частиц на стадии высокотемпературного ТМО уменьшается сильнее, вследствие выгорания его в порах (рис. 1, е).

Внутреннее реагирование приводит также к уменьшению диаметра частиц при потухании. Газовзвесь пористых частиц с заданной F_v, в отличие от газовзвеси сплошных, после момента потухания, выгорает больше вследствие уменьшения их плотности.

Проанализируем влияние начального диаметра частиц на период индукции и время горения газовзвеси (рис. 2). Зависимость $t_{ind}(d)$ носит немонотонный характер (рис. 2, а). При уменьшении диаметра частиц период индукции уменьшается, достигает минимального значения, а затем увеличивается и при некотором критическом диаметре d_1 (критический диаметр воспламенения) стремится к бесконечности. Увеличение периода индукции слева от точки минимума связано с увеличением теплопотерь молекулярно-конвективным путем при уменьшении диаметра частиц, справа – объясняется ростом теплопотерь излучением и уменьшением коэффициента массообмена при увеличении диаметра частиц.

Сравнение представленных зависимостей для газовзвесей пористых и сплошных частиц показывает, что период индукции с учетом внутреннего реагирования намного меньше. Газовзвеси пористых частиц воспламеняются в 2 раза быстрее, чем соответствующие газовзвеси сплошных частиц.

Рис. 1 Зависимости *T*, *d*, ρ , *dT/dt*, T_g , $C_{O_{2s}}$ от времени, $d_b=50$ мкм, $T_{g\infty}=T_w=1500$ K, $C_N=1,9\cdot107$ м⁻³, $C_{mb}=0,0144$ кг/м₃, $F_v=3\cdot107$ м⁻¹. 1 - газовзвесь пористых частиц, 2 - газовзвесь сплошных частиц.

Это объясняется влиянием дополнительного тепловыделения в порах, что приводит к увеличению суммарной плотности химического тепловыделения и в результате температуры частицы. По этой же причине критический диаметр воспламенения для газовзвесей пористых частиц в 2 раза меньше, чем для сплошных.

Немонотонность наблюдается и на зависимостях времени горения от диаметра частиц (рис. 2, б). С ростом диаметра частиц (массовой концентрации) время горения увеличивается, достигает максимального значения, затем резко падает. Уменьшение времени горения после точки максимума связано с ростом критического диаметра и критической массы, определяющих потухание частиц плотных газовзвесей.

Время горения газовзвесей пористых частиц всех начальных диаметров меньше времени горения газовзвесей сплошных частиц. Данный результат является следствием увеличения суммарной плотности химического тепловыделения за счет химических реакций в порах на всех стадиях ТМО и химического реагирования частиц углерода. По этой же причине критический диаметр и масса пористых частиц при потухании меньше, чем сплошных (табл.).

Рис. 2. Зависимость t_{ind} и t_{bur} от начального диаметра частиц газовзвеси. $T_g = T_w = 1500$ К, $C_N = 1.9 \cdot 10^7$ м-3, $F_v = 3 \cdot 10^7$ м⁻¹,

1 – газовзвесь сплошных частиц, 2 – газовзвесь пористых частиц.

Таблица

Влияние внутрипористого реагирования на T_м, d_E и ρ_E газовзвесей углеродных частиц при различных начальных массовых концентрациях (C_{mb}) для

$I_{g\infty}$ 1000 K, I_{V} 0 10 M .				
d _b ,мкм		50	80	100
${ m C}_{ m mb}$, KG/m 3		0.0019	0.0077	0.0150
Т _м , К	пористые частицы	2459	2482	2451
	сплошные частицы	2425	2458	2441
d _е , мкм	пористые частицы	12.5	9.1	3.7
	сплошные частицы	15.6	11.4	6.5
$ ho_{\rm E}$, кг/м3	пористые частицы	725	525	301

 $T_{g\infty} = 1500 \text{ K}, F_{y} = 3 \cdot 10^{7} \text{ m}^{-1}$

Таким образом, показано, что внутрипористое реагирование приводит к существенному уменьшению периода индукции, времени горения, критического значения диаметра, ниже которого воспламенение газовзвеси не происходит. Это объясняется увеличением суммарной плотности химического тепловыделения за счет дополнительного выделения тепла при протекании химических реакций в порах частиц. Установлено, что дополнительное тепловыделение в результате внутрипористого реагирования не приводит к существенному увеличению температуры горения (Тм) (рис 1 а, табл.). Это объясняется тем, что горение протекает во внешнем диффузионном режиме, в котором стефановское течение тормозит доступ кислорода к поверхности частицы и уменьшает внутреннюю энергию частицы.

Литература

- 1. Основы практической теории горения // Под. ред. Померанцева В.В. Л.: Энергия, 1973. 263 с.
- 2. Головина Е.С. Высокотемпературное горение и газификация углерода. М.: Энергоатомиздат, 1983. 173 с.
- 3. Виленский Т.В., Хзмалян Д.М. Динамика горения пылевидного топлива. М.: Энергия, 1978. 246 с.
- 4. Бабий В.И., Куваев Ю.Ф. Горение углеродной пыли и расчет пылеугольного факела. М.: Энергоатомиздат, 1986. 205 с.
- 5. Калинчак В.В., Орловская С.Г., Гулеватая О.Н. Высокотемпературный теплообмен и самопроизвольное потухание пористой углеродной частицы в воздухе // Физика аэродисперсных систем. 2002. Вып. 39. С. 138 146.
- Калинчак В.В., Орловская С.Г., Гулеватая О.Н. Высокотемпературный тепломассообмен нагреваемой лазерным излучением углеродной частицы с учетом стефановского течения на ее поверхности // Физика аэродисперсных систем -2001.- Вып.38. – С.158-169.
- Калинчак В.В., Орловская С.Г., Калинчак А.И., Дубинский А.В. Тепломассообмен углеродной частицы с воздухом при учете стефановского течения и теплопотерь излучением // Теплофизика высоких температур. – 1996. – Т.34, №1. – С. 83 – 91.
- Калинчак В.В., Зуй О.Н., Орловская С.Г. Влияние температуры и диаметра пористых углеродных частиц на кинетику химических реакций и тепломассообмен с воздухом // Теплофизика высоких температур. – 2005. – Т.43, №5. – С.780 – 788.
- Лисицын В.И., Руманов Э.Н., Хайкин Б.И. О периоде индукции при воспламенении совокупности частиц // Физика горения и взрыва. – 1971. – Т.7, №1. – С. 3 – 9.

Тепломасообмін та кінетика хімічних перетворень монодисперсної газовисі поруватих вуглецевих часток з урахуванням стефанівської течії

АНОТАЦІЯ

Досліджені нестаціонарний тепломасообмін та кінетика хімічних перетворень монодисперсної газозависі поруватих вуглецевих часток з урахуванням стефанівської течії. Приведений аналіз впливу внутрішнього реагування на характеристики високотемпературної стадії (час горіння, максимальна температура частинок), період індукції та критичні параметри самовільного потухання частинок у газозависі (критичний діаметр та густину вуглецевої частинки).

S.G. Orlovskaya, V.V. Kalinchak, O.N. Zuj, M.N. Chesnokov

Heat- and mass- transfer and kinetics of chemical transformations of monodisperse porous carbon particles gas mixture with account Stefan flow.

SUMMARY

Non – stationary heat- and mass- transfer at burning of porous carbon particles gas mixture was investigated. The ignition induction time, critical spontaneous extinction parameters and temperature of particles in carbon toreh were analysed. Stefan flow was taken into consideration.