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Abstract
When consumers trade financial products, they typically

use well-identified service providers that operate under gov-
ernment regulation. In theory, decentralized platforms like
Ethereum can offer trading services ‘on-chain’ without an
obvious entry point for regulators. Fortunately for regulators,
most trading volume in blockchain-based assets is still on cen-
tralized service providers for performance reasons. However
this leaves the following research questions we address in
this paper: (i) is secure trading (i.e., resistant to front-running
and price manipulation) even feasible as a fully ‘on-chain’
service on a public blockchain, (ii) what is its performance
benchmark, and (iii) what is the performance impact of novel
techniques (e.g., ‘rollups’) in closing the performance gap?

To answer these questions, we ‘learn by doing’ and custom
design an Ethereum-based call market (or batch auction) ex-
change, Lissy, with favourable security properties. We conduct
a variety of optimizations and experiments to demonstrate that
this technology cannot expect to exceed a few hundred trade
executions per block (i.e., 13s window of time). However this
can be scaled dramatically with off-chain execution that is not
consumer-facing. We also illustrate, with numerous examples
throughout the paper, how blockchain deployment is full of
nuances that make it quite different from developing in better
understood domains (e.g., cloud-based web applications).

1 Introductory Remarks

For better or worse, blockchain technologies like Ethereum
have dramatically lowered the barrier to entry for developing
and deploying financial technology. New tokens have been
launched with a few clicks of a user interface, and large in-
vestment infrastructures have been developed and deployed
with little regulatory oversight. Blockchain exchange services
allow order-based trading of digital currencies, tokens, and
other digital assets. Such exchanges are a key component to
blockchain-based economic activity.

Financial regulators seek to provide consumer protection
during the issuing and trading of financial products and as-

sets. They are concerned by their limited ability to intervene
when trading is conducted on decentralized networks that,
like Ethereum, run on the open internet. Order-driven trading
can happen fully ‘on-chain’ and this was experimented within
the early days of Ethereum, but it has been largely abandoned
for performance reasons in favour of running on centralized
servers. More specifically, the core functionality is performed
off-chain (e.g., matching orders) while other aspects (e.g.,
loading accounts, order cancellation) might be performed on-
chain. In this world, company names, employees, addresses,
and publicly addressable servers all provide regulatory hooks.

Our research group is actively collaborating with our juris-
diction’s (Quebec, Canada) financial regulator, the Autorité
des Marchés Financiers (AMF), to help them forecast how
trading can be impacted by blockchain technology. This paper
addresses their concerns about the feasibility of a ‘worst-case
scenario’ where a trading platform is anonymously deployed
on a public blockchain, like Ethereum, and runs autonomously
without any further intervention from an externally visible
entity. Such a design appears feasible but is considered too
slow. Together, we agreed it is a very good time to do a deep
dive into understanding precisely how slow for the following
reasons: (1) public blockchains are becoming faster (both in
theory and in practice) providing future efficiency gains for
on-chain trading, (2) demand for on-chain trading is exem-
plified by the recent popularity of dealer quote-based trading
like Uniswap and Curve Finance (reviewed below), and (3)
stablecoins have become popular and allow on-chain trading
with pricing in USD, alleviating another regulatory hook: the
need for platforms to maintain traditional accounts for hold-
ing governmental currency and interfacing with the banking
system.

Contributions. We study fully on-chain markets through
design and implementation with Solidity—a high-level pro-
gramming language for Ethereum that is syntactically similar
to Java [1]. We choose Ethereum as a hostile environment
for an order book: Ethereum is fully decentralized (hardest
to regulate), network participation is open to anyone on the
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internet (strongest adversarial model), and, as a result, it is
slow (a lower-bound benchmark). Generally if an application
is feasible on Ethereum, it will also be feasible and only run
faster on a private (or permissioned) blockchain (e.g., Hyper-
ledger), which is a blockchain operated by authorized network
nodes only, generally visible to regulators.

Our proof-of-concept, Lissy, is an extensible base class
suitable for experiments. Lissy is designed from a security
perspective: users only trust their assets to Lissy’s auditable
code (non-custodial) and not to a third party; all operations are
transparent; and we nearly eliminate the ability for adversarial
network nodes to profit from front-running orders. In fact, we
believe we are the first to design a decentralized application
that actually leverages front-running (i.e., miner extractable
value [14]) for the benefit of the system (see Section 5.5).

While Solidity and its compiled bytecode is like many com-
mon programming languages, it also has quirks that require
experimentation to best optimize performance (e.g., factoring
in the gas costs of operations, gas refunds, limits to Solidity’s
object oriented design, clearing mappings, etc.). We test five
priority queues—the core data structure of the call market—
and various options for cleaning up our data once finished
with it. The bottom line is that the current benchmark for
a Lissy-esque design is in the low hundreds of trade execu-
tions per block on Ethereum today. This positions Lissy as a
feasible design for only a narrow set of markets today (low
liquidity, small number of traders) which is good news for
regulators. However we caution that the technology is likely
to improve vastly in the coming years and we demonstrate
one avenue for improvement through ‘rollups’ [20]. While
rollups use centralized servers and are not fully on-chain, an
architecture where these servers only interface with Ethereum
and never interface directly with users is still concerning, as
it side-steps the regulatory hook that is present in many other
server-augmented trading platforms.

2 Preliminaries

2.1 Ethereum and Blockchain Technology
A public blockchain is an open peer-to-peer network that
maintains a set of transactions without a single entity in
charge. In Ethereum, transactions encode the bytecode of
user-written decentralized applications (DApps) to be stored
on the blockchain; and the function calls made to the DApp.
Every execution of every function call is a validated by all
honest, participating nodes to correct; a property that is ro-
bust against a fraction of faulty and malicious network nodes
(or more precisely, their accumulated computational power).
Once transactions are agreed upon, all honest participants
will have identical sets of transactions in the same order. For
Ethereum, this is conceptualized as the current state of a large
virtual machine (EVM) that is running many DApps.

Transactions are broadcast by users to the blockchain net-

work where they are propagated to all nodes. Nodes that
choose to mine will collect transactions (in the order of their
choosing) into a block, and will attempt to have the network
reach a consensus that their block should be added to the set
(or chain) of previous blocks. A transaction is considered
finalized once consensus on its inclusion has held for several
additional blocks.

Ethereum’s Gas Model. Every transaction results in the
participating nodes having to execute bytecode. This is not
free. When a transaction is executed, each opcode in the
execution path accrues a fixed, pre-specified amount of gas.
The function caller will pledge to pay a certain amount of
Ethereum’s internal currency ETH (typically quoted in units
of Gwei which is one billionth of an ETH) per unit of gas,
and miners are free to choose to execute that transaction or
ignore it. The function caller is charged for exactly what the
transaction costs to execute, and they cap the maximum they
are willing to be charged (gas limit). If the cap is too low to
complete the execution, the miner keeps the Gwei and reverts
the state of the EVM (as if the function never ran).

A miner can include as many transactions (typically pre-
ferring transactions that bid the highest for gas) that can fit
under a pre-specified block gas limit, which is algorithmically
adjusted for every block. As of the time of writing, the limit is
approximately 11M gas. Essentially, our main research ques-
tion is how many on-chain trades can be executed without
exceeding that limit. Later we also discuss several bytecode
operations (opcodes) that refund gas (i.e., cost negative gas),
which we heavily utilize in our optimizations.

2.2 Trade Execution Systems
There are three main approaches to arranging a trade [18].
In a quote-driven market, a dealer uses its own inventory to
offer a price for buying or selling an asset. In a brokered
exchange, a broker finds a buyer and seller. In an order-driven
market, offers to buy (bids) and sell (offers/asks) from many
traders are placed as orders in an order book. Order-driven
markets can be continuous, with buyers/sellers at any time
adding orders to the order book (makers) or executing against
an existing order (takers); or they can be called, where all
traders submit orders within a window of time and orders are
matched in a batch (like an auction).

2.3 Trading Blockchain-based Assets
Central Exchanges (CEX). Traditional financial markets
(e.g., NYSE and NASDAQ) use order-matching systems to ar-
range trades. An exchange will list one or more assets (stocks,
bonds, derivatives, or more exotic securities) to be traded with
each other, given its own order book priced in a currency (e.g.,
USD). Exchanges for blockchain-based assets (also called
crypto assets by enthusiasts) can operate the same way, using
a centralized exchange (CEX) design where a firm (e.g., Bi-
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nance, Bitfinex, etc.) operates the platform as a trusted third
party in every aspect: custodianship over assets/currency be-
ing traded, exchanging assets fairly, offering the best possible
price execution. Security breaches and fraud in centralized
exchanges (e.g., MtGox [28], QuadrigaCX [30], and many
others) have become a common source of lost funds for users,
while accusations of unfair trade execution have been levelled
but are difficult to prove. Today, CEXes are often regulated as
other money service businesses—this provides some ability
for the government to conduct financial tracking but does little
to provide consumer protection against fraud.

On-chain Order Books. For trades between two
blockchain-based assets (e.g., a digital asset priced with a
cryptocurrency, stablecoin, or second digital asset), order
matching can be performed ‘on-chain’ by deploying the
order-matching system either on a dedicated blockchain
or inside a decentralized application (DApp; a.k.a. smart
contract). In this model, traders entrust their assets to an
autonomously operating DApp with known source code
instead of a third party custodian that can abscond with or lose
the funds. The trading rules will operate as coded, clearing
and settling can be guaranteed, and order submission is
handled by the blockchain—a reasonably fair and transparent
system (but see front-running below). Finally, anyone can
create an on-chain order book for any asset (on the same
chain) at any time. While they sound ideal, performance is a
substantial issue and the main subject of this paper. Since it is
an open system, there is no obvious regulatory hook (beyond
the blockchain itself).

In this paper, we focus on benchmarking an order book for
the public blockchain Ethereum. Ethereum is widely-used and
we stand to learn the most from working in a performance-
hostile environment. Exchanges could be given their own
dedicated blockchain, where trade execution logic can be
coded into the network protocol. Trading systems on per-
missioned blockchains (e.g., NASDAQ Linq, tZero) can also
improve execution time and throughput, but they reduce user
transparency and trust if unregulated.

On-chain Dealers. An advantage of on-chain trading is
that other smart contracts, not just human users, can initiate
trades, enabling broader decentralized finance (DeFi) applica-
tions. This has fuelled a resurgence in on-chain exchange but
through a quote-driven design rather than an order-driven one.
Automated market makers (e.g., Uniswap) have all the trust
advantages of an on-chain order book, plus they are very effi-
cient relative to an on-chain order book. The trade-off is that
they operate as a dealer—the DApp exchanges assets from its
own inventory. This inventory is loaded into the DApp by an
investor who will not profit from the trades themselves but
hopes their losses (termed ‘impermanent losses’) are offset
over the long-term by trading fees. By contrast, an order book
requires no upfront inventory and trading fees are optional.

Finally, there is a complicated difference in their price dynam-
ics (e.g., market impact of a trade, slippage between the best
bid/ask and actual average execution price, etc.)—deserving
of an entire research paper to precisely define. We leave it as
an assertion that with equal liquidity, order books have more
favourable price dynamics for traders.

Hybrid Designs. Before on-chain dealers became promi-
nent in the late 2010s, the most popular design was hybrid
order-driven exchanges with some trusted off-chain compo-
nents and some on-chain functionality. Such decentralized
exchanges (DEXes) were envisioned as operating fully on-
chain, but performance limitations drove developers to move
key components, such as the order matching system, off-chain
to a centralized database. A landscape of DEX designs exist
(e.g., EtherDelta, 0x, IDEX, etc.): many avoid taking custodi-
anship of assets off-chain, and virtually all (for order-driven
markets) operate the order book itself off-chain (a regulatory
hook). A non-custodial DEX solves the big issue of a CEX—
the operator stealing the funds—however trade execution is
still not provably fair, funds can still be indirectly stolen by a
malicious exchange executing unauthorized trades, and server
downtime is a common frustration for traders. An enhance-
ment is to prove that trade execution is correct (e.g., Loopring)
but these proofs have blindspots (discussed in section 6).

2.4 Related Works
Blockchain Limitations and Solution. While an order
book is a ledger and blockchains provide a distributed ledger,
it is not straightforward to drop a continuous-time order book
onto a blockchain. An older 2014 paper [13] on the ‘Princeton
prediction market’ [8] motivates our work. The authors ob-
serve the following limitations of on-chain continuous order
books: block intervals are slow and not continuous, there is
no support for accurate time-stamping, transactions can be
dropped or reordered by miners, and fast traders can react to
submitted orders/cancellations when broadcast to network but
not in a block and have their orders appear first (as examined
in later work on front-running: [14, 16]).

Call Markets. The researchers propose using a call market
instead of a continuous-time market [13]. Orders are col-
lected and placed into the order book over a window of time
(e.g., 1 or more blocks), then the market is closed and the
orders are processed in batch: the best bids are matched to
the best asks in order. If the prices overlap, the miner keeps
the difference (which they could extract anyways through
front-running). Call markets largely side-step front-running
attacks from other traders because reordering trades has no
impact (discussed more in section 4.2). The paper does not
include an implementation and was envisioned as running on
a custom blockchain (Ethereum was still in development in
2014). Market operations are part of the blockchain logic.
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Large exchanges, like the NYSE and NASDAQ, run two
call markets every trading day in parallel with a continuous-
time market. One call market closes at market open to pro-
duce the opening price for each stock, while the other closes
at the end of the day to produce the closing price. Other
exchanges, called crossing networks, also operate as a call
market at various times throughout the trading day.1 Call
markets are studied widely in finance [18]. Time-sensitive
traders submit orders early, especially in crossing networks
that close at a randomly determined time (traders risk miss-
ing the call if they wait too long). A blockchain happens to
provide this function naturally, as blocks are published unpre-
dictably. Price-sensitive traders wait to base their pricing off
the already submitted orders and do not mind missing a call
if it obtains them a better price.

Other Academic Literature. There are numerous indus-
try projects on blockchain-based exchanges and order books
but most of the academic literature is on topics that are re-
lated but tangential to the mechanics of trade execution. Early
(and some recent) literature consider trade execution under
encryption (i.e., dark markets) for securities [11, 32–34] and
futures [26]. A number of projects consider structuring deriva-
tives in smart contracts—Velocity [15], Findel [5]—but once
issued, the derivative can be traded using exchanges. Atomic
swaps (i.e., payment vs delivery) are necessary for settling
trades and some general approaches include Arwen [19] and
Tesseract [4].

The most similar academic work to this paper is the TEX
exchange [22]. TEX is also an implementation of an order
book, however it uses on-chain and off-chain components,
and does not answer our research question of how feasible
an on-chain order book is. We later compare it to our variant
with rollups in Section 6. The main overlap is our common
focus on resisting front-running attacks. In a recent survey on
front-running attacks in blockchain [16], three solutions are
proposed. One solution is to provide confidentiality over the
content of orders which is the approach taken by TEX. The
main downside is that honest traders cannot submit their or-
ders and leave, they must interact in a second round to reveal
their orders. The second solution is to sequence transactions
according to some rule, either at the protocol level [21] or
as a third party service [24] (a regulatory hook). These are
very recent works and are not available for experimentation
on Ethereum yet (although Chainlink has announced an inten-
tion2). The third solution is to design the service in a way that
front-running attacks are not profitable—this is the approach
we take here.

1A crossing network uses a secondary market for determining the closing
price. Many prominent crossing networks are operated internally within a
brokerage for its clients, and often as a ‘dark pool’ with an unpublished order
book.

2A. Juels. blog.chain.link, 11 Sep 2020.

Operation Description
Enqueue() Inserts an element into the priority queue
Dequeue() Removes and returns the highest priority element
isEmpty() Checks if the priority queue is empty

Table 1: Operations for a generic priority queue.

3 Priority Queues

In designing Lissy within Ethereum’s gas model, performance
is the main bottleneck. For a call market, closing the market
and processing all the orders is the most time consuming
step. The most critical design decision is the data structure
for holding orders. While data structures are well studied for
many languages, Solidity/EVM has its own unique aspects
(e.g., gas refunds, a relatively cheap mapping data structure,
only partial support for object oriented programming) that
create difficulties in assessing which will perform best without
actually deploying and evaluating each variant.

When closing a call market, the orders are examined in
order: highest to lowest price for bids, and lowest to highest
price for asks. In most circumstances, the market closing
algorithm does not have to consider any deeper bids/asks
from the list when choosing whether the current best bid and
ask can be fulfilled. The only exceptions are in the case of
a tie on price or a cancelled order, both of which we return
to later. For this reason, the ideal data structure for storing
bids/asks is a priority queue (see Table 1) where each order’s
priority is its price. Specifically, we use two PQs—one for
bids where the highest price is the highest priority, and one
for asks where the lowest price is the highest priority.

There are numerous ways of implementing a PQ. A PQ has
an underlying list—common options include a static array,
dynamic array, and linked list. The most expensive operation
is keeping the data sorted—common options include (i) sort-
ing during each enqueue, (ii) sorting for each dequeue, or (iii)
splitting the difference by using a heap as the underlying data
structure. Respectively, the time complexities are (i) linear
enqueue and constant dequeue, (ii) constant enqueue and lin-
ear dequeue, and (iii) logarithmic enqueue and logarithmic
dequeue. As closing the market is very expensive with any
PQ, we rule out using (ii) as fully sorting while dequeuing
would be prohibitive. We experiment with the following 5
options for (i) and (iii):

1. Heap with Dynamic Array. A heap is a type of binary
tree data structure that comes in two forms of a (i) Max-
Heap and (ii) Min-Heap. All the nodes of the tree are
in a specific order and the root always represents the
highest priority item of the data structure (the largest
and smallest values in the Max-Heap and Min-Heap
respectively). We implement a PQ with a heap that stores
its data in a dynamically-sized array.
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2. Heap with Static Array. A heap can be also represented
by a Solidity storage array in which the storage is stat-
ically allocated. To do this, we pass the required size
of the array as a constructor parameter to the PQ smart
contract.

3. Heap with Mapping. In the above implementations,
the entire order is stored (as a struct) in the heap. In this
variant, we store the order struct in a Solidity mapping
and store the mapping keys in the heap.

4. Linked List. In this variant, we insert a new element
into its correct position (based on its price) when run-
ning enqueue. The PQ itself stores elements in a linked
list (enabling us to efficiently insert a new element be-
tween two existing elements). Solidity is described as
object-oriented but the equivalent of an object is an entire
smart contract. Therefore an object-oriented linked list
must either (i) create each node in the list as a struct—but
this is not possible as Solidity does not support recursive
structs—or (ii) make every node in the list its own con-
tract. The latter option seems wasteful and unusual, but
we try it out anyways. Thus each node is its own contract
and contains the order data and a pointer to the address
of the next contract in the list.

5. Linked List with Mapping. Finally, we try a variant of
a linked list using a Solidity mapping. The value of the
mapping is a struct with order data and the key of the
next (and previous) node in the list. The contract stores
the key of the first node (head) and last node (tail) in the
list.

3.1 Priority Queue Evaluation
Enqueue Performance. We implemented, deployed, and
tested each PQ using Truffle and Ganache. We tried a variety
of tests (including testing the full call market with each vari-
ant) with consistent results in performance. A simple test to
showcase the performance profile is shown in Figure 1. We
simply enqueue 50 integers chosen at random from a fixed
interval in each PQ variant. The bigger the PQ gets, the longer
enqueue takes—a linear increase for the linked list variants,
and logarithmic for the heap variants.

Dequeue Performance. For each PQ variant storing 50 ran-
dom integers, the Dequeue() function is iterated until the data
structure is empty. The total gas cost for fully dequeuing the
PQ variants is outlined in Table 2. These tests are performed
using the following Ethereum gas metrics: block gas limit
=11,741,495 and 1 gas = 56 Gwei.3 Dequeuing removes data
from the contract’s storage. Recall this results in a gas refund.
Based on our manual estimates (EVM does not expose the re-
fund counter), every variant receives the maximum gas refund

3EthStats (July 2020): https://ethstats.net/

Figure 1: Gas costs for enqueuing 50 random integers into
five priority queue variants. For the x-axis, a value of 9

indicates it is the 9th integer entered in the priority queue.
The y-axis is the cost of enqueuing in gas.

possible (i.e., half the total cost of the transaction). In other
words, each of them actually consumes twice the gasUsed
amount in gas before the refund, however none of them are
better or worse based on how much of a refund they generate.

Discussion. Based on enqueuing, the heap variants are the
cheapest in terms of gas, while based on dequeuing, the link
list variants are the cheapest. This is in accordance with the
theoretical worst-case time complexity for each. However, (i)
the linked list variants are materially cheaper than the heap
variants at dequeuing, and (ii) dequeuing in a call market must
be done as a batch, whereas enqueuing is paid for one at a
time by the trader submitting the order, and (iii) Ethereum will
not permit more than hundreds of orders so the asymptotic
behaviour is not a significant factor. For these reasons, we
suggest using a linked list variant for this specific application.
As it can be seen in Figure 1, the associated cost for inserting
elements into a linked list PQ is significantly greater than the
linked list with mapping, as each insertion causes the creation
of a new DApp. Accordingly, we choose to implement the
call market with the linked list with mapping. Overall this
PQ balances a moderate gas cost for insertion (i.e., order
submission) with one for removal (i.e., matching the orders).

3.2 Cost/Benefit of Cleaning up After Yourself

Gas Refunds. In order to reconstruct the current state of
Ethereum’s EVM, a node must obtain a copy of every variable
change since the genesis block (or a more recent ‘checkpoint’
that is universally agreed to). For this reason, stored variables
persist for a long time and, at first glance, it seems pointless

5
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Heap with Dynamic Array 2,518,131 750,000  
Heap with Static Array 1,385,307 750,000  

Heap with Mapping 2,781,684 1,500,000  
Linked List 557,085 1,200,000  

Linked List with Mapping 731,514 3,765,000  

Table 2: The gas metrics associated with dequeuing 50
integers from five priority queue variants. For the refund, ( )
indicates the refund was capped at the maximum amount and

(G#) means a greater refund would be possible.

G
as

C
os

ts
(g
as
Us
ed

)

R
ef

un
d

(M
an

ua
l)

Fu
ll

R
ef

un
d?

Linked List
w/o SELFDESTRUCT 721,370 0 G#

Linked List
with SELFDESTRUCT 557,085 1,200,000  

Linked List
with Mapping and w/o DELETE 334,689 765,000  

Linked List
with Mapping and DELETE 731,514 3,765,000  

Table 3: The gas metrics associated with dequeuing 50
integers from four linked list variants. For the refund, ( )

indicates the refund was capped at the maximum amount and
(G#) means a greater refund would be possible.

to free up variable storage (and unclear what ‘free up’ even
means). Once the current state of the EVM is established by
a node, it can forget about every historical variable changes
and only concern itself with the variables that have non-zero
value (as a byte-string for non-integers) in the current state
(uninitialized variables in Ethereum have the value zero by de-
fault). Therefore, freeing up variables will reduce the amount
of state Ethereum nodes need to maintain going forward.

For this reason, some EVM operations cost a negative
amount of gas. That is, the gas is refunded to the sender
at the end of the transaction, however (1) the refund is capped
at 50% of the total gas cost of the transaction, and (2) the
block gas limit applies to the pre-refunded amount (i.e., a
transaction receiving a full refund can cost up to 5.5M gas
with a 11M limit). Negative gas operations include:

• SELFDESTRUCT. This operation destroys the contract that
calls it and refunds its balance (if any) to a designated
receiver address. SELFDESTRUCT operation does not re-

move the initial byte code of the contract from the chain.
It always refunds 24,000 gas. For example, if a contract A
stores a single non-zero integer and contract B stores 100
non-zero integers, the SELFDESTRUCT refund for both is
the same (24,000 gas).

• SSTORE. This operation loads a storage slot with a value.
Using SSTORE to load a zero into a storage slot means
the nodes can start ignoring it (recall that all variables,
even if uninitialized, have zero by default). Doing this
refunds 15,000 gas per slot.

At the time of this writing, Ethereum transaction receipts
only account for the gasUsed, which is the total amount of
gas units spent during a transaction, and users are not able to
obtain the value of the EVM’s refund counter from inside the
EVM [31]. So in order to account for refunds in Tables 2, we
calculate them manually. First we need to figure out exactly
how much storage is being cleared or how many smart con-
tracts are being destroyed, then we multiply these numbers
by 24,000 and 15,000 respectively.

Refunds and PQs. One consequence of a linked list is that
a new DApp is created for every node in the list. Beyond being
expensive for adding new nodes (a cost that will be bared by
the trader in a call market), it also leaves a large footprint in
the active Ethereum state, especially if we leave the nodes on
the blockchain in perpetuity (i.e., we just update the head node
of the list and leave the previous head ‘dangling’). However in
a PQ, nodes are only removed from the head of the list; thus
the node contracts could be ‘destroyed’ one by one using an
extra operation, SELFDESTRUCT, in the Dequeue() function.
As shown in Table 3, the refund from doing this outweighs to
the cost of the extra computation: gas costs are reduced from
721K to 557K. This suggests a general principle: cleaning up
after yourself will pay for itself in gas refunds. Unfortunately,
this is not universally true as shown by applying the same
principle to the linked list with mapping.

Dequeuing in a linked list with mapping can be imple-
mented in two ways. The simplest approach is to process a
node, update the head pointer, and leave the ‘removed’ node’s
data behind in the mapping untouched (where it will never be
referenced again). Alternatively, we can call DELETE on each
mapping entry once we are done processing a node in the PQ.
As it can be seen in the last two rows of Table 3, leaving the
data on chain is cheaper than cleaning it up.

The lesson here is that gas refunds incentivize developers
to clean up storage variables they will not use again, but
it is highly contextual as to whether it will pay for itself.
Further the cap on the maximum refund means that refunds
are not fully received for large cleanup operations (however
removing the cap impacts the miners’ incentives to include
the transaction). This is a complicated and under-explored
area of Ethereum in the research literature. For our own work,
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Operation Description

depositToken()
Deposits ERC20 standard compliant

tokens in Lissy smart contract
depositEther() Deposits ETH in Lissy smart contract
openMarket() Opens the market
closeMarket() Closes the market and processes the orders

submitBid()
Inserts the upcoming bid order

messages inside the priority queue

submitAsk()
Inserts the upcoming ask order

messages inside the priority queue
claimTokens() Transfers tokens to the traders
claimEther() Transfers ETH to the traders

Table 4: Primary operations of Lissy smart contract.

we strive to be good citizens of Ethereum and clean up to the
extent that we can—thus all PQs in Table 2 implement some
cleanup.

4 Call Market Design

Lissy is proof of concept code. We try to simplify the design
at every step to make it an extensible base class but still func-
tional without any extensions. A call market will open for a
specified period of time during which it will accept a capped
number of orders (e.g., 100 orders—parameterized so that all
orders can be processed), and these orders are added to a PQ.
Our vision (discussed below) is the market would be open for
a very short period of time, close, and then reopen immedi-
ately (e.g., every other block). We keep the design simple by
not allowing cancellations which require a second transaction
and front-running attacks apply to cancellation orders [16].
As markets are relatively short-lived, orders simply expire
when the market call period ends.

Another simplifying assumption is to implement a collat-
eralized call market. We assume all trades are between ETH
and an ERC20 token, all orders are pre-funded in the DApp
with ETH (for bids) and tokens (for asks), and once ETH or
tokens are committed to an order, they cannot be withdrawn
until the market closes. This ensures all executed orders clear
and settle (i.e., no defaults on payment or delivery).

Lissy is open source and written in 336 lines (SLOC) of So-
lidity plus the priority queue (e.g., a heap with dynamic array
is 282 SLOC). Refer to the availability section at the end of the
paper. We tested it with the Mocha testing framework using
Truffle on Ganache-CLI to obtain our performance metrics.
Once deployed, the bytecode of Lissy is 10812 bytes plus the
constructor code (6400 bytes) which is not stored. We cross-
checked for vulnerabilities with Slither4 and SmartCheck5 (it
only fails some ‘informational’ warnings that are intentional

4https://github.com/crytic/slither
5https://tool.smartdec.net
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Heap with
Dynamic Array 38 5,372,679 457,326,935 207,932

Heap with
Static Array 42 5,247,636 333,656,805 197,710

Heap with
Mapping 46 5,285,275 226,499,722 215,040

Linked List 152 5,495,265 35,823,601 735,243
Linked List

with Mapping 86 5,433,259 62,774,170 547,466

Table 5: Performance of Lissy for each PQ variant. Each
consumes just under the block gas limit (∼11M gas) with a

full refund of half of its gas.

design choices—e.g., a costly loop). Table 4 summarizes
Lissy’s primary operations.

4.1 Measurements
The main research question is how many orders can be pro-
cessed in a single Ethereum transaction when closing the call
market, using Ethereum today. As our previous experiments
indicated, the choice of PQ implementation is the main in-
fluence on performance (see Table 5). We implemented a
generic call market that interfaces with a generic PQ (at its
own contract address) and ran experiments for each PQ im-
plementation. We looked at the worst-case for performance
which is when every submitted bid and ask is marketable
(i.e., will require fulfillment). In the first two columns, we
determine the highest number of orders that can be processed
in a single call to the closeMarket() and not exceed the
the current Ethereum block gas limit of 11,741,495. Since
Ethereum will become more efficient over time, we also were
interested in how much gas it would cost to execute 1000
pairs of orders which is given in the third column. The fourth
column indicates the cost of submitting a bid or ask — since
this costs will vary depending on how many orders are already
submitted (recall Figure 1), we average the cost of 200 order
submissions.

As expected, the numbers closely track the performance of
the PQ itself suggesting the PQ is indeed the main influence
on performance. In Ethereum today, call markets appear to be
limited to processing about a hundred orders per transaction.
If markets open on every other block and the call market could
monopolize an entire block to close, a few hundred orders per
minute (worst-case) can be processed. The main takeaway
is that the transparency, front-running resistance, and low
barrier to entry of Ethereum come with an enormous cost (i.e.,
an institutional exchange like NASDAQ can process 100K
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trades per second). That said, many exchanges trade the same
assets under different trading rules (i.e., market fragmentation)
because traders have different preferences. Lissy can work
today in some circumstances like very low liquidity tokens,
or markets with high volumes and a small number of traders
(e.g., liquidation auctions).

4.2 Front-running
The primary motivation for using a call market, as opposed
to a continuous-time order book, is to mitigate front-running
attacks [13, 14, 16]. Consider a sequence of 100 orders sub-
mitted within a window of time to market A, and the same
sequence is randomly shuffled and submitted to market B. If
A and B are continuous, the orders that are executed in A
could be quite different from B. In a call market, the outcome
of A and B will be exactly equivalent. There is no threat from
miners reordering transactions or traders offering higher gas
rates to have their orders executed before other orders already
broadcasted.

In a traditional call market, a market clearing price is cho-
sen and all trades are executed at this price. All bids made at a
higher price will receive the assets for the lower clearing price
(and conversely for lower ask prices): this is called a price
improvement. A miner about to mine on a set of transactions,
including its own orders, could drop other traders’ orders
to maximize its own price improvement. For this reason, in
Lissy, all price improvements are given to the miner (using
block.coinbase.transfer()). This does not actively hurt
traders—they always receive the same price that they quote
in their orders—and it removes any incentive for miners to
front-run these profits.

Potential for front-running still exists around ties on price
and order cancellations (both discussed in the next section).
Finally, displacement attacks [16] are possible where com-
petitive orders are delayed long enough for the market to
close without them or the adversary fills up the current mar-
ket (which caps the number of orders) to ensure other orders
cannot be added. Both are expensive attacks. For all these
reasons, we say Lissy reduces front-running attacks but stop
short of saying this issue is completely solved by Lissy.

4.3 Cleaning Up Revisted
Beyond the cleaning up issues with priority queues in Sec-
tion 3.2, Lissy also uses mappings with each market. Traders
preload their account with tokens to be traded (which com-
ply with a common token standard called ERC20) and/or
ETH. Lissy tracks what they are owed using a mapping called
totalBalance and allows traders to withdraw their tokens
at any time. However if a trader submits an order (i.e., ask for
their tokens), the tokens are committed and not available for
withdrawal until the market closes (after which, the balances
are updated for each trade that is executed). Committed tokens

are also tracked in a mapping called unavailableBalance.
Sellers can request a token withdrawal up to their total balance
subtracted by their unavailable balance.

As the DApp runs closeMarket(), it starts matching the
best bids to the best asks. As orders execute, totalBalance
and unavailableBalance are updated. At a certain point,
the bids and asks will stop matching in price. At this
point, every order left in the order book cannot execute (be-
cause the priority queue sorts orders by price, and so or-
ders deeper in the queue have worst prices than the order
at the head of the queue). Therefore all remaining entries in
unavailableBalance can be cleared.

In Solidity, it is not possible to delete an entire mapping
without individually zero-ing out each entry key-by-key. At
the same time, it is wasteful to let an entire mapping sit in the
EVM when it will never be referenced again. The following
are some options for addressing this conflict.

1. Manually Clearing the Mapping. Since mappings can-
not be iterated, a common design pattern used by DApp
developers is to store keys in an array and iterate over the
array to zero out each mapping and array entry. Clearing
a mapping this way costs substantially more to clear than
what is refunded.

2. Store the Mapping in a Separate DApp. We could
wrap the mapping inside its own DApp and when we
are done with the mapping, we can run SELFDESTRUCT
on the contract. This refunds us 24,000 gas which is
less than the cost of deploying the extra contract. Ad-
ditionally, every call to the mapping is more expensive
because (1) it is an external function call, and (2) the
calls need access control to ensure only the market con-
tract can write to it (if a mapping is a local variable, you
get private access for free).

3. Leave and Ignore the Mapping. The final option is
to not clear the mapping and just create a new one (or
create a new prefix for all mapping keys to reflect the
new version of the mapping). Unfortunately, this is the
most economical option for DApp developers even if it
is the worst option for Ethereum nodes.

Clearing storage is important for reducing EVM bloat.
The Ethereum refund model should be considered further
by Ethereum developers to better incentivize developers to be
less wasteful in using storage.

5 Design Alternatives and Extensions

Lissy is designed as base class that can be extended and cus-
tomized. We discuss potential modifications here.

8



5.1 Token Divisibility and Ties

When executing trades, if the volume of the current best bid
does not match the best ask, the larger order is partially filled
and the remaining volume is considered against the next best
order. In Lissy, tokens are assumed to be divisible. We sim-
plify the market rules around ties on price: we execute them
in a FIFO manner (breaking front-running resistance for ties
on prices). A common trading rule (that does resist front-
running) is to fill ties in proportion to their volume (i.e., pro
rata allocation)6 however this approach does not always work.
Consider the following corner-case: 3 equally priced bids of
1 non-divisible token and 1 ask at the same price. There is
no good option: (1) the bids could all be dropped (fair but
not market efficient), (2) bids could be prioritized based on
time as in Lissy (front-running is viable, but in this corner
case only), or (3) the bid could be randomly chosen (cf. Li-
bra [27]); blockchain ‘randomness’ is generally deterministic
and manipulatable by miners [7, 10] and counter-measures
could take a few blocks to select [6]).

5.2 Order Cancellations

Lissy does not support order cancellations. We intend to open
and close markets quickly (on the order of blocks), so orders
are relatively short-lived. Support for cancellation also opens
the market to new front-running issues where other traders
(or miners) can displace cancellations until after the market
closes (however one benefit of a call market is that beating
a cancellation with a new order has no effect, assuming the
cancellation is run any time before the market closes). Fi-
nally, cancellations have a performance impact. Cancelled
orders can be removed from the underlying data structure or
accumulated in a list that is cross-checked when closing the
market. Removing orders requires a more verbose structure
than a priority queue (e.g., a binary search tree instead of
a heap; or methods to traverse a linked list rather than only
pulling from the head). While client software could help point
out where the order is in the data structure, the order book
can change between submitting the cancellation request and
running the method. A linked list with mapping that returns
the key for each submitted order seems to be the most tenable
data structure.

5.3 Market Clearing Price

Call markets are heralded for fair price discovery. This is
why many exchanges use a call market at the end of the day
to determine the closing price of an asset, which is an im-
portant price both optically (it is well-published) and oper-
ationally (many derivates settle based on the closing price).

6If Alice and Bob bid the same price for 100 tokens and 20 tokens respec-
tively, and there are only 60 tokens left in marketable asks, Alice receives 50
and Bob 10.

We purposely do not compute a ‘market clearing price’ with
Lissy because miners can easily manipulate the price (i.e.,
include a single wash trade at the price they want fixed),
although they forgo profit for doing so. This is not merely
hypothetical—Uniswap (the prominent quote-drive, on-chain
exchange) prices have been manipulated to exploit other DeFi
applications relying on them. Countermeasures to protect
Uniswap price integrity could also apply to Lissy: (1) taking a
rolling mediant of prices over time, and (2) using it alongside
other sources for the same price and forming a consensus.
While Lissy does not emit a market clearing price, it can be
computed by a web application examining the order book at
market close.

5.4 Scheduling Events
As a simple base class, Lissy is a one-shot market. However
it can be extended to re-open with a clean order book after
closeMarket() is run. Modifiers can enforce when the mar-
ket operates openly (collecting orders) and when close can
be run. In the Princeton paper [13], the call market is envi-
sioned to run as an alt-coin, where orders accumulate within
a block and a miner closes the market as part of the logic of
producing a new block (i.e., within the same portion of code
as computing their coinbase transaction in Bitcoin or gasUsed
in Ethereum).

If the call market runs as a DApp on Ethereum, it seems
difficult to open and close the market every block. Someone
needs to call the closeMarket() for every block (we return
to who this is next) but the market will only work as intended
if miners execute this function after every submitBid()
and submitAsk() invocation. Since price improvements are
paid to the miners, the miner is actually incentivized to run
closeMarket() last to make the most profit. This pattern is
called miner extractable value (MEV) [14] and is usually con-
sidered in the context of attacks. However in our case, MEV
is a feature. Efficient algorithms for miners to automatically
find MEV opportunities is an open research problem.

A close alternative is to allow markets to open and close
on different blocks. In this alternative, the closeMarket()
function calls openMarket() as a subroutine and sets two
modifiers: orders are only accepted in the block immedi-
ately after the current block (i.e., the block that executes the
closeMarket()) and closeMarket() cannot be run again
until two blocks after the current block.

The final issue is who invokes closeMarket() every other
block? There are actually two issues here: the issue of schedul-
ing the function call and the issue of paying for it. For schedul-
ing the function call, we can do one of the following: rely
on market participants, who are eager to trade, to reopen the
market, offer a bounty to reopen the market, or use an external
service like Ethereum Alarm Clock (which creates a regula-
tory hook).7 Next we consider the second issue of who pays

7https://ethereum-alarm-clock-service.readthedocs.io/
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to close the market.

5.5 Who Pays to Close/Reopen the Market?

As miners are paid all price improvements in the market, it is
possible that a miner might run closeMarket() and it would
pay for itself. However we consider two other scenarios that
do not assume miners can automatically find MEV oppor-
tunities. One solution requires a modified closing function,
closeMarket(n), that only processes n orders at a time until
the order book is empty (this is sensible design in any case to
safeguard against the order book from locking up because the
number of orders exceeds the gas limit to process them). Once
the time window for submitting orders is past, a new market
is created (without settling the previous market). Every or-
der submission on the new market also requires to run, say,
closeMarket(10) on the older market, thus progressively
closing the previous market while accepting orders to the new
market. This solution pattern has two issues: first, amortizing
the cost of closing the market amongst the early traders of the
new market is an added incentive to not submit orders early
to the market; the second related issue is if not enough traders
submit orders in the new market, the old market never closes
(resulting in a backlog of old markets waiting to close).

The second solution is to levy a carefully computed fee
against the traders for every new order they submit. These
fees are accumulated by the DApp to use as a bounty. When
the time window for the open market elapses, the user who
calls closeMarket() receives the bounty. This is a better
solution, although not perfect: closeMarket() cost does not
follow a tight linear increase with the number of orders, and
gas prices vary over time which could render the bounty in-
sufficient for offsetting the closeMarket() cost. However
an interested third party (such as the token issuer for a given
market) might occasionally bailout the market when it halts
on closeMarket() to facilitate further trading. If the DApp
can pay for its own functions, an interested party can also
arrange for a commercial service (e.g., any.sender8) to relay
the closeMarket() function call on Ethereum (an approach
called meta-transactions) which introduces another regulatory
hook.

5.6 Collateralization Options

In Lissy, both the tokens and ETH that a trader want to poten-
tially use in the order book are pre-loaded into the contract.
Consider Alice who holds a token and decides she wants to
trade it for ETH. In this model, she must first transfer the
tokens to the contract and then submit an ask order. If she
does this within the same block, there is a chance that a miner
will execute the ask before the transfer and the ask will revert.
If she waits for confirmation, this introduces a delay. This

8https://github.com/PISAresearch/docs.any.sender

delay seems reasonable but we point out a few ways it could
be addressed:

1. Use msg.value. For the ETH side of a trade (i.e.,
for bids), ETH could be sent with the function call to
submitBid() to remove the need for depositEther().
This works for markets that trade ERC-20 tokens for
ETH, but would not work for ERC-20 to ERC-20 ex-
changes.

2. Merge Deposits with Bids/Asks. Lissy could have an
additional function that atomically runs the functionality
of depositToken() followed by the functionality of
submitAsk(). This removes the chance that the deposit
and order submission are ordered incorrectly.

3. Use ERC-20 Approval. Instead of Lissy taking custody
of the tokens, the token holder could simply approve
Lissy to transfer tokens on her behalf. If Lissy is coded
securely, it is unconcerning to allow the approval to stand
long-term and the trader never has to lock up their tokens
in the DApp. The issue is that there is no guarantee that
the tokens are actually available when the market closes
(i.e., Alice can approve a DApp to spend 100 tokens even
if she only has 5 tokens, or no tokens). In this case, Lissy
would optimistically try to transfer the tokens and if it
fails, move onto the next order. This also gives Alice an
indirect way to cancel an order, by removing the tokens
backing the order—this could be a feature or it could be
considered an abuse.

4. Use a Fidelity Bond. Traders could post some amount
of tokens as a fidelity bond, and be allowed to submit
orders up to 100x this value using approve. If a trade
fails because the pledged tokens are not available, the
fidelity bond is slashed as punishment. This lets traders
side-step time-consuming transfers to and from Lissy
while still incentivizing them to ensure that submitted
orders can actually be executed. The trade-off is that
Lissy needs to update balances with external calls to the
ERC-20 contract instead of simply updating its internal
ledger.

6 Lissy Variant with Off-chain Closing

We have avoided augmenting Lissy with centralized compo-
nents and third party services as our research question con-
cerns the feasibility of a system with a minimum of regu-
latory hooks. However from a regulatory stance, there is a
big difference between an architecture where the centralized
component is publicly visible and interacted with by users
(e.g., most DEXes, rollup architectures like Loopring, and
commit-chain solutions like TEX). We briefly consider an al-
ternative design that is almost as difficult to regulate as a fully
on-chain solution. In this design, an off-chain component is

10

https://github.com/PISAresearch/docs.any.sender


introduced to boost performance but it only interacts with the
Ethereum network and never directly with traders. Traders
still only interact with Ethereum.

A function can be computed off-chain and the new state of
the DApp, called a rollup, is written back to the blockchain,
accompanied by either (1) a proof that the function was ex-
ecuted correctly, or (2) a dispute resolution process that can
resolve, on-chain, functions that are not executed correctly
(e.g., Arbitrum [20]). In the case of (1), validating the proof
must be cheaper than running the function itself. There are
two main approaches to (1): the first is to use cryptographic
proof techniques (e.g., SNARKS [3,17] and variants [2]), and
the second is to execute the function in a trusted execution
environment (TEE; e.g., Intel SGX) and validate the TEE’s
quote on-chain (e.g., Ekiden [12]).9

We implemented a variant of Lissy using rollups on Arbi-
trum.10 In this model, the token issuer (or other interested
party) will run a dedicated server to watch Ethereum for func-
tion invocations submitted and sequenced on-chain, perform
the function call off-chain, and write the resultant state on-
chain. Anyone capable of running EVM code can verify the
result. If it is incorrect, a dispute can be filed (with the correct
state) and an on-chain correction will be made. With or with-
out disputes, participants that validate the function calls for
themselves can proceed knowing that the correct state will
eventually be finalized.

In our Lissy variant with rollups, the token issuer does all
the computation (both enqueuing and dequeuing). Thus we
switch the priority queue to use a heap with dynamic array,
which balances the expense of both operations (instead of
optimizing for dequeuing in closeMarket()). Recall that
on-chain, such a priority queue can only match 38 pairs at
a cost of 5,372,679 gas. With rollups, 38 pairs cost 38,863
gas. As the pairs increase, the cost is essentially constant (e.g.,
1000 pairs cost 38,851 as opposed to 457,326,935 on-chain).
Submitting an order costs 39,169 gas on average as opposed
to 207,932 on-chain.

Our Lissy variant is not the first rollup-based order book.
Loopring 3.011 offers a continuous-time order book. The
primary difference is that orders in Loopring 3.0 are sub-
mitted off-chain to the operator directly, whereas our variant
uses on-chain submission so that the rollup server does not
need to be publicly reachable. Loopring 3.0 can operate near
high frequency trading as order submission is unhampered
by Ethereum, however its rollup proof does not ensure that
the exchange did not reorder transactions, which is particu-
larly problematic in a continuous-time order book. Traders
who prioritize trade fairness might opt for a solution like

9The TEE-based approach is mired by recent attacks on SGX [9,23,25,29],
however these attacks do not necessarily apply to the specifics of how SGX
is used here, and safer TEE technologies like Intel TXT (cf. [35]) can be
substituted.

10https://offchainlabs.com for more current details than the 2018
USENIX Security paper [20].

11https://loopring.org

our variant, while traders who want speed would vastly pre-
fer the Loopring architecture which offers near-CEX speed
while being non-custodial. Loopring leaves a regulatory hook
whereas our variant could be nearly as difficult to regulate as
a fully on-chain solution if the rollup server was kept anony-
mous: Ethereum and Arbitrum themselves would be the only
regulatory hooks.

7 Concluding Remarks

Imagine you have just launched a token on Ethereum. Now
want to be able to trade it. While the barrier to entry for
exchange services is low, it still exists. For a centralized or
decentralized exchange, you have to convince the operators
to list your token and you will be delayed while they pro-
cess your request. For an automated market maker, you will
have to lock up a large amount of ETH into the DApp, along
with your tokens. For rollups, you will have to host your own
servers. By contrast to all of these, with an on-chain order
book, you just deploy the code alongside your token and trad-
ing is immediately supported. This should concern regulators.
Even if it is too slow today, there is little reason for developers
not to offer it as a fallback solution that accompanies every
token. With future improvements to blockchain scalability, it
could become the defacto trading method.

It may seem paradoxical or unethical to build for regula-
tors exactly what they worry about, however we agreed that
it was too difficult to answer our research questions without
actual implementation and experimentation. Lissy is proof of
concept code that implements only enough to understand the
feasibility of on-chain trading and we release the code for
reproducibility. However it is not production code, it is unpol-
ished, it has no UI, and we have no intention of promoting it
for adoption. Finally, by understanding the ‘pain points’ in the
design, we found we were constantly tugged toward central-
ized components (Ethereum alarm clock, meta-transactions,
rollup servers, etc.) which could serve as regulatory hooks
even if the service is mainly on-chain.

Availability

The Solidity source code for Lissy, Truffle test files, and Ar-
bitrum dependencies are available in a GitHub repository12.
We have also deployed Lissy on Ethereum’s testnet Rinkeby
with flattened (single file) source code of just the Lissy base
class and priority queue implementations. It is visible and can
be interacted with here: [etherscan.io]; while the Arbitrum
variant is here: [explorer.offchainlabs.com].
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