

Guide to the use of FAST GC

What is FAST-GC /FASTGC

Fast GC is a GC technique with one of the highest potentials, and already widely demonstrated in practice, and is rapidly becoming mor popular in these recent years. As the name itself indicates, FASTGC is fast gas chromatography, which enables the reduction in analysis times by 10 times compared to the amount of time in conventional capillary of packed column GC analysis. With FASTGC you can get analysis only in only 5 to 12 minutes by maintaining sufficient resolution for the separation of medium or medium high complexity mixtures. In this way it is possible to increase the number of analysis made in a day, decreasing analytical costs, whilst using cheaper columns and not wasting valuable lab and Your time!

Theoretical aspects of Fast GC

The parameter that indicates the separative power of a capillary column in the best way is the number of theoretical plates (N) of a column.

$$N=5.54 \left(\frac{tr}{w50}\right)^2$$
 where: tr = retention time, w50 = Peak width calculated at mid peak height

The smaller the internal diameter, the longer a column, the more theoretical plates it will have and the greater its separative power will be. Also for same column lengths with a narrower internal diameter these will also have a greater separative power as the number of theoretical plates will increase by decreasing the internal diameter.

To make it clear, a traditional column with an internal diameter equal to 0.25mm and a 25 meter length has 100,000 theoretical plates; as it is shown in table1, a FASTGC column with a narrower internal diameter (100um), needs to have only 10 meters to have the same number of theoretical plates as more traditional GC.

This means you can keep the same separative power even though the column is shorter and whilst allowing a reduction in analysis time.

Columns for FASTGC have very small internal diameters (50, 100um usually), which means that even though they are short, they require a high pressure on the injector in order to obtain practical flow rates.

Usually the optimal flows that have to be used in FASTGC (at normal conditions) are 0.5 mL/min about (60cm/s @ 50°C (starting temperature of the GC's oven)) of gas in a column (see the table below on recommended flows).

If Hydrogen is used as carrier gas, there will be an advantage because it is less viscous that Helium, so there will be the need for a lower pressure to reach the same flow in the column.

Hydrogen carrier gas allows work at higher speeds without losing in any significant way column efficiency, allowing then to shorten up once more the analysis time.

For these two reasons it is best to use Hydrogen as carrier gas in FASTGC, even though the use of Helium as the carrier gas results in comparable column efficiency.

What is needed to accomplish FAST-GC.

To accomplish FAST GC you will only need:

- •A short column with a smaller internal diameter (called "narrow bore" columns). Typically a column of 10 m with an internal diameter of 0.10 mm is used.
- •A gas chromatographer able to carry out fast temperature rate, of 25°C/min and up, with a high frequency acquisition system (See Fig.1 on the effect of acquisition frequency on the peak shape) and able to manage relatively high pressures on the head of the column.

Dimensions of the FAST-GC columns.

Internal Diam	Length	Film Thickness	Theoretical Plates(N)
50um	2.5m	0.05um	50,000
		0.10um	
	5m	0.05um	100,000
		0.10um	
100um	5m	0.1um	50,000
		0.20um	
	10m	0.10um	100,000

Table 1. These are the dimensions of the columns that can be found in the catalogue. For each column it is reported the number of theoretical plates (N) calculated with the formula written on the previous page (1).

We advise not to use 100micron i.d. columns longer than 10 m and 5 m for 50 microns i.d. columns because the pressure needed will be too high on for todays instrumentation!

Effect of the data acquisition frequency on the shape of the peak and on the integration effectiveness.

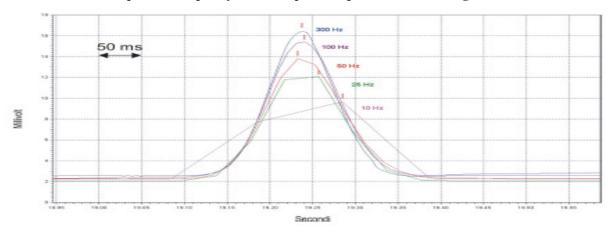


Figure 1 Effect of the acquisition frequency on the peaks shape. With these kinds of narrow peaks like the ones in Fast GC (from 0.5 to 2 secs) it is necessary to acquire the signal with high frequencies in order to have the correct peak shape and to be able adequate integration . Frequencies of 50Hz are acceptable but frequencies of 100Hz are optimal for most cases.

UltraFast GC may suffer resolution and inaccuracy unless higher A/D speed are available.

Note: A/D speeds are part of the story but low speed OpAmp (if used) can be detrimental and electrometer speeds Column efficiency should always be checked at start on each GC with a new column and test chromatogram comparison should be used to evaluate instrument effect may also effect performance

250Hz is preferred (peaks of 100ms to 1 second are common)

Data System overall performance can be marginalised by the efficiency of the s'ware coding itself; a true comparison

FAST-GC
Column: with internal diameters of 0.05/0.10mm and lengths of 5, 10m.
Temperature Rates: 20 – 60 °C/min (ultraFast GC: 300Deg/min or higher)
Injection: the injected quantity has to be at least 10times less than traditional GC. Usually the split ratio that are used are greater than1:100 with solutions that are strongly diluted (< 100 ppm). (A new injector is in process of development to allow direct injections on narrow-bore columns of a sample as liquid in quantity of the order of nanoliters!) Go to www.mega.mi.it to see the news ofthis revolutionary injector.
Carrier Gas: optimal flows for FAST-GC are around 0.5ml/min for the columns of 10m 0.10mm.(See fig. n. 3,4 below). Download in the section "Support-Download" of the site www.mega.mi.it; the table of the flows and of pressures for various columns.
Peak Width: 0.5 to 2 s
Detector:microTCD (NOT conventional TCD) and most low dead volume Ionisation Detectyors (FID; HID; MS etc) but high A?D Data Systems are required (>100Hz) seefig. 1
1 – 10 min

Guidelines for the Use of FAST-GC

Conventional GC

Column: usually columns with internal diameters of 0.25/0.32 mm with lengths of 25, 30, 50m.

Temperature Rates: 1 – 20 °C/min

Injection: with normal injection techniques it is possible to inject modest quantities, for example 1ul of a diluted solution with a split ratio of 1:20, 1:50.

The higher pressure drop of narrow bore columns actually helps flow control of both the column and achieve the higher split flows required.

Carrier Gas: the gas flows in column (with Helium and Hydrogen) vary on the dimensions and the characteristics of the column.

Generally these flows are not less than 0.8 ml/min. Download in the section "SupportDownload" of the site www.mega.mi.it the table the flows and of pressures for the columns.

Peak Width: 2 to 5 s

Detector: any type of detector can be used — except older style of TCD which tend to have excessive dead volume causing severe peak spread

Analysis Time:20 - 60 min

FAST-GC

Column: with internal diameters of 0.05/0.10mm and lengths of 5, 10m.

Temperature Rates: 20 – 60 °C/min (ultraFast GC: 300Deg/min or higher)

Injection: the injected quantity has to be at least 10 times less than traditional GC. Usually the split ratio that are used are greater than 1:100 with solutions that are strongly diluted (< 100 ppm).

(A new injector is in process of development to allow direct injections on narrow-bore columns of a sample as liquid in quantity of the order of nanoliters!)

Go to www.mega.mi.it to see the news ofthis revolutionary injector.

Carrier Gas: optimal flows for FAST-GC are around 0.5ml/min for the columns of 10m 0.10mm. (See fig. n. 3,4 below).

Download in the section "Support-Download" of the site www.mega.mi.it; the table of the flows and of pressures for various columns.

Peak Width: 0.5 to 2 s

Detector:microTCD (NOT conventional TCD) and most low dead volume Ionisation Detectyors (FID; HID; MS etc) but high A?D Data Systems are required (>100Hz) seefig. 1

 $1 - 10 \min$

Table 2. The table shows the fundamental analysis parameters Conventional GC VS FASTGC.

Recommended Pressures and Flows				
	HYDROGEN Carrier Gas (40 – 80	cm/s)		
L/ID	50um	100um		
5 m	300-630kPa 43-91psi 3-6.3 bar 0.15-0.4ml/min	58-140kPa 9.9-20.2ps 0.68-1.4bar 0.25-0.6ml/min		
10 m		140–296 kPa 20.2–43 psi 1.4–2.95 bar 0.3–0.9 ml/min		
	HELIUM Carrier Gas (32 – 45 c	m/s)		
L/ID	50 μm	100 μm		
5 m	500 – 760 kPa 72.2 – 110 psi 16.1 – 24.5 psi 5 – 7.6 bar 0.15 – 0.3 ml/min	115 – 170 kPa 16.1 – 24.5 psi 1.15 – 1.7 bar 0.25 – 0.4 ml/min		
10 m		258 – 339 kPa 37.3 – 49.1 psi 2.6 – 3.4 bar 0.35 – 0.6 ml/min		

Tables 3,4. These two tables illustrate some optimal flow and pressure indications that can be used for the treatment of FASTGC columns of the illustrated dimensions. These conditions have been calculated with a temperature of 50°C (typical starting temperature) and at P outlet atmospheric conditions (if treated with a mass spectrometer, the indications can be held as a good starting point especially for the flows to use).

Visit www.mega.mi.it "SupportDownload" section, to download the complete table for PressureFlows

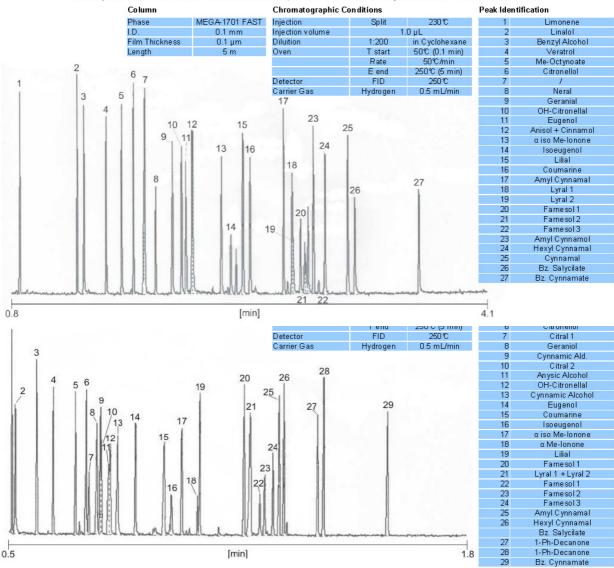
MEGA stationary phases available in FAST-GC.

In **FAST GC**, the choice of the stationary phase is even more important than in traditional GC. In fact, where the shortening of analysis time may produces a loss in resolution terms, the selectivity of the stationary phase can intervene to separate critical peak pairs.

This is the reason why MEGA has the widest choice of FASTGC columns with phases that don't have any competition equivalent on the market!

Stationary Phase	Composition	Notes
MEGA – 1 FAST	100% Methyl Polysiloxane (Apolar)	
MEGA – 10 FAST	100% Cyanopropil Polysiloxano (High Polarity)	
MEGA – 101 FAST	100% Methyl Polysiloxane (Apolar)	
MEGA – 13 FAST	13% Phenyl, 87% Methyl Polysiloxane (Intermediate Polarity)	
MEGA – 17 FAST	50% Phenyl, 50% Methyl Polysiloxane (Mid to High Polarity)	
MEGA – 1701 FAST	7% Cyanopropyl, 7% Phenyl, 86% Methyl Polysiloxane (Intermediate Polarity)	
MEGA – 20 FAST	20% Phenyl, 80% Methyl Polysiloxane (Intermediate Polarity)	
MEGA – 200 FAST	Trifluoropropyl Methyl Polysiloxane (High Polarity)	
MEGA – 225 FAST	25% Cyanopropyl, 25% Phenyl, 50% Methyl Polysiloxane (Mid to High Polarity)	
MEGA – 5 FAST	5% Phenyl, 95% Methyl Polysiloxane (Low Polarity)	
MEGA – 50 FAST	50% Cyanopropyl, 50% Methyl Polysiloxane (Mid to High Polarity)	
MEGA – 624 FAST	3.5% Cyanopropyl, 3.5% Phenyl, 93% Methyl Polysiloxane (Intermediate)	
MEGA – ACID FAST	Polyethylenglycol (PEG) Acid (High Polarity)	
MEGA – PLUS FAST	Copolymer Polyethyleneglycol (PEG) + Methyl Polysiloxane (Mid to High Polarity)	No Equivalents
MEGA – JXR FAST	100% Methyl Polysiloxane (Apolar)	
MEGA – PS255 FAST	1% Vinyl, 99% Methyl Polysiloxane (Apolar)	
MEGA – SE30 FAST	100% Methyl Polysiloxane (Apolar)	
MEGA – SE54 FAST	T5% Phenyl, 1% Vinyl, 94% Methyl Polysiloxane (Low Polarity)	
MEGA – WAX FAST	Polyethylenglycol (PEG) (High Polarity)	Available for High Temperatures (300°C!).

Visit www.mega.mi.it to discover online our complete catalog, new products and all the news fromMEGA. You can require completely custom products for specific analytical problems!


MEGA allows you to send us your sample to try, completely free, the performances of FASTGC directly on your separation! This service has not any added costs also on the column price eventually purchased!

ALLERGENES

Courtesy Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria, 9 – Torino

ALLERGENES

Courtesy Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P. Giuria, 9 – Torino

	Column		Chromatographic (Conditions		Peak Identi	fication
	Phase	MEGA-WAX FAST	Injection	Split	230℃	1	Limonene
	I.D.	0.1 mm	Injection volume	1	.0 μL	2	Linalol
	Film Thickness	0.1 µm	Diluition	1:200	in Cyclohexane	3	Me-Octynoate
	Length	5 m	Oven	T start	50℃ (0.1 min)	4	Neral
				Rate	50℃/min	5	Veratrol
				Tend	230℃ (2 min)	6	Geranial
_			Detector	FID	250℃	7	1
2			Carrier Gas	Hydrogen	0.5 mL/min	8	α iso Me-lonone
	22					9	Geraniol
	9					10	Alc. Benzyl
	10					11	α Me-Ionone
	ll°	18	13			12	OH-Citronellal
	3 7	12 10	24			13	Cynnamal
	9 1	15 16 17	1			14	Citronellal
	5 12	14 21	27			15	Eugenol
		15				16	Amyl Cynnamal
		20				17	Anysol
			28			18	Cynnamol
	6 8					19	Farnesol 1
			25			20	Isoeugenol
			1150 1 1			21	Hexyl Cynnama
	4		Hr I I			22	Amyl Cynnamol
				,	29	23	1-Ph-10
	11		26	4	29	24	Coumarine
						25	Lyral 2
					A	26	1
1						27	Bz. Benzoate
					/\	28	Bz. Salycilate
	and the state of t	Beer Transferrance	de constante			29	Bz. Cynnamate
		[min] 19	22			25	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Australian Distributors Importers & Manufacurers www.chromtech.net.au

BERGAMOT

Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria, 9 – Torino

Column

Phase	MEGA-1701 FAST
I.D.	0.1 mm
Film Thickness	0.1 μm
Length	5 m

Chromatographic Conditions

Injector	Split 230℃		
Injection Volume	1.0 µL		
Sample Diluition	1:200	in Cyclohexane	
Oven	T start	50℃ (0.1 min)	
	Rate	50℃/min	
	Tend	250℃ (5 min)	
Detector	FID	250℃	
Carrier Gas	Hydrogen	0.5 ml /min	

Peak Identification

1	α-Pinene
2	β-Pinene
3	Myrcene
4	Limonene
5	p-Cimene
6	γ-Terpinene
7	Linalool
8	Linalyl Acetate

0.5

BERGAMOT

Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P. Giuria, 9 – Torino

[min]

Column

1.8

Phase	MEGA-SE54 FAST
I.D.	0.1 mm
Film Thickness	0.1 μm
Longth	5 m

Chromatographic Conditions

Injector	Split	230℃	
Injection Volume	1.0 μL		
Sample Diluition	1:200	in Cyclohexane	
Oven	T start	50℃ (0.1 min)	
	Rate	15℃/min	
	Tend	250℃ (5 min)	
Detector	FID	250℃	
Carrier Gas	Hydrogen	0.5 mUmin	

Peak Identification

1	α-Pinene
2	β-Pinene
3	Myrcene
4	p-Cimene
5	Limonene
6	γ-Terpinene
7	Linalol
8	Linalyl Acetate

CAPILLARY COLUMNS

0.6

BERGAMOT

Courtesy Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria, 9 – Torino

[min]

. //	4			1
				6
	5			
3				
2			Λ	
0.3		[min]		

Phase	MEGA-WAX FAST
I.D.	0.1 mm
Film Thickness	0.1 μm
Length	5 m

Chromatographic Conditions

4.0

Injector	Split 230℃				
njection Volume	1.0 μL				
Sample Diluition	1:200	in Cyclohexane			
Oven	T start	50℃ (0.1 min)			
	Rate	30℃/min			
	Tend	250℃ (5 min)			
Detector	FID	250℃			
	THE RESIDENCE OF THE PARTY OF T	0.5			

Peak Identification

Column

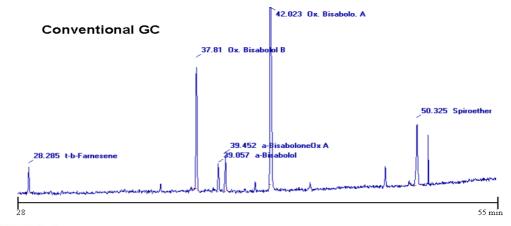
1	β-Pinene
2	Myrcene
3	p-Cimene
4	Limonene
5	γ-Terpinene
6	Linalool
7	Linalyl Acetate

2.5

CHAMOMILE - Convenzional GC vs FAST-GC

Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino , Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria , 9 – Torino

Column Phase MEGA-1701 I.D. 0.25 mm Film Thickness 0.3 µm Length 25 m


Sinomatographic Conditions						
Split	230℃					
1.	.0 μL					
1:200	in Ciclohexane					
Hydrogen	1.5 mL/min					
	Split 1. 1:200					

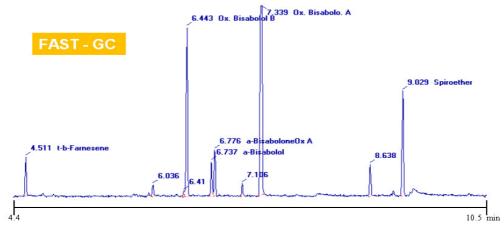
 Oven
 T start
 50℃ (0.1 min)

 Rate
 3℃/min

 T end
 250℃ (5 min)

 Detector
 FID
 250℃

CHAMOMILE - Convenzional vs FAST-GC


Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino , Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria , 9 – Torino

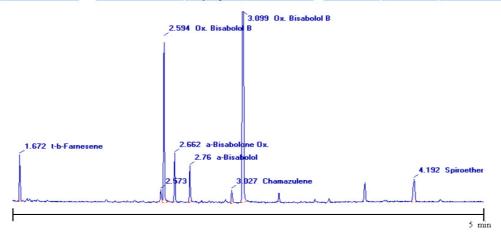
Column	
Phase	MEGA-1701 FAST
I.D.	0.1 mm
Film Thickness	0.1 µm
Length	5 m

Inlet	Split	230℃		
Injected Volume	1.0 μL			
Sample Diluition	1:200	in Ciclohexane		
Carrier Gas	Hydrogen	0.5 mL/min		

Condizioni

Oven	Tstart	50℃ (0.1 min)
	Rate	50℃/min
	T end	250 ℃ (5 min)
Detector	FID	250°C

CAPILLARY COLUMNS LABORATORY


CHAMOMILE

Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria, 9 – Torino

Column	
Phase	MEGA-WAX FAST
I.D.	0.1 mm
Film Thickness	0.1 µm
Longth	5 m

Cinomatographic Condition						
Inlet	Split	230℃				
Injected Volume	1.0 μL					
Sample Diluition	1:200	in Ciclohexane				
Carrier Gas	Hydrogen	0.5 mL/min				

Oven	Tstart	50℃ (0.1 min)
	Rate	3℃/min
	T end	250℃
Detector	EID	250%

PESTICIDES

Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria, 9 – Torino

	Column		Chromatographic Co	on ditions		Peak Iden	tification
	Phase	MEGA-1701 FAST	Injector	Split	230℃	1	α-HCH
	I.D.	0.1 mm	Injection Volume	1.	0 μL	2	y-HCH
	Film Thickness	0.1 µm	Sample Diluition	1:200	in Cyclohexane	3	Heptachlor
	Length	5 m	Oven	T start	50℃ (0.1 min)	4	Chlorotalonil
				Rate	50℃/min	5	/
				T end	250℃ (5 min)	6	Parathion-Me
1.4	0	113	Detector	FID	250℃	7	Malathion
2 3	j 1	1 1/	Carrier Gas	Hydrogen	0.5 mL/min	8	Fenotrothion
	8_ \	12 14				9	Parathion-Et
1 1			16			10	/
1 11	7 7		15			11	Fenitrothion
1 11	4	11 1 1	'51			12	Chlordane-Cis + Trans
1 11		11 1 1				13	Dieldrin
1 11	1 4	11 1 1	11			14	o,p'-DDT
	1 11/1	11 1 1	11			15	β-Endosulfan
1 11	1 21		11			16	p,p'-DDT
1 11	1 111		1.1			17	1
1 11	1 11					18	Tetradifon
1 1 1	H H						
1 11					18		
1 1	6 10	11 # 1			10		
II II II	10		11				
1 / 1	5	11 1 1			1		
11 11 (1	III III I	HD D A			1		
1 1 1	(1/ # [3])						
11 // 1)	112 11 131 14	IUI II II	11 11				
(1 11 11		2115 II 71	1111	17	1)		
I have more and have have	and y land hand !!	11/16	1111	A			
	7. 761.	W. Monand Sammer Jan	newsward led historiansbranders	nemental house	and " youthhouse you have mention		
1.8		[min]				4.0	

PESTICIDES

Courtesy of Prof. C. Bicchi, C. Brunelli – Università di Torino, Dipartimento Scienza e Tecnologia del Farmaco – Via P.Giuria, 9 – Torino

Column		Chromatographic Co	nditions		Peak Iden	tification
Phase	MEGA-SE54 FAST	Injector	Split	230℃	1	α-HCH
I.D.	0.1 mm	Injection Volume	1.	.0 μL	2	ү-НСН
Film Thick	rness 0.1 μm	Sample Diluition	1:200	in Cyclohexane	3	Chlorotalonil
Length	5 m	Oven	T start	50℃ (0.1 min)	4	Heptachlor
		A.	Rate	15℃/min	5	Parathion-Me
14 . 0 . 1 .			Tend	250℃ (5 min)	6	Paraoxon-E
1 2 4	13	Detector	FID	250℃	7	Malathion
	11	Carrier Gas	Hydrogen	0.5 mL/min	8	Fenitrothion
	12				9	Parathion-Et
	1 1				10	1
					11	Chlordane-Trans
	11 1				12	Chlordane-Cis + α-End.
7	11 1	15			13	Dieldrin
3	11 1	1			14	β-Endosulfan
	9	1			15	o,p'-DDT
		44			16	p,p'-DDT
	1 11 1	14 16			17	Tetradifon
5 Samuel Lange Lan	10	many lands have	laconadelmonido (m. custo	17	etre.	
0.8	[min]				4.5	

Residual Solvents - Head Space - USP 467 OVIs

Column

Phase	MEGA-624 FAST
I.D.	0.10 mm
Film Thickness	0.45 μm
Length	10 m

Chromatographic Conditions

Inlet	Split	250℃
Split Ratio	1:100	
Injected Volume	0.5 mL	
HS	45 min	80℃
Oven	T start	35℃
	Rate	15℃/min
1 ²	Tend	100℃
Detector	FID	250℃
Carrier Gas	Hydrogen	0.4 mL/min

Peak Identification

1	Dichloromethane
2	Chloroform
3	Benzene
4	Trichloroethylen
5	1,4 Dioxane

HS in Water

Carried out on DANI MASTER GC