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Biosynthetic pathways provide an enzymatic route from

inexpensive renewable resources to valuable metabolic

products such as pharmaceuticals and plastics. Designing

these pathways is challenging due to the complexities of

biology. Advances in the design and construction of genetic

variants has enabled billions of cells, each possessing a slightly

different metabolic design, to be rapidly generated. However,

our ability to measure the quality of these designs lags by

several orders of magnitude. Recent research has enabled

cells to report their own success in chemical production

through the use of genetically encoded biosensors. A new

engineering discipline is emerging around the creation and

application of biosensors. Biosensors, implemented in

selections and screens to identify productive cells, are paving

the way for a new era of biotechnological progress.
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Metabolic engineering and the evaluation
bottleneck
The enzymatic processes of cellular metabolism perform

chemical conversions with exquisite specificity and speed.

By engineering metabolism, we can harness these process-

es for human needs, such as the industrial production of

organic chemicals, fuels, and polymers. Indeed, these

microbial metabolic products make up a large and rapidly

growing segment of the ‘bioeconomy’ [1,2] (Figure 1a).

Despite its value, metabolic engineering faces significant

challenges to mature as an engineering discipline. Biologi-

cal ‘parts’, such as genes that encode enzymes, or promoters

that direct their expression, can be highly context-depen-

dent. As a result, many design attempts are required before

an optimal set of parts is identified. This problem is

exacerbated by the slow and expensive chromatographic

methods used to measure cellular chemical production
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during design evaluation [3]. Consequently, design-

build-test cycles are painstaking, with development times

measured in years or decades (Figure 1b).

While traditional engineering disciplines have had great

success in a bottom-up approach to design, intracellular

complexity has hampered bottom-up engineering in bi-

ology. Bottom-up design relies on well-characterized

parts that follow well-defined physical rules. This, in

turn, enables the design of whole systems that behave

as theory and calculation would predict. In contrast,

efforts to design whole organisms using bottom-up

approaches are rudimentary. Regardless of the initial

intention of forward engineering, metabolic engineers

must rely on making many modifications to an organism’s

genome before finding a design that works [4].

As a field, metabolic engineering has begun to shift

toward an engineering paradigm relying on principles

borrowed from Darwinian evolution. Because evolution

acts top-down on biological functions rather than mecha-

nisms, coopting evolutionary principles can yield a more

efficient way to achieve biological design goals. Top-

down design is achieved by defining the requirements

of the complete system, without specifying the parame-

ters of the lower-level components. If the top-level design

goal of metabolite production can be evaluated through a

screen or selection, rather than traditional metabolite

measurement techniques, millions of designs can be

evaluated rapidly. This enables an optimal combination

of genetic parts to be determined without comprehensive

knowledge of each individual part.

Screens and selections are enabled by biosensors that

transduce intracellular metabolite concentration into gene

expression changes. When metabolite production is linked

to the expression of a fluorescent protein, high throughput

methods such as flow cytometry can be used to evaluate

potential designs (Figure 1c). Because each individual

design is evaluated, this biosensor configuration is an

example of screening. Alternatively, if the biosensor

actuates the expression of an antibiotic resistance gene,

then only cells producing high levels of the desired com-

pound survive an antibiotic challenge [5��]. Selections can

also be engineered through auxotrophy, where gene ex-

pression complements a nutrient deficiency that would

otherwise inhibit growth [6]. Because the collection of

designs is placed in an environment where only the best

survive, and individual designs are not inspected, this is an

example of selection. The choice of using a screen or

selection in a specific metabolic engineering project

depends on the specifics of the experiment. Screens
www.sciencedirect.com
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Figure 1
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(a) Genome engineering produces products with an annual US market

of $350B. Industrial biotechnology accounts for more than $100B of

that figure [1,2]. (b) Biotechnological progress proceeds through the

design-build-test cycle. Recent breakthroughs have left test-step

throughput lagging behind. (c) Biosensor-based screens and

selections provide a multiplexed solution to design evaluation and

alleviate the test-step bottleneck.
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may be more suitable for identifying cells producing toxic

compounds, whereas selections may be simpler if the

design space is very large. Regardless of the paradigm

employed, the single-cell resolution and high throughput

evaluation provided by metabolite biosensors allow mil-

lions of variants to be assayed extremely quickly. Biosen-

sors enable multiplexed phenotype evaluation, which

transforms the engineering design-build-test cycle into

an evolutionary mutate-test cycle, and finally allows engi-

neers to test huge numbers of metabolic pathway designs

in a rapid, iterative manner.

Metabolic design and modification strategies
pt?>To understand the need for multiplexed evaluation

of metabolite production within single cells, it is instruc-

tive to inspect the metabolic design and genomic modifi-

cation capabilities that are now available. Advances in

these ‘design’ and ‘build’ steps, which can produce so

many potential designs, require similarly high throughput

tools to evaluate their success in achieving metabolic

design goals.

Pathway design and strain optimization

It is often the case that a host organism does not

naturally produce a desired compound. In these cases

algorithms that rely on a catalog of known enzymes can

be used to identify the shortest or most economical

routes to the target compound [7��]. These heterolo-

gous enzymes can be installed within the working strain

to enable production of the target compound. Such de
novo biosynthetic pathways have enabled biological

production of several valuable compounds. A notable

example was the engineering of Escherichia coli to

produce the non-natural plastic precursor, 1-4-butane-

diol (BDO), requiring addition of five exogenous

enzymes [8]. In this study, over 10,000 pathways were

predicted, a daunting number to evaluate through tra-

ditional methods; only two were chosen for experimen-

tal analysis.

Once a strain can produce a target chemical, further

optimization is necessary to achieve suitable production

outcomes such as metabolite concentration, production

rate and stoichiometric yield. The algorithms and tech-

niques available for pathway prediction and optimization

have been well reviewed [7��,9]. Though a great improve-

ment over the nearly infinite space of random mutagene-

sis, these methods still generate thousands to millions of

high quality guesses about which combinations of meta-

bolic changes will yield the most productive strains.

These metabolic designs must be cloned and experimen-

tally tested to identify productive variants and to validate

design methods for further improvement.

Genome engineering

Techniques to encode predicted metabolic designs by

making mutations to microbial genes and genomes in a
Current Opinion in Biotechnology 2016, 42:84–91
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targeted, multiplexed fashion are becoming mature.

Oligonucleotide-mediated genome editing in E. coli,
called multiplexed automated genome engineering

(MAGE), makes use of the phage lambda beta protein

to integrate oligonucleotides bearing desired changes

in the place of Okazaki fragments during DNA replica-

tion [10–12]. CRISPR-based genome editing techniques

are expanding genomic modification techniques to other

bacteria [13] and yeast [14,15��]. Multiplexed modifica-

tion of genomes allows the millions of biosynthetic

pathway variants generated by in silico metabolic meth-

ods to be constructed in vivo.

Analogously, advances in DNA synthesis, especially

microarray-synthesized oligonucleotide pools [16],

and the assembly of these pools into full-length genes

[17] are enabling the construction of rationally designed

gene libraries and collections of metagenomically

mined orthologues. Competition among companies

supplying raw oligonucleotide pools — Agilent Tech-

nologies, Custom Array and Twist Biosciences — and

those supplying fully synthesized genes — Blue Heron,

DNA 2.0, Integrated DNA Technologies, Genewiz,

Gen9, Genscript, Twist Biosciences and more — is

driving down the price of DNA [18] and transforming

the capability of metabolic engineers to encode in silico
designs into physical DNA.

The role of biosensors in metabolic
engineering
Chemical measurement is a screening bottleneck

The impact of increased throughput in the design and

construction of genetic elements is diminished while

design evaluation remains a bottleneck. The gold stan-

dard of metabolite measurement, using liquid chroma-

tography or mass spectrometry, is limited to around 103

measurements per instrument, per day, with the best

equipment [19]. More commonly, fewer than 102 mea-

surements can be made per instrument, per day. One

hundred thousand carefully constructed pathway var-

iants, or one hundred million computationally predicted

enzyme active sites are wasted if only a small fraction of

these can be assayed for function.

Conspicuous molecules, which are colorful, fluorescent or

aid cell fitness, illustrate the power of screening multi-

plexed mutants: Wang, et al. were able to optimize the

bioproduction of lycopene, a bright red carotenoid, by

generating an estimated 15 billion unique genetic var-

iants and visually screening almost 106 of these to identify

mutants with the highest reported production titer in just

three days [10]. Most molecules of interest lack such

convenient spectroscopic properties and are not essential

for cell growth. For this majority, a mechanism is required

to couple the presence of the inconspicuous molecule to a

conspicuous reporter or fitness advantage.
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Biosensors let cells make chemical measurements

A genetically encoded biosensor propagates molecular

recognition of a target molecule into biological actuation

within a cell. In this way, each cell is able to ‘measure’ the

concentration of an intracellular metabolite, and reports

this concentration via a conspicuous gene product, pro-

viding the engineer with a multiplexed method to detect

cell biosynthetic productivity. Both screens (Figure 2a)

and selections (Figure 2b) are used to enrich for produc-

tive cells. Biosensors can be gauged for effectiveness via
several metrics. An ideal biosensor would operate over a

wide range of concentrations, have a high signal-to-noise

ratio, a low false positive rate and high molecular speci-

ficity [3].

The range of concentrations over which the biosensor

exhibits a change in output is the operational range of the

biosensor. Operational range is determined by measuring

the concentrations over which the biosensor shows a

graded, concentration-dependent change in response

(Figure 3a). The desired operational concentration varies

by application: to detect new enzyme activity, nanomolar

sensitivity might be ideal, but millimolar sensitivity

would be more useful in optimizing a pathway to produce

grams per liter of a target compound. Several strategies for

modulating biosensor operational range have been devel-

oped [5��].

The signal-to-noise of a biosensor, also referred to as the

dynamic range of the system, can be quantified as the

ratio of the highest measured output of the biosensor to

the lowest measured output of the biosensor (Figure 3a).

Dynamic range can be affected by the number of copies

of the biosensor within the cell [20��], or by signal

amplification using an enzymatic reporter [21]. The larger

the dynamic range, the more reliably a true signal can be

discerned from noise.

False positives arise when spurious transcription, transla-

tion or protein activity create an erroneous signal that is

not related to target molecule detection (Figure 3b). The

false positive rate dictates the number of designs that can

be interrogated when searching for rare successes. If the

false positive rate is one in 1000, searching for productive

variants that exist at a rate of one in every 10,000 would

yield a majority of cells that are not actually productive.

Multiple cycles of enrichment may help, but when the

biosensor output is a fitness advantage, such as antibiotic

resistance, cells that erroneously survive may take over

the population. There are a number of genetic modifica-

tions and strategies for counter-selection that drastically

decrease biosensor false positive rates [5��].

The most crucial biosensor characteristic is molecular

specificity. For biosensor-directed metabolic engineering

to be possible, a biosensor must be available for the target

molecule. Fortunately, cells have evolved a wide array of
www.sciencedirect.com
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Figure 2
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(a) Biosensor-based screens often rely on linking the production of a fluorescent protein to the intracellular concentration of a target metabolite.

The depicted scheme transduces product concentration into a fluorescent output through the use of an allosterically regulated transcription factor.

Precursor compounds must not activate the biosensor. (b) A similar scheme is depicted for a biosensor-based selection. In this case, the

regulated gene encodes an efflux pump that provides antibiotic resistance. Cells that produce the target molecule will survive an antibiotic

challenge whereas unproductive cells will perish.
mechanisms to sense and respond to intracellular metab-

olite concentration.

Generation of new biosensors

Previously developed small molecule biosensors are over-

whelmingly co-opted from the natural sensory machinery

of cells (Table 1). Allosterically regulated transcription

factors (aTFs) change their affinity for an operator DNA

sequence through a conformational change enacted by

ligand binding and are useful for directly controlling gene

transcription [21]. Ligand-dependent protein dimeriza-

tion [22] and ligand-conditional protein stability are re-

lated methods that require binding of a small molecule to

stabilize a protein dimer interface or a protein monomer,

respectively. Stabilization methods lead to direct changes

in fluorescent reporter protein function or mediate tran-

scriptional changes via an additional two-hybrid system.
www.sciencedirect.com 
Riboswitches are 50 untranslated regions composed of

RNA that bind small molecule ligands to control the

stability of the mRNA transcript, directly affecting the

translation of the encoded genes [23,24]. Sensors based on

fluorescence resonance energy transfer (FRET) [25] use a

conformational change in a protein domain brought about

by ligand binding to change the proximity of two fluor-

ophores capable of excitation-emission photon transfer

enabling direct ligand detection. The function of newly

discovered members of bacterial sensory gene families

can often be inferred by their proximity to the operons

they regulate. Metagenomic sequence mining will con-

tinue to expand the repertoire of natural sensors that are

available [26].

Where natural sensory domains have not been found, or

have yet to evolve (i.e. for a synthetic target molecule),
Current Opinion in Biotechnology 2016, 42:84–91
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Figure 3
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Defining engineering parameters for biosensors is a prerequisite for biosensor-based metabolic engineering to mature. (a) The relationship

between biosensor output and product concentration is the biosensor transfer function. The range of concentrations over which the biosensor

functions is the operational range. The intensity of the biosensor response is the dynamic range. (b) The false positive rate of a biosensor system

determines the maximum number of designs that can be evaluated in a given experiment. A working selection results in enrichment of highly

productive cells. A failed selection results in enrichment of unproductive cells that erroneously survive through mutation or other means.

Table 1

List of natural and engineered biosensors by molecule sensed. Abbreviated sensor type names refer to the following: allosteric TF,

allosteric transcription factor; two-component, two-component systems; FRET, fluorescence resonance energy transfer; GPCR, G-

protein coupled receptor.

Molecule(s) Molecule type Sensor Sensor type Reference

Natural biosensors

1-Butanol Fatty alcohol, fuel BmoR Allosteric TF [35]

Acrylate Plastic precursor AcuR Allosteric TF [20��]

Adipate Dicarboxylic acid PcaR Allosteric TF [35]

B12 Vitamin BtuB Riboswitch [50]

Benzoate, naphthalene Aromatics NahR Allosteric TF [51]

Erythromycin Macrolide MphR Allosteric TF [52]

Fatty acids Fatty acid FadR Allosteric TF [53]

Fatty acids Fatty acid GPCR [54]

Glucarate Feedstock CdaR Allosteric TF [55]

Lysine Amino acid LysR Allosteric TF [56]

Muconate Dicarboxylic acid BenM Allosteric TF [57]

NADPH Redox SoxR Allosteric TF [58]

Naringenin Flavonoid TtgR Allosteric TF [59]

Octane Alkane AlkS Allosteric TF [60]

Succinate Dicarboxylic acid DcuR Two-component [35]

Tetracyclines Polyketides TetR Allosteric TF [21]

Engineered biosensors

3,4-Dihydroxybenzoate Aromatic PobR Allosteric TF [28]

Biphenyl, nitrotoluenes Aromatics XylR Allosteric TF [61]

Mevalonate Isoprenoid precursor AraC Allosteric TF [31]

Pyruvate Alpha-keto acid De novo FRET [62]

Theophylline Alkaloid De novo Riboswitch [63]

Thiamine-pp Vitamin De novo Riboswitch [64,65]

Trehalose-6-p Sugar De novo FRET [66]

Triacetic acid lactones Feedstock AraC Allosteric TF [67]

Vanillin Aromatic, flavoring QacR Allosteric TF [29]

Zn2+ Ion De novo FRET [68]

Current Opinion in Biotechnology 2016, 42:84–91 www.sciencedirect.com
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sensor engineering via directed evolution or computa-

tional design can expand or alter the molecular specificity

of existing sensors, or even create new ones de novo
(Table 1). Computational approaches for engineering

biosensor specificity rely on a range of strategies that

include structure-based predictions [27], homology

modeling [28] and mechanistic insights [29]. Computa-

tional design of ligand binding interfaces has also shown

success [30��]. Random mutagenesis, or saturation muta-

genesis of key positions, has shown promise in changing

the specificity of allosteric TFs, including AraC [31] and

LuxR [32].

Biosensors for multiplexed phenotype evaluation

Biosensor-based screens have been demonstrated using a

number of different reporters: fluorescence, insoluble

pigments, luminescence and antibiotic resistance. Bio-

sensors have been used to screen for increased microbial

production of the isoprenoid precursor mevalonate [31],

L-lysine [33,34�], 1-butanol [35], and triacetic acid lac-

tones [36�]. Luciferase has been used as a reporter to

screen for production of macrolides [37], or to detect

toluene and related compounds [38]. Other recent exam-

ples of biosensor-based screens identifying optimized

production conditions include increased production of

phenol [39�], arginine and histidine [40��], 3,4 dihydroxy

benzoate [41] and methionine [42].

Biosensor-based selections couple biosensor output to

antibiotic resistance and use cell fitness as a proxy for

target metabolite production. This strategy has been used

to identify improved 1-butanol production plasmids [35]

and for whole-pathway iterated selection resulting in

genomes evolved for higher production of glucarate or

naringenin [5��]. Other biosensor-based selections have

been successful in optimizing production of N-acetyl

glucosamine [43�] and lysine [44]. In theory, selection

enables library sizes limited only by the size of the

culture. In reality, the false positive rate of the selection

imposes practical constraints that are often far lower.

Fortunately, several strategies exist for attaining desired

false-positive rates [5��]. Together, these works demon-

strate that biosensors are a viable strategy for screening to

improve metabolic pathways. Multiplexed engineering in

biology is further explored in a recent perspective [45��].

The future of biosensor-based metabolic
engineering
Biosensors offer an attractive, multiplexed phenotype

screening solution with the potential to revolutionize

metabolic engineering. Thus far, pathway production

gains have been modest, and have not approached the

grams per liter production titers mature pathways re-

quired for commercial scale [8]. As an emerging field,

most studies have been proof of concept in nature,

targeting a small number of genes, and using a single

round of screening with a single biosensor. The strategies
www.sciencedirect.com 
are clever and promising, but not yet ready for industrial

use. Recent work has implemented biosensors beyond

simple screens and selections: biosensors have been used

to tune gene expression of biosynthetic genes in response

to product concentration [46], to modulate mutagenesis

rates in proportion to metabolite production [47], and for

real-time observation of chemical production [48��].

To mature as a field, biosensor-directed metabolic engi-

neering requires further characterization of biosensor

systems, coupled with a push toward the discovery and

creation of additional sensor domains that respond to

industrially important compounds. Full biosynthetic

pathways must be targeted [5��,49], and multiple sensors

may be required, with graduated operational concentra-

tion ranges to avoid saturating the biosensor at high

molecule titers. To enable very large libraries, of 109

members and above, new interventions to improve ro-

bustness to false positives will be required, which may

benefit from standardized screening chassis [20��]. Final-

ly, proof-of-concepts developed in academic labs must be

transferred to industrial partners for final optimization.

Following these recommendations, metabolic engineer-

ing will benefit from a powerful application of evolution-

ary strategies that are ideal to solve this difficult class of

biological problems.
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