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Abstract: Medical health systems have been concentrating on artificial intelligence techniques for
speedy diagnosis. However, the recording of health data in a standard form still requires attention
so that machine learning can be more accurate and reliable by considering multiple parameters.
The aim of this study is to develop a general framework for recording diagnostic data in an
international standard format to facilitate auto-prediction of eye diseases. Efforts were made to
ensure error-free data entry by developing a user-friendly interface. Furthermore, different machine
learning algorithms were used to analyze patient data based on multiple parameters, including age,
illness history, and clinical observations. This data was formatted according to structured hierarchies
designed by medical experts, whereas diagnosis was made as per the ICD-10 coding developed by
the American Academy of Ophthalmology. Furthermore, the system is designed to evolve through
self-learning by adding new classifications for both diagnosis and symptoms. The classification
results from tree-based methods demonstrated that the proposed framework performs satisfactorily
given a sufficient amount of data. The random forest and decision tree algorithms predicted more
accurately as compared to neural networks and the naïve Bayes algorithm owing to structured data
arrangement.
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1. Introduction

Artificial intelligence (AI) plays an important role in assisting medical experts with early disease
diagnosis. There are a large number of AI-based disease detection and classification systems combining
medical test results and domain knowledge. However, correlating the actual symptoms and clinical
observations with the corresponding diseases is missing in most of these systems. This is perhaps
owing to the variety of observation recording methods by medical experts. For example, some use
symbols for diagnosis, whereas others give textual description; hence, there is no standard method.
Therefore, this data should be manually converted into a standard format so that machines can use it
for analysis. This limits the size of data used in any analytical study, which is the main cause of current
gaps in human-knowledge-based diagnosis and machine-intelligence-based predictions.

Commonly, ophthalmic diseases are not life threatening; however, progress over time can have
significant impact on the patient’s life. Physical examinations are performed using ophthalmological
instruments, and a comprehensive interpretation is used for diagnosis. Therefore, any machine-based
solution should concurrently consider observations, symptoms, and standardized test results for
predictions. Furthermore, the use of a standard description for clinical data and medical test results
can be the key to success. The first step toward this is the use of health records in electronic form.
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Maintaining patient information as digital data has several potential benefits including rapid retrieval
along with timely data transmission among multiple medical experts [1]. Moreover, the use of standard
taxonomies for patient data recording can further improve its quality, accuracy, and consistency.

This study focuses on developing a general framework for the standardized recording of patient
symptoms and clinical observations, thus assisting medical experts in keeping up with the exponential
development of medical knowledge from clinical trials and logical advancements in the field [1].
Similarly, medical cases solved in the past may greatly contribute to the training of machine-learning
agents for accurate diagnosis [2]. This is also important because machine-learning algorithms
can analyze a large number of parameters required for diagnosis more effectively than humans.
Accordingly, intelligent agents, using a carefully designed multi-agent-based classification model, can
outperform humans by efficiently analyzing all parameters along with previous information [3].

The rest of the paper is organized as follows. In Section 2, existing machine-based solutions for
medical diagnosis are briefly described. In Section 3, the proposed methods for data modeling and
pre-processing are explained, as well as the framework designed for analyzing and predicting eye
diseases. In Section 4, the results are described, and the paper is concluded in Section 5.

2. Related Work

A large amount of research has been conducted on developing medical expert systems to automate
diagnostic processes [4–8]. These expert systems can produce accurate responses based on pre-defined
rules; however, the use of static rules results in restricted learning, and therefore failure to respond
to new situations. With the advancement in machine learning algorithms, the focus shifted toward
machine learning through training data. Hence, almost all medical fields are now experiencing rapid
growth in machine-based research activities, in particular ophthalmology. A brief review of related
work will now be provided.

In [7,9–12], textual and numeric data was used for certain eye problems, namely, dry eye diseases,
refractive error, esotropic eyes, and progression in glaucomatous visual field defects. Moreover,
probabilistic classifiers such as naïve Bayes and support vector machines were used. In 2011, research
on cataract disease was conducted by the Electronic Medical Records and Genomics Network. ICD-9
(International Classification of Diseases) [13] codes and current procedural terminology codes were
used for cataract diagnosis in patients without surgery. Furthermore, natural language processing
(NLP) and intelligent character recognition (ICR) were the machine-learning techniques used to identify
cataract cases and their type. Specifically, written documents were scanned, and after ICR and NLP
were performed, they were used in the diagnosis process [14,15]. In 2014, a study was conducted to
analyze clinical data for finding the relationship between signs and diagnosis of dry eyes disease [16].
The dataset was obtained from 344 patients, and the analysis was based on independent component
analysis (ICA) and Pearson correlations. The highest correlations were found between conjunctiva and
corneal staining. Furthermore, each component of the ICA mixing matrix exhibited minimal residual
information. Consequently, no consistent relationship was found among the most frequently used
signs and symptoms.

Moreover, a number of studies focused on analyzing image data for direct conversion into
diagnostic data. The most common disease leading to blindness is glaucoma [17], for which
image-based detection was relatively more efficient than for other diseases. In [18–21], algorithms were
used for the detection of abnormal retina along with the classification of a normal retina. Furthermore,
multiple diagnostic images of the retina were used along with patient clinical records. In [22], a
survey of various computer-based ocular disease identification methods was presented. Multilayer
perceptron, support vector machines, and linear and quadratic discriminant classifiers were found to
be more successful in identifying different eye problems.

The most common but dangerous eye disease is currently glaucoma. Optical coherence
tomography (OTC) images are used for its diagnosis, and therefore they should be classified for
computer-aided glaucoma detection [17,23–28]. Similarly, in [29], imaging data was used for identifying
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intraocular lenses and refractive surgery. EyeView was used to optimize vision quality. Furthermore,
computing solutions have been presented for identifying specific eye diseases such as age-related
macular degradation [30], for the auto-detection of a diabetic retina [31,32], and for automatic
localization of the optic disc using image classification with support vector machines [33].

Moreover, to predict cataract, visual quality was determined using contrast sensitivity [29].
Fageeri et al. [12] diagnosed refractive error based on the spherical, cylindrical, and axis values of
wearing glasses. The model was based on decision tree, naïve Bayes, and support vector machine
classification algorithms, and used four classes of patients suffering from hyperopia astigmatism,
myopia (nearsightedness), myopia astigmatism, and hyperopia (farsightedness). The analysis was
conducted using the Waikato environment for knowledge analysis, and the proposed model was used
for disease classification and for determining the relationship between symptoms and diagnosis with
accuracy up to 98.75%. In [34], a gene network was designed to define disease expression involving
the determinants corresponding to nodes.

3. Proposed Methodology

The literature review demonstrated that almost all existing studies are disease based, and thus the
algorithms developed or used were tested for specific eye diseases , e.g., glaucoma disease prediction
in [9] and refractive error classification in [35]. Accordingly, no general solution is available. This is
primarily due to the lack of standardization in recording medical information, a major difficulty that has
hindered general automated solutions. A critical challenge in applying machine-learning methods to
data obtained by multiple experts is inconsistencies owing to differences in expression style/vocabulary
for disease description and diagnosis. Hence, a standardized framework is required to facilitate direct
data entry by experts as efficiently as possible, which in turn may facilitate classification, as shown in
the results section.

3.1. Data Modeling

To resolve the ambiguity caused by variations in medical language for representing the same
concepts, controlled terminologies have been established, ensuring effective communication across
health care entities and information systems. These terminologies map synonyms of medical terms to
a common concept so that similar objects can be grouped together, thereby providing the infrastructure
to support powerful features such as retrospective data analysis, prospective clinical trials, and
evidence-based practice [1]. Various standards in medical terminologies are available, such as the 10th

version of International Classification of Diseases (ICD-10), Systematized Nomenclature of Medicine,
Clinical Terms, and Medical Entities Dictionary [1].

In ophthalmology, multiple factors are considered, such as illness history (including general health
information), anterior eye examination (through a slit lamp), and posterior segment examination
(through a specialized lens). Therefore, data from slit lamp examination and posterior segment
examination are combined for diagnosis, as shown in Figure 1. ICD-10 [13] is also based on structured
hierarchies for eye-related disease diagnosis. Therefore, these examinations were used for AI-based
learning and were arranged in a hierarchical structure similar to the physician decision tree shown in
Figure 2. After rigorous analysis and discussion with experts, the most suitable hierarchical structures
of ICD-10 coding for eye diseases were adopted. Diagnosis consisted of multiple levels, according to
the existing eye problem. There were six levels at maximum involved in the definition of any symptom.
However, for flexibility, less than six hierarchical levels were required for cases where the disease is at a
premature stage. Therefore, in the proposed framework, the definition of a symptom varies according
to the situation. An example of a symptom identified from slit examination can be seen below.

Cornea → Endothelium → KPs → Fine → Site → Generalized
Moreover, recording data in this form is impossible during the examination, as the doctor cannot

ignore the patient while writing down all required elements of a symptom. Therefore, a highly efficient
method is required to ensure accurate data entry, and hence an interface for web applications was

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 May 2019                   

Peer-reviewed version available at Appl. Sci. 2019, 9, 2789; doi:10.3390/app9142789

https://doi.org/10.3390/app9142789


4 of 18

Figure 1. Eye disease diagnosis mechanism

Figure 2. ICD-10 physician decision tree for diabetic retinopathy [36]
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Figure 3. Data entry of symptoms through selection: A symptom is added for the cornea of the right
eye shown in the sign pane on the right side of the screen; if a symptom cannot be found, “Others" is
the option where new symptoms can be added

Figure 4. Data entry of diagnosis through search engine: The initial letters of the diagnosis are entered,
and the system automatically suggests the related diagnosis, thus reducing the effort in typing or
selecting multiple hierarchies.
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developed so that the doctor or any other medical expert should click only three times (on average) to
select the entire hierarchy of a particular symptom. Figure 3 shows the definition of a symptom using
a graphical user interface. The mouse is pointed to the plus symbol of “Cornea” for either the right
or the left eye, and the next level of available options appears as a dropdown menu. When the user
further hovers the mouse over “Endothelium” the next level of available options appears. Continuing
further, multiple options appear for the final definition of the symptom. Finally, the last option is
selected, and all the above levels are concatenated. In the example, when “Generalized” is selected,
the complete hierarchy will be displayed.

Furthermore, a graphical user interface was also developed for providing a diagnosis in standard
format. This is achieved by introducing a search option in the diagnosis dropdown menu because it
is difficult to scroll through all available options to reach the required diagnosis. After entering the
keywords, the user clicks on the desired diagnosis in a standard format, as shown in Figure 4. This
approach has the advantage of obtaining the same data format from all users.

Thereby, all the symptoms as well as the diagnosis are stored, providing the foundation for
machine learning. Initially, the predicted results are compared with the actual diagnosis by medical
experts. As shown in the results section, the predicted results may be as accurate as the expert opinion
by increasing the amount of data.

Table 1. Example of data recording in proposed system for a patient. Combined code for symptoms
facilitates the fast matching and efficient diagnosis. Blank cells indicate absence of corresponding
symptom in particular patient and therefore, represented by zeros in the code.

Categroy Selected Symptoms Codes Sorted codes per category
Lids Lids ; Swelling ; Site ; Upper 11111 111110-000000-000000-000000-

Lid ; Involving Medial Part 000000
Conjunctiva Conjunctiva ; Discharge; 241 214000-000000-000000-000000-

Purulent 000000
Tear Film Tear Film ; Special tests ;

Marginal tear meniscus ;
3311 320000-331100-000000-000000-

<1 mm Tear file ; Unhealthy 32 000000
Cornea 000000-000000-000000-000000-

000000
Anterior 000000-000000-000000-000000-
Chamber 000000
Iris 000000-000000-000000-000000-

000000
Lens Lens ; Phakic ; Opacity; 71212 712120-000000-000000-000000-

Sub-capsular ; Posterior 000000
Anterior
Viterous

000000-000000-000000-000000-

000000

Combined
Code

111110-000000-000000-000000-000000-214000-000000-000000-000000-
000000-320000-331100-000000-000000-000000-000000-000000-000000-
000000-000000-000000-000000-000000-000000-000000-000000-000000-
000000-000000-000000-712120-000000-000000-000000-000000-000000-
000000-000000-000000-00000
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Table 2. Dataset description

Dataset Number of
Attributes

Number of
Instances

Ophthalmology data:
Symptoms and Diagnosis 10 3025

Data recording does not end there. For machine-learning algorithms, searching is the most
important step, and the characters in a symptom are difficult to match efficiently and accurately.
Furthermore, the selection order results in false matches. If, for example, lid swelling is selected as
the first symptom, followed by three other symptoms, but some other expert selects the symptoms
in different order, the machine considers that two separate eye problems are defined. Therefore,
symptoms are stored as ordered numeric codes. Table 1 describes different symptoms and their
corresponding codes recorded for a patient. Mathematically, the numbers 452111 and 452 are
considered far apart, but in the proposed system, they belong to the same hierarchy and should
thus be grouped together. Therefore, to unify coding, zeros are appended to the symptom code so
that all codes contain six digits, i.e., 452111 and 452000 for the aforementioned case. The absence of a
symptom is represented by six zeros.

3.2. Data Collection and Description

The dataset used in the present study was composed of real-time data on which data mining
techniques and classification algorithms were applied. Professional doctors directly recorded the data
for research and development, and confidentiality was ensured. Table 2 shows the size and description
of the dataset. There are 10 attributes, namely, age, gender, complaint, VA (left eye), VA (right eye),
pinhole (left eye), pin hole (right eye), slit lamp exam, posterior segment exam, and diagnosis. Among
these, only age is numeric, whereas all others are nominal, and diagnosis is a class attribute with
nominal values.

3.3. Data Pre-processing

In order that machine learning be performed in accordance with medical rules, pre-processing is
required that involves data cleaning and normalization, noisy data filtering, and handling of missing
values [35]. It is important to mention that data pre-processing highly affects the performance of
machine-learning algorithms, and if not performed properly, it may produce biased output [37]. The
Weka knowledge analysis tool provides various pre-processing and transformation algorithms.

Feature selection and extraction are aimed at a more robust machine-learning process by
identifying and removing irrelevant attributes from the dataset to reduce dimensionality and improve
performance. However, ignoring a small symptom may have serious consequences. Fortunately,
following standard taxonomies eliminates unnecessary data, and therefore no feature is ignored in
analysis and diagnosis.

Missing values may adversely affect machine learning. In this study, two techniques were used
for handling missing values, namely, deletion of records with more than 60% missing values, and a
two-step diagnostic method using segmentation, which will be explained later.

3.4. Methods

Weka [38] was used for model implementation by data classification algorithms. The Weka
workbench is a combination of various machine-learning algorithms and data pre-processing filters,
whereby existing complex learning algorithms can be applied to new datasets. As in most related
studies, a 10-fold cross-validation method was used in the classification algorithms. Different
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classification algorithms were used, namely, decision tree, random forest, naïve Bayes, and neural
networks. The neural network and naïve Bayes algorithms have been reported to be better medical
classifiers; however, in this study, the data was stored as a hierarchical structure, and therefore
tree-based methods were expected to exhibit better performance.

3.5. Model Description

The proposed model is based on real-time patient data from electronic health records. It uses
multiple examinations and analyzes patient records from various perspectives, as medical experts do.

Figure 5 shows the entire process in detail. Initially, the visual function test is used to start the
diagnostic process. If the visual acuity of a patient is observed to be perfect (i.e., measured to be
20/20 or 6/6), then there is no vision problem; however, the patient may have some allergic eye
disorders. Thus, the first decision will be made on the basis of visual acuity. If it is not perfect, then
the pinhole value is considered. If pinhole vision improves to 20/20 or 6/6 according to selected
scales, then the patient will be prescribed glasses, and the diagnosis, according to ICD-10, will
be pediatric/strabismus → refractive error. More specifically, the diagnosis will be myopia for
nearsightedness and hypermetropia for longsightedness. If pinhole vision is not improved to perfect
values, then slit lamp posterior segment examination will be performed to reach a diagnosis. A Java
code on the MyEclipse tool was developed that decides on the basis of visual acuity and pinhole values
whether the patient requires further investigation or not.

If the problem is not refractive error, then the slit lamp posterior segment examination will
facilitate the prediction of the predefined diagnosis class. In this step, missing values are removed from
the dataset. If the diagnosis is refractive error, then the anterior and posterior segment examination
attributes will remain empty. Therefore, by removing those instances, complete data is passed to the
classification module. Thus, after the first step, the data is divided into two parts: one for patients with
refractive error, and the other for all other diseases.

Another goal is to add general health data (illness history) as a contributing attribute for automatic
disease classification. Accordingly, keyword selection was performed based on frequently presented
complaints, such as decreased vision and watering eyes. It was observed that patients do not generally
know or understand medical terms; therefore, they always use ordinary words to describe their
problem, such as itching, watering, or frequent blinking. Moreover, experts should be aware of
other medical conditions, such as diabetes, hypertension, migraine, or uveitis. Therefore, it is more
convenient to compile a keyword list of history/health data and store it as the complaint attribute
value.

Data from the slit lamp exam is in the form of structured hierarchies written as textual values. The
record of a single patient may contain one or multiple symptoms originating in the same or different
parts of the eye. To handle this, a multi-label data mechanism is used for arranging multiple symptoms.
In addition to symptoms from the slit lamp examination, there is another vital diagnostic test based on
symptoms from the posterior eye segment that identifies disorders in macula, retina, or the optic nerve.
The machine-learning algorithm will then use the behavior learned from previous records available in
the database and compare the current combination of slit lamp/external exam symptoms and posterior
segment symptoms with those in the database to give an accurate diagnosis on the basis of all input
attributes. Diagnosis is also in the form standard taxonomies defined by ICD-10 and maintained by
the World Health Organization. Thereby, machine learning algorithms are used for decision making at
various stages, and they use their learning capabilities for the prognosis of eye diseases. Most of the
data considered in this study was either in numeric or nominal/textual form.

Furthermore, classification algorithms were applied to classify given instances into one of the
classes taken from ICD-10. The performance of each classifier was analyzed according to the number
of correctly classified instances [35] and is discussed in the next section.
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Figure 5. Framework for the prediction of eye diseases: Data is collected, and its analysis is used
for disease prediction by comparison with expert diagnosis for correct classification. Four different
algorithms were used to authenticate the predicted results
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4. Results

A step-wise decision system generates the classification results presented in Tables 3 and 4. The
performance of the classification algorithms was evaluated using several statistical measures, namely,
kappa statistics, root mean squared error (RMSE), accuracy, precision, recall, and the area under the
curve (AUC) of receiver operating characteristics (ROC) graphs.

Table 3. Camparision of forur different classifires using statistical measures, the results are average of
74 classes (diseases) classification

Test Decision Naïve Random Neural
Stattistics Tree Bayes Forest Network

Correctly Classified Instances 85.81% 81.53% 86.63% 85.98%
Incorrectly Classified Instances 14.18% 18.47% 13.36% 14.02%
Kappa Statistics 0.84 0.79 0.85 0.81
Mean Absolute Error 0.029 0.038 0.0233 0.0779
Root Mean Squared Error 0.1204 0.1481 0.106 0.1857
Relative Absolute Error 19.69% 25.80% 15.81% 36.81%
Root Relative Squared Error 44.38% 54.55% 39.05% 57.25%

More than one measure are usually considered when classifiers are compared because one
measure, e.g., accuracy, considers only correct predictions, whereas others, e.g., RMSE, consider
only false predictions. However, some measures consider both correct and false predictions, e.g.,
precision and recall, but with different proportion. Therefore, most of the commonly used performance
measures were considered. As expected, tree-based methods performed better than probability-based
methods (Naïve Byes). The kappa statistics demonstrated that both the decision tree and random
forest algorithms performed better than the neural network. Similarly, according to the values of
precision, recall, and the F-measure, the random forest algorithm performed well. Conventionally,
precision, recall, and ROC are considered graphical measures, where curves are drawn to display the
performance of an algorithm. For ROC curves, the true positive rate (TPR) is drawn against the false
positive rate (FPR). However, to demonstrate the performance of the entire framework for predicting
different classes (diseases), these performance measures for each class are shown in Figures 6 and 8.
Precision is a measure of relevance, whereas recall is the fraction of retrieved relevant instances over
the total number of relevant instances (obtained usually in the range 0—1); therefore, high values for
both measures indicate better performance. Similarly, FPR is the fraction of wrong true predictions,

Table 4. Comparison of Classification Algorithms. The measures are average result produced for
classifying 74 classes (diseases)

Performance
Measures Decision Tree Naïve Bayes Random

Forest
Neural

Network

Accuracy(%) 85.81 81.53 86.63 85.98
Precision 0.874 0.816 0.889 0.857
Recall 0.858 0.815 0.866 0.86
F-Measure 0.85 0.809 0.861 0.856
Computation
time(seconds) 0.11 0.05 6.3 5.7
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Table 5. 52 different diagnosis (classes for classification) for which the data was recorded by medical
experts. The list has been sorted in alphabetic order for understandability.

S.No Diagnosis S.No Diagnosis

1 Conjunctiva → Acute atopic conjunctivitis 27 Glaucoma → Primary open-angle glaucoma
2 Conjunctiva → Adenoviral conjunctivitis 28 Glaucoma → Steroid responder
3 Conjunctiva → Chronic allegic conjunctivitis, unspecified 29 Glaucoma → Unspecified primary angle-closure glaucoma
4 Conjunctiva → Conjunctival hemorrhage 30 Lens → Phakic → Opacity → Cortical
5 Conjunctiva → Pingueculum 31 Lens → Phakic → Opacity → Cortical → Incipient
6 Conjunctiva → Viral conjunctivitis, unspecified 32 Lens → Phakic → Opacity → Cortical → Incipient → Vascular

7
Cornea → Corneal Edema/Opacity/ Degeneration →
Bullous keratopathy 33 Lens → Phakic → Opacity → Nuclear → Grade 2

8
Cornea → Corneal Edema/Opacity/Degeneration →
Keratoconus, stable 34 Lens → Phakic → Opacity → Sub-capsular → Anterior

9 Cornea → Keratitis → Exposure keratoconjunctivitis 35 Lens → Phakic → Opacity → Sub-capsular → Posterior
10 General Diagnosis → Bacterial conjunctivitis 36 Lens → Pseudoexfoliation
11 General Diagnosis → Blepharitis 37 Lens → Pseudo-phakic
12 General Diagnosis → Corneal Tear 38 Lens → Pseudo-phakic → Posterior Capsule → Opaque
13 General Diagnosis → Epithelial abrasion 39 Pediatric/Strabismus → Amblyopia → Strabismic
14 General Diagnosis → Incomplete PVD 40 Pediatric/Strabismus → Exotropia → Unspecified
15 General Diagnosis → Inferior oblique overaction-2 41 Pediatric/Strabismus → Eyelids → Chalazion
16 General Diagnosis → Leber Congenital Amourosis 42 Pediatric/Strabismus → Refractive
17 General Diagnosis → Lid fat deposits, upper and lower 43 Pediatric/Strabismus → Refractive → Astigmatism, irregular
18 General Diagnosis → Neovascular glaucoma 44 Pediatric/Strabismus → Refractive → Myopia
19 General Diagnosis → Normal eye exam 45 Pediatric/Strabismus → Strabismus → Other mechanical

20 General Diagnosis → Orthopic assessment 46
Retina → Degeneration of Macula and Posterior Pole → Central serous
chorioretinopathy

21 General Diagnosis → Retinoblastoma 47 Retina → Degeneration of Vitreous body → Vitreous Hemorrhage
22 General Diagnosis → Sjorgen syndrome 48 Retina → Diabetes mellitus Type 1 → Without mention of complication

23 General Diagnosis → Stye 49
Retina → Hereditary Retinal Dystrophies → Pigmentary (eg. retinitis
pigmentosa)

24 General Diagnosis → Uveitis 50 Retina → Other retinal disorders → Hypertensive retinopathy

25 Glaucoma → Acute angle-closure glaucoma attack 51
Retina → Other retinal disorders → Other non-diabetic proliferative
retinopathy

26
Glaucoma → Open angle with borderline findings, high
risk 52 Retina → Retinal Detachments

and TPR or sensitivity is the fraction of correct classifications (for a classifier). TPR and FPR also range
between 0 and 1, and high TPR and low FPR reflect good performance. Figure 8 shows that the random
forest algorithm yields high TPR for more classes (diseases) compared to the decision tree and naïve
Bayes algorithms. Although the FPR of the naïve Bayes algorithm has the lowest value, its TPR is also
low for a number of classes.

4.1. Hierarchical Prediction Accuracy

In Section 3.1, the data modeling was described, in which the diagnosis was also stored in a
hierarchical structure, and it was suggested that the classification could be performed at each level.
For example, the diagnosis for Keratoconjunctivitis, generated by the system, is as follows:

Cornea → Keratitis → Neurotrophic keratoconjunctivitis
Here “Cornea" represents a first-level diagnosis, “Cornea → Keratitis" represent second-level

diagnoses, whereas complete diagnosis will be considered “Cornea → Keratitis → Neurotrophic
keratoconjunctivitis". To relate data frequency and to verify system reliability by prediction level,
accuracies were calculated. This was important because in case of a rare disease, the system should be
able to give a reliable diagnosis.

For example, if machine-learning algorithms are unable to give a complete diagnosis (e.g., Cornea
→ Keratitis → Neurotrophic keratoconjunctivitis), a second-level diagnosis, namely, Cornea → Keratitis,
should be given, or at least a first-level diagnosis, i.e., Cornea. The advantage of this scheme is that if
the system is unable to give a complete diagnosis, then it should at least specify a direction or the part
of the eye in which the issue may exist, that is, partial but accurate diagnosis.

Performance measures for all classifiers are shown in Table 6. The random forest algorithm
outperformed all others, followed by the decision tree and the neural network algorithms. However,
accuracy dropped for second-level and complete diagnosis. This is obviously owing to the relatively
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Figure 6. Precision analysis of classification algorithms for 52 classes (diseases) shown in Table 5.
Precision and recall values decrease from the outermost (value 1) to the innermost circle (value 0). The
curves lying on the outermost circle represent better classification results, such as those by the decision
tree and random forest algorithms.
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Figure 7. Accuracy of classification algorithms

Table 6. Accuracy (%) for classification output at different levels of diagnosis

Diagnosis
Level Decision Tree Naïve Bayes Random

Forest
Neural
Network

Level 1 90.79 87.21 91.57 89.12
Level 2 87.14 84.76 89.82 87.46
Complete
Diagnosis 85.81 81.53 86.63 85.98

low frequency of the data available for complete diagnosis. This demonstrates that the proposed
framework is quite effective with data of sufficient frequency.

4.2. Discussion

The proposed framework was aimed at collecting structured diagnostic data for the prediction
of eye diseases by considering all possible symptoms of the anterior and posterior eye segments.
Therefore, it was not evaluated for a specific disease; rather, all eye diseases mentioned in ICD-10 were
predicted. Most of the current frameworks are designed for a specific eye disease, e.g., refractive error,
retinal detachment, or diabetic retinopathy. By contrast, the purpose of this model is to develop a
framework that can handle any type of data and predict all types of eye diseases based on standard
symptom taxonomies. However, comparing it with the data mining framework for the prediction
of fatty liver disease in [39], where a number of classifiers were used, tree-based methods yielded
the highest accuracy, as shown in Table 7. Furthermore, as in [34], the proposed method facilitated
the identification of the correlations between attributes related to specific diseases by combining
the observations related to different eye segments into one symptom. Recently published work
for heart failure identification from unstructured data [40] exhibits good accuracy, although NLP
techniques were used to first convert unstructured data into structured data that was subsequently
fed into classification algorithms. The accuracy they achieved using the decision tree and naïve Bayes
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Figure 8. TPR and FPR of classification algorithms for 52 classes (diseases) shown in Table 5. TPR
is drawn as horizontal bars, whereas FPR is drawn on a circular scale. Although the naïve Bayes
algorithm exhibits the smallest FPR, its TPR is also low for a number of classes. However, the decision
tree and random forest algorithms exhibit better overall performance, with maximum horizontal bars
approaching the maximum value of 1.
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Table 7. Performance comparison

Reference Purpose Performance

[7] Expert system for eye diseases using if-else
rules

positive response from
patients

[10] Pattern recognition in data sensitivity 89–94% &
specificity 37–42%

[39] classification of liver disease using
unstructured data accuracy 93.3 %

[40] Heart failure identification using
unstructured data accuracy 92%

Proposed
method

eye disease classification using structured
data accuracy 93.5 %

algorithms is significantly higher than that by the random forest and neural network algorithms, but
the results are based on only 14 patients’ data. Therefore, reliability is questionable. In the present
study, a substantially larger number of classes, hence more data, were considered, as compared to
other studies. The comparison of the proposed method with existing solutions (shown in Table 7)
demonstrated that this framework is capable of predicting eye diseases as accurately as analogous
specialized frameworks presented for other medical diagnoses.

The results demonstrated that classification by tree algorithms had better prediction accuracy.
This is because data was arranged in hierarchical structure, and therefore the decision tree and random
forest algorithms made better predictions using step-by-step analysis of pruned trees. Moreover, tree
algorithms had lower error rate than other algorithms. The neural network algorithm also performed
well owing to the multiple hidden layers involved. The results by the naïve Bayes classifier were not
as good as by the others.

5. Conclusion

A general framework for improved classification of eye diseases was presented. It is based
on symptoms recorded in the form of standard taxonomies directly by the medical experts. It can
incorporate anterior and posterior segment signs along with general health data to correlate a disease
with symptoms. Furthermore, a two-step diagnostic process was designed in which patient data
related to refractive error was filtered out before analysis by machine-learning algorithms. Different
classification algorithms were used, namely, decision tree, random forest, naïve Bayes, and artificial
neural network algorithms. Tree-based methods performed better than the artificial neural network.
Furthermore, efficiency and accuracy were demonstrated to be positively correlated with the amount of
available data. According to ICD-10 (used for diagnostic data), the highest accuracy was achieved for
first-level diagnosis owing to a sufficiently large amount of data followed by second- and third-level
diagnosis. Although the random forest algorithm appeared to be better than the artificial neural
network, its execution time was slightly longer than that of the decision tree algorithm. However, as
computer technology is advancing, this is expected to be resolved in the near future. Finally, the user
interface developed for data recording is unique and has been greatly admired for its ease of use.

In the future, image-based test results will be directly translated into the symptom hierarchy for
better disease prediction. Furthermore, nearest neighbor classification methods can also be used by
converting codes into numerical data.
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