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Abstract. Let (C, R) be the countable dense circular ordering, and G its automor-
phism group. It is shown that certain properties of group elements are first order definable
in G, and these results are used to reconstruct C inside G, and to demonstrate that its
outer automorphism group has order 2. Similar statements hold for the completion C.

1. Introduction. Circular orders (or “cyclic orders”) have been con-
sidered for instance in [1] and [2]. They have also arisen in the study of
Jordan groups [4], and as examples of structures having rich automorphism
groups [9]. Here I focus on a particular case, the countable dense circular
order, written as (C,R), which turns out to have particularly interesting
properties, though some remarks apply to more general circular orders.

I begin by studying the group of all automorphisms of (C,R). I am
interested here in reproducing the results about reconstruction and outer
automorphisms for the ordered rationals described for instance in [3].

As a first step, not strictly necessary for the development, though I hope
of some interest, I give an analogue of Holland’s description of the conjugacy
classes for the ordered case in terms of “orbitals”. Part of this is a reworking
of classical material on orientation-preserving homeomorphisms of the unit
circle in the complex plane [5, 8]. In the next section I then give a list of
first order formulae of the language of group theory which are devised with
the intention of “reconstructing” the structure (C,R) in its automorphism
group. This leads in Section 4 to the results on reconstruction and outer
automorphisms.

The definitions are as follows. By a circular order we understand a rela-
tional structure of the form (C,R) where R is a ternary relation on C such
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that R(a, b, c) implies that a, b, and c are distinct, and for each a ∈ C, the
relation on the complement of {a} given by b < c ⇔ R(a, b, c) is a (strict)
linear order, and R(a, b, c) ⇔ R(b, c, a) ⇔ R(c, a, b). (Note that we allow
the case where C has fewer than three elements, when it is just the trivial
structure on one or two points, since an “orbital pattern”—see below—may
take one of these degenerate forms.) Throughout we shall assume that C
itself is countably infinite, and dense, which then determines it uniquely up
to isomorphism. One may characterize “density” in this context either by
saying that for any a 6= b there must exist c such that R(a, c, b), or that it
is obtained from the rationals by “bending round” the two ends to form a
circle, formally R(a, b, c) if a < b < c ∨ b < c < a ∨ c < a < b. It will be
convenient at certain points to use other manifestations of C, for instance
as the set of complex numbers of modulus 1 and rational argument (or even
of integer argument, since this is clearly dense in the unit circle). We write
G for the automorphism group of (C,R).

We may form the Dedekind completion C of C by using the corre-
sponding linear orders in the above definition. Thus if we pick a ∈ C,
then {(b, c) : R(a, b, c)} is a linear order, which has a Dedekind comple-
tion as usual, and C is formed from this by replacing a, and saying that
R(x, y, z) ⇔ (x = a ∧ y < z) ∨ (x < y < z) (or x, y, z is a cyclic rearrange-
ment of such a triple). In the countable dense case, C is then isomorphic
to the unit circle in the complex plane under the natural circular ordering.
Note that by density, any automorphism of C induces an automorphism
of C, which we denote by the same letter.

Note that the automorphism group of the linear ordering (Q, <) has two
orbits in its action on (R, <), namely the rationals and the irrationals. In
a precisely analogous way, the automorphism group of (C,R) has precisely
two orbits in its action on C, the points of C, and of C − C, and we shall
use this freely in what follows.

We shall also use interval notation, writing, for a, b ∈ C, (a, b) = {x ∈ C :
R(a, x, b)} (or possibly the same set in C), and similarly for closed or semi-
open intervals. We visualize the relation R as corresponding to the anti-
clockwise orientation, which fits with the usual orientation of the unit circle
in the complex plane.

The referee has brought to my attention an unpublished paper [6] by
McCleary and Rubin, in which the reconstruction parts of this paper are in-
dependently derived. The results in [6] are considerably more general than
those presented here, not being confined to the particular case of the count-
able dense circular order. The methods given here could however be easily
generalized, so this is not a major difference. I have concentrated exclu-
sively on the countable case since the original intention (which may still



Countable dense circular order 99

be followed up) was to use the results to analyze the group of computable
automorphisms, in the style of [7].

I now sum up the technical differences between the two papers. The
representation used by McCleary and Rubin for elements of C is as the
“initial points” of support sets of bounded elements. They do not (in the
first instance, at any rate) restrict to elements having either just one or two
fixed points as is done here (nor do they need to, nor can they, as that would
mean that they could only represent points having countable coinitiality),
nor to elements having just one bump. Finally, they show how to represent
C, but not C. Apart from these points, the conclusions in the case of a
countable dense circular order are very similar, though the actual formulae
used, and the routes to the conclusions adopted, are rather different.

2. Characterization of conjugacy. In this section we state and prove
an analogue of Holland’s “characterization of congugacy” (see [3, Theorem
2.2.5]). To state this correctly we require a few more definitions. There is
a fundamental division of elements of G = Aut(C,R) into those having a
fixed point in C, and those not doing so. (We shall see in Section 3 that
these two classes can be easily distinguished by a formula of the language
of group theory.) If g has a fixed point x0, then it essentially acts as an
element of the order-preserving automorphism group of its complement.
In this case, we say that the orbital of an element x is the set {y ∈ C :
∃m∃n(y ∈ [gmx, gnx])}, which is the convex set “spanned” by the orbit of x.
(Sometimes this set will be evaluated in C, and it is also sometimes referred
to as an “interval of support”.) The orbital has parity +1 if R(x0, x, gx),
parity −1 if R(x0, gx, x), and parity 0 if gx = x. We also regard {x0} as an
orbital of parity 0. The family of all orbitals itself becomes a circular ordering
on letting R((x), (y), (z))⇔ R(x, y, z) (which one can check is independent
of the choice of representatives), and the orbital pattern of g is the circular
ordering together with the colouring function which takes each orbital to its
parity. Orbitals of parity 0 are called trivial. An element g having just one
non-trivial orbital is called a bump. This is a bounded bump if it also has a
non-trivial interval of fixed points.

Now elements that have no fixed point in C are like “rotations” [8],
though their rotational behaviour may be quite complicated to describe. In
all cases it is shown in [8] how to associate with any g ∈ G a “rotation
number” α ∈ [0, 1) which measures the “average” (anticlockwise) rotation
of the action of g on members of C. Thus g could be the rotation eiθ 7→
ei(θ+2πα). The rotation number α is 0 if and only if g has a fixed point in C.
Following on from this, α is rational if and only if g has a finite cycle (orbit)
in C. In fact, if we write α = m

n in lowest terms, where m and n are positive
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integers, then n is the least length of a finite cycle of g in C (which includes
as a special case n = 1, in which case m must be 0, where g has a fixed
point, mentioned above). The members of the cycle {gi(x) : 0 ≤ i < n} are
thus distinct points somehow arranged round C, and a fundamental interval
is any of the n possible open intervals determined by these points. Note that
the n points of a cycle need not be arranged consecutively in the circular
ordering (the orbit may “wind” round the origin more than once), but this
information is provided by the angle of rotation, and in particular, by the
value of m.

For elements g such that no gn has any fixed points in C, so that α is
irrational, things are more complicated. We may regard the case in which all
cycles are dense as the typical situation, but this does not necessarily happen.
An analysis of the possible behaviour of orientation-preserving homeomor-
phisms of C was carried out by Poincaré, van Kampen, and others (see [8]),
which mainly focussed on the case of no finite cycles. Since automorphisms
of (C,R) extend to C, this classical theory applies here, though we have
to modify it if we wish to give a complete description of such maps up to
conjugacy in Aut(C,R), since the conjugacies may not preserve C itself.

We briefly summarize the material from [8] and [5] that we need. The two
main constructions of homeomorphisms of C to itself without finite cycles
are these. We fix an irrational α ∈ (0, 1). Then the rotation g(eiθ) = ei(θ+2πα)

is an obvious automorphism. We refer to an automorphism of C which is
conjugate to this (or of C which gives rise to such an element) as a pure
rotation. Next let X be any countable subset of C invariant under g (a
countable union of g-orbits). Then we may replace each point of X by a copy
of the closed interval [0, 1], and this becomes a circular order C̃, isomorphic
to C since it is complete with a countable dense subset. If ϕ is the map
from C̃ to C which collapses each copy of [0, 1] to the point it replaced,
then there is a natural homeomorphism of C̃ which is obtained by lifting g
and mapping each point in a copy of [0, 1] to the corresponding point in its
image. Automorphisms of C (or of C) arising in this way are called impure
rotations. It is shown in [8, 5] that all homeomorphisms of C to itself without
finite cycles are conjugate to a pure or impure rotation. Furthermore, in each
case the angle α may be recovered from g, and for impure rotations the set
X may be too, up to rotational equivalence, by reversing the construction
of C̃ from C (see below). Thus two homeomorphisms without finite cycles
are conjugate if and only if they are both pure or both impure, with the
same angle of rotation, and in the second case if the sets X are equivalent
under some rotation (which is what is shown in [5]).

In our case we need to modify the above to obtain a complete characteri-
zation of conjugacy, since we are just considering actions on C and not on C.
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(In other words, there will be automorphisms of (C,R) whose extensions to
C are conjugate, but which are not conjugate in Aut(C,R) themselves.) For
the case where there is a finite orbit, we have to distinguish the cases in
which there is such an orbit in C, and where any such orbit is in C − C.
Apart from this, the finite cycle case is as for C. For the other cases we need
to define ≡ on subsets of C or finite sequences of subsets of C by letting
X ≡ Y if there is some rotation (through any angle, rational or irrational)
taking X to Y .

First consider a pure rotation g of C through irrational α (we refer to it
thus, though strictly speaking it is a rotation through 2πα). Then by replac-
ing it by a conjugate, g becomes the map g(eiθ) = ei(θ+2πα). Conjugation
amounts to replacing C by another countable dense subset Y of C, which
one can show is independent of the choice of conjugacy, up to ≡-equivalence,
and is a countable union of orbits under rotation through α. We say that
such a set Y is associated with g. Conversely, given any non-empty finite or
countable union Y of orbits of the action of rotation through α on C, the
restriction of g to Y , which is isomorphic to C, is a pure rotation, which we
denote by gY , and the set associated with gY is Y .

For an impure rotation we may similarly consider any union of orbits of
its action on C. Since however we must use a dense subset of C, and hence
a dense subset of each copy of [0, 1], we may as well take just the rationals
in each case. So what the choice depends on this time is the choice of a non-
empty finite or countable union X of orbits of C under rotation through α
and another (this time possibly empty) finite or countable union Y of such
orbits disjoint fromX. In addition we have to decide, for each orbit contained
inX, whether to replace its points by (the rationals in) I0 = [0, 1], I1 = [0, 1),
I2 = (0, 1], or I3 = (0, 1), so we need to specify a partitioning of X into four
unions of orbits X0, X1, X2, and X3 corresponding to these four cases.
The quintuple (X0, X1, X2, X3, Y ) is associated with g. Once this choice has
been made, we can determine an automorphism of

⋃
i<4(Xi × Ii) ∪ Y ∼= C

as before, denoted by gX0,X1,X2,X3,Y . In the other direction, we need to see
how X0, X1, X2, X3, Y can be recovered from an impure rotation g. In [8] it
is shown that in its action on C, there is a unique minimal set M , being a
non-empty union of orbits of g, which is the closure of each of these orbits
(which, in the automorphism just described, consists of the union of the
closure of Y and the endpoints of intervals contributed by the members
of X). In general, the minimal set for this impure rotation is homeomorphic
to Cantor space, and if we identify endpoints of open intervals making up
its complement, then we reach a pure rotation, through the same angle
as g. Furthermore, we may “recover” Y as the intersection with C of the
Cantor set that has been found, apart from any endpoints of intervals of its
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complement, and X as the result of identifying the endpoints of all these
intervals (in C). The subdivision into X0, X1, X2, and X3 depends on which
of these endpoints actually lie in C.

Theorem 2.1. For any f and g in G, f and g are conjugate in G if and
only if one of the following holds:

(i) for some positive integer n, f and g each have a cycle of length n
of points of C, they have equal angles of rotation, and on some fun-
damental interval , the orbital patterns of fn and gn are isomorphic
(this and the next clause include as a special case those automor-
phisms having a fixed point in C or in C − C, in which case the
winding number is 0, and the fundamental interval is the comple-
ment of the fixed point);

(ii) for some positive integer n, f and g each have a cycle of length n of
points of C −C, but no finite cycles of points of C, they have equal
angles of rotation, and on some fundamental interval , the orbital
patterns of fn and gn are isomorphic;

(iii) f and g are both pure rotations through the same irrational angle α,
and their associated subsets of C are ≡-equivalent ;

(iv) f and g are both impure rotations through the same irrational
angle α, and their associated quintuples (X0, X1, X2, X3, Y ) are ≡-
equivalent.

3. A list of formulae. In this section we give a list of first order
formulae of the language of group theory, which are intended to express
a variety of properties of members of G = Aut(C,R). We are aiming at
interpreting (C,R) inside its automorphism group (see the next section),
which will be done without parameters up to orientation-reversal, and we
represent a point of C by any bounded bump of parity +1 having that
point as initial point. With this in mind, the key things to express are “x
is a bounded bump” and “two bounded bumps have the same parity and
initial point in the direction in which they act” (the formulae bump and
sameinit respectively), and en route to this, formulae expressing that an
automorphism has some fixed point, or exactly one or exactly two fixed
points (in the completion) are also important. Other formulae are derived
in a more standard way. A final key point is to distinguish the two orbits C
and C − C, which is done using tricks similar to those for Q.

There are clearly many more formulae that we could derive by similar
methods (such as disjointness of arbitrary bumps) but we concentrate on
what seems the quickest way to establish interpretability, though we do
give a formula rot which suffices to characterize the pure rotations. Note
that since our automorphisms act on the left, the notation for conjugates
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is xy = yxy−1.

• fix(x) : ∃y(x2 = xy) (in other words, x is conjugate to its square),
• rigid(x, y) : fix(x) ∧ fix(y) ∧ xy = yx ∧ ∀z∀t(xz = zx ∧ xt = tx ∧ yz =
zy ∧ yt = ty → zt = tz),
• dense(x) : (∃y)rigid(x, y),
• onefix(x) : ∃y(rigid(x, y)∧∀z(xz = zx∧yz = zy∧z 6= 1→ (rigid(x, z)∨

rigid(y, z)))),
• twofix(x) : ¬onefix(x) ∧ ∃y(rigid(x, y) ∧ ∀z(xz = zx ∧ yz = zy →

(rigid(z, y) ∨ rigid(xz, y) ∨ rigid(x−1z, y)))),
• bump(x) : x 6= 1 ∧ ¬dense(x) ∧ ∃y∃z(twofix(y) ∧ rigid(y, z) ∧ xy =
yx ∧ xz = zx),
• sameends(x) : bump(x) ∧ (∃y)twofix(xxy),
• samepar(x, y) : sameends(x) ∧ ∃z(y = xz),
• samesupp(x, y) : samepar(x, y) ∧ ∃z(samepar(x, z) ∧ twofix(xz) ∧

twofix(yz)),
• disj(x, y) : sameends(x)∧sameends(y)∧∀z(samesupp(x, z)→ yz = zy)),
• subset(x, y) : sameends(x)∧ sameends(y)∧ samepar(x, y)∧ ∀z(disj(z, y)
→ disj(z, x)),
• initsubset(x, y) : subset(x, y) ∧ ¬∃z∃t(samesupp(y, z) ∧ disj(x, t) ∧

subset(tz, x)),
• sameinit(x, y) : initsubset(x, y) ∨ initsubset(y, x),
• circ(x, y, z) : ∃x′∃y′∃z′(sameinit(x, x′)∧sameinit(y, y′)∧sameinit(z, z′)∧

disj(x′, y′) ∧ disj(x′, z′) ∧ disj(y′, z′) ∧ (∃t)(samepar(x, t) ∧ disj(x′, t) ∧ yt
= z),
• rot(x); ∀y∀z(xy = yx ∧ xz = zx→ yz = zy).

Lemma 3.1. For any f ∈ G, G |= fix(f)⇔ f has a fixed point in C.

Proof. If f has a fixed point in C, then f acts on the complement of the
fixed point like an element of Aut(Q, <), where it is well known (see [3] for
instance) that every element is conjugate to its square.

Conversely, suppose that f is conjugate to f2, and let α ∈ [0, 1) be its
rotation number. Then it is clear that the rotation number of f2 is 2α (where
this is taken mod 1). But the rotation number is invariant under conjugacy,
and hence 2α ≡ α mod 1. Since 0 ≤ α < 1 we deduce that α = 0, and hence
f has a fixed point in C.

Lemma 3.2. For any f, g ∈ G, G |= rigid(f, g) ⇒ f and g each have at
least one fixed point in C, they have the same families of orbitals, and on
each non-trivial orbital they act as translations by ±1 and α respectively ,
for some irrational number α (which may depend on the orbital).

Proof. Suppose that G |= rigid(f, g). Then by Lemma 3.1, f and g each
have a fixed point in C, so for each we may consider its family of orbitals.
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Since fg = gf , each of f and g preserves the family of orbitals of the other.
Hence if X and Y are orbitals of f and g respectively that overlap, then one
is a subset of the other. It follows that if X ⊂ Y then Y is a non-trivial or-
bital, and is a union of a set of orbitals of f , of which there must be at least
two, and also that g carries the action of f on each such orbital to its action
on the image. Consider two cases. In the first, all orbitals of f inside Y are
trivial. Then the centralizer of 〈f, g〉 contains all elements of G with support
contained in Y and commuting with g, and since this subgroup is isomor-
phic to Aut(Q, <) it is certainly not abelian. In the second case, there is a
non-trivial such orbital X say, and we can still embed Aut(Q, <) in the cen-
tralizer of 〈f, g〉 by letting it act on (x, f(x)) for some x ∈ X (or (f(x), x) if
f(x) < x) and extending to the whole of X and then Y by the commutation
conditions, so the centralizer is still not abelian. In each case we contradict
rigid(f, g). The conclusion is that X = Y . Similarly this follows if we assume
that X ⊇ Y , and therefore f and g have the same orbitals.

Now consider the actions of f and g on one non-trivial orbital X. As-
suming for ease that f has parity +1 on X, we may view X as R and f
as translation by 1. We see that g may be taken to be a translation by an
irrational number.

First suppose for a contradiction that some 〈f, g〉-orbit Y of X is not
dense, and let I be a maximal open interval of its complement. Consider
the 〈f, g〉-orbit I = {fmgnI : m,n ∈ Z} of I, all of whose elements are
also maximal open intervals of the complement of Y . Let J = {(m,n) ∈ Z2 :
fmgnI = I}. Since f and g commute, this is a subgroup of the group Z2, and
since I is not fixed by either f or g, (0, 0) is the only member of J having
a zero co-ordinate. From this (by considering the least positive m if any
such that some (m,n) is in J) it readily follows that J is cyclic, and hence
consists of all multiples of some fixed (m,n) (possibly (0, 0)). Let h1 and
h2 be non-commuting order-automorphisms of I that each commute with
fmgn on I. Then by copying the action of hi on I to each member f rgsI
of I using f rgs and fixing all other points, we find still non-commuting
order-automorphisms of R that both commute with f and g, contrary to
G |= rigid(f, g). The conclusion is that every 〈f, g〉-orbit is dense.

To conclude this part of the argument, we appeal to some classical results
as given in [8]. Since f is translation by 1, and g commutes with it, they can
be viewed as acting on the unit circle in C via the map x 7→ e2πix, and then
f is the identity. By the results given on pages 38–41 of [8] it follows that
the action of g on the circle is then conjugate to a rotation through 2πα for
some irrational number α. Lifting this back to R, it follows that by replacing
g by a conjugate using a conjugacy that commutes with f , we may suppose
that it is a translation by an irrational number, as desired.
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We remark that we cannot expect to prove the converse statement as
it stands. Roughly speaking the state of affairs is this. Assume first that f
and g have exactly the same orbitals, and that on each non-trivial orbital,
if f is viewed as translation by 1 then g is translation by an irrational α. If
the irrationals arising for different non-trivial orbitals are all distinct, then
certainlyG |= rigid(f, g) holds. It is clearly not necessary however that all the
irrationals be distinct; for instance, there could be three non-trivial orbitals
in all, two of them sharing the same irrational, distinct from that for the
third, and then we would still have G |= rigid(f, g). The precise statement
would be rather complicated, and in any case we do not need it.

Lemma 3.3. For any f ∈ G, G |= dense(f) ⇔ f has at least one fixed
point in C and its support is dense.

Proof. If G |= dense(f), let g be such that G |= rigid(f, g). Then by
Lemma 3.2, f and g have the same family of orbitals including the same
fixed points. Suppose that f does not have dense support. Then there is a
non-trivial interval of points fixed by both f and g. The centralizer of 〈f, g〉
contains all automorphisms of C which fix all points outside this interval,
and so it is non-abelian, contrary to G |= rigid(f, g).

Conversely, suppose that f has a fixed point and dense support. It has at
most ℵ0 non-trivial orbitals, and we select distinct irrationals corresponding
to these. We may now build g having the same orbitals as f , and such
that on each non-trivial orbital, if f is viewed as translation by ±1, then
g is translation by the irrational corresponding to that orbital. To see this,
consider one of these orbitals X with chosen irrational α. Let {fnx : n ∈ Z}
be an orbit of f and suppose for ease that x < fx. Then (x, fx) ∼= Q + Q.α,
so inducing a corresponding identification of Q+Q.α with each (fnx, fn+1x)
by use of fn we obtain an identification of Q + Q.α with the whole of X
such that f is translation by 1, and then we can take the action of g on X
to be translation by α. To see that G |= rigid(f, g) and so dense(f), note
that f and g certainly commute since they have the same orbitals, and on
each non-trivial orbital under the identification just made they both act as
translations. If h commutes with each, then h must preserve the action of
the pair (f, g) on each orbital. By choice of the irrationals as all distinct, it
follows that h must actually fix each non-trivial orbital, and as the support is
dense, also all trivial orbitals. Looking at X which is identified with Q+Q.α,
we see by induction that for each x ∈ X and integer n, h(x+ n) = h(x) + n
and h(x+ nα) = h(x) + nα, so h(m+ nα) = h(0) +m+ nα. Thus h(x)− x
is constant on a dense subset of X, so is constant throughout, from which it
follows that h is a translation. Therefore the centralizer of 〈f, g〉 is abelian.

Lemma 3.4. For any f ∈ G, G |= onefix(f)⇔ f has a unique fixed point
in C.
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Proof. Suppose G |= onefix(f) and let g be such that G |= rigid(f, g) and
the other conditions apply. Then f and g have the same sets of orbitals.
Suppose that they (each) have at least two non-trivial orbitals X and Y .
Then if h is the restriction of f to X, then h 6= 1 and h commutes with both
f and g, but it does not have the same set of orbitals as either f or g, so
G |= ¬rigid(g, h) and G |= ¬rigid(f, h). We deduce that f and g each have
just one non-trivial orbital. By Lemma 3.3 this is dense. In other words, f
and g each have just one (the same) fixed point.

Conversely, suppose f just fixes x ∈ C, and letX be the complement of x,
so that X is the unique non-trivial orbital of f , on which we may suppose it
acts as translation by +1. Let g act as translation by an irrational α. Then
G |= rigid(f, g), and if h is a non-trivial member of G commuting with both
f and g, then h is also a translation, by β say. Then G |= rigid(f, h)⇔ β is
irrational, and G |= rigid(g, h)⇔ β/α is irrational. Since α is irrational, one
of these must hold.

Lemma 3.5. For any f ∈ G, G |= twofix(f) ⇔ f has exactly two fixed
points in C.

Proof. Suppose that G |= twofix(f) and let g be a witness for y. Then
from the earlier work, and as G |= ¬onefix(f), f and g have the same
orbitals, and the union of their non-trivial orbitals, of which there are at
least two, is dense. Suppose for a contradiction that there are three non-
trivial orbitals X, Y , and Z, and that these are indexed by dense subsets
of R in such a way that f acts as translation by ±1 on each, and g acts as
translation by irrationals α, β, and γ respectively. Let h act as f on X, as
f−1 on Y , and fix all other points. Then h commutes with each of f and
g, but h, fh, and f−1h each have a non-trivial interval of fixed points, so
G |= rigid(h, g) ∨ rigid(fh, g) ∨ rigid(f−1h, g) is false. We deduce that f has
just two non-trivial orbitals whose union is dense, hence also exactly two
fixed points (in C).

Conversely, suppose that f ∈ G has just two fixed points in C, hence
just two non-trivial orbitals X, Y on which we may suppose that it acts as
translation by ±1 (for ease we just treat the case of +1) and choose g ∈ G
having the same orbitals on which it acts as translation by distinct irrationals
α, β respectively. Then if h ∈ G commutes with both f and g, it must fix
each of X and Y and acts as a translation h1(t) = t + γ, h2(t) = t + δ
on X, Y respectively. We find that G |= rigid(h, g) ⇔ γ/α, δ/β are both
irrational, G |= rigid(fh, g) ⇔ (1 + γ)/α, (1 + δ)/β are both irrational, and
G |= rigid(f−1h, g) ⇔ (−1 + γ)/α, (−1 + δ)/β are both irrational. If G |=
rigid(h, g) ∨ rigid(fh, g) ∨ rigid(f−1h, g) is false then, from G |= ¬rigid(h, g),
γ/α or δ/β is rational. Suppose the former. Then (1 + γ)/α is irrational,
so from G |= ¬rigid(fh, g) we deduce that (1 + δ)/β is rational, but then
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(−1 + γ)/α and (−1 + δ)/β are both irrational, so G |= rigid(f−1h, g) after
all. The conclusion is that G |= twofix(f) as desired.

Lemma 3.6. For any f ∈ G, G |= bump(f)⇔ f is a bounded bump.

Proof. First suppose that G |= bump(f), and let g and h be witnesses for
y and z. Then by Lemma 3.5, g has just two fixed points in C, a and b say,
and by Lemma 3.2, on (a, b) and (b, a), g and h may be viewed as acting as
translations by ±1 and α, β respectively, where α and β are irrationals. As
in the proof of Lemma 3.2, f must also act as a translation on each of (a, b)
and (b, a). Since G |= f 6= 1 ∧ ¬dense(f), one of these translations must be
trivial, and the other non-trivial, and so f is a bounded bump.

Conversely, suppose that f is a bounded bump, with support (a, b). Then
we can build g, h ∈ G such that f and g agree on (a, b), and such that g, h
act as translations by ±1 and α, β respectively on (a, b) and (b, a), where α
and β are distinct irrationals. Then g and h are witnesses for y and z in the
formula, and hence G |= bump(f) as required.

Lemma 3.7. For any f ∈ G, G |= sameends(f) ⇔ f is a bounded bump
the endpoints of whose support either both lie in C, or both lie in C−C (we
say that it has the “same ends”).

Proof. Suppose that f is a bounded bump having the same ends and
support (a, b). Then there is an automorphism g interchanging a and b, and
clearly G |= twofix(ffg).

Conversely, if G |= sameends(f), let g be a witness for y. Then f is
a bounded bump with support (a, b) say, and so fg is a bounded bump
of the same parity as f and with support (ga, gb). Since G |= twofix(ffg),
(a, b)∪(ga, gb) is dense. Hence (b, a)∩(gb, ga) = ∅. Therefore ffg agrees with
f on (gb, ga) and with fg on (b, a), so has no fixed points in either of these
sets. Furthermore, as f and fg have equal parity, ffg has no fixed points in
(ga, b) or (a, gb) either. So the only possible fixed points are a, b, ga, gb. But
if ga 6= b then none of these is fixed, since then f moves ga and fg does not,
and fg moves b and f does not, and similarly for a and gb. Since ffg has
exactly two fixed points, it follows that ga = b and a = gb. We deduce that
a and b are in the same orbit of G, so either they are both in C or both in
C − C.

Let us say that two bounded bumps are equivalent if they have the same
parity, and either all four of their ends lie in C, or they all four lie in C−C.
This notion of equivalence is thus only defined on certain bumps, but these
are the ones we want to use for the interpretation, so this suffices.

Lemma 3.8. For any f, g ∈ G, G |= samepar(f, g)⇔ f and g are equiv-
alent bounded bumps.
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Proof. This is just the same as sameends for f except that any conjugate
of such a bounded bump must have its ends in the same one of C or C −C
as f , since members of the automorphism group of C preserve each of C
and C − C.

Lemma 3.9. For any f, g ∈ G, G |= samesupp(f, g) ⇔ f and g are
equivalent bounded bumps of equal support.

Proof. Suppose f and g are equivalent bounded bumps of equal support
(a, b), where a and b both lie in C, or both lie in C−C. Let h be a bump also
of the same parity having support (b, a). Then f , g, and h are all conjugate,
and G |= twofix(fh) ∧ twofix(gh).

Conversely, suppose that G |= samesupp(f, g), and let h be a witness
for z. Then f , g and fh are bounded bumps of equal parity, and if their
supports are (a1, b1), (a2, b2), and (c, d) respectively, then a1, b1, a2, b2, c, d
either all lie in C, or all lie in C − C. Since G |= twofix(ffh), we can show
by the same argument as used in Lemma 3.7 that c = b1 and a1 = d, and it
similarly follows that c = b2 and a2 = d, and we deduce that a1 = a2 and
b1 = b2, so that f and g have equal supports.

Lemma 3.10. For any f, g ∈ G, G |= disj(f, g) ⇔ f and g are bounded
bumps having disjoint supports and the same ends.

Proof. In one direction this follows from the fact that permutations with
disjoint supports commute. Conversely, suppose that G |= disj(f, g). Then
f and g are indeed bounded bumps each having the same ends. If their
supports are not disjoint then we can easily find an automorphism having
the same support as f which does not commute with g.

Lemma 3.11. For any f, g ∈ G, G |= subset(f, g) ⇔ f, g are equivalent
bounded bumps, and supp f ⊆ supp g.

Proof. The only point to notice here is that if the support of f is not a
subset of the support of g, then there is a bounded bump having the same
ends whose support is disjoint from that of g but not of f .

Lemma 3.12. For any f, g ∈ G, G |= initsubset(f, g) ⇔ f, g are equiva-
lent bounded bumps having the same initial points of support (taking “initial”
to mean in the orientation given by their common parity) with supp f ⊆
supp g.

Proof. Suppose that f and g are equivalent bounded bumps with supp f
⊆ supp g, but with different initial points of support, a and b say. Then there
is another equivalent bounded bump k with support contained in (b, a), and
a bounded bump with the same support as g which conjugates k to an
element whose support is contained in that of f . Thus initsubset(f, g) is
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false. Conversely, if such a k exists, then we see that f and g cannot have
the same initial point of support.

Lemma 3.13. For any f, g ∈ G, G |= sameinit(f, g) ⇔ f, g are bounded
bumps of equal parities having the same initial point of supports.

Lemma 3.14. For any f, g, h ∈ G, G |= circ(f, g, h) ⇔ f, g, h are equiv-
alent bounded bumps of equal parities such that either this parity is +1 and
R(a, b, c), or the parity is −1 and R(a, c, b), where a, b, c are the initial
points of the supports of f , g, h.

Lemma 3.15. For any g ∈ G, G |= rot(g) ⇔ there is an isomorphism θ
from (C,R) to some countable dense cyclic order (C ′, R′) so that θgθ−1 is
a rotation through an irrational multiple of π.

Proof. Suppose that f acts on C as a rotation through 2πα, α irrational.
Then X = {fn0 : n ∈ Z} is dense (since if not, there is a non-empty
maximal open interval I of its complement with positive measure ε, and
as C has finite measure there is n 6= 0 such that fnI ∩ I 6= ∅, which by
maximality gives fnI = I, contrary to α being irrational). Suppose that
g commutes with f , and let g(0) = eiβ, h(eiθ) = ei(θ+β) for all θ. Then
g(fn0) = fng(0) = fneiβ = ei(β+2πnα) = h(fn0). Hence g and h agree on
a dense set, so are equal. Therefore any element commuting with f is a
rotation, and hence its centralizer is abelian, establishing G |= rot(f).

Conversely, suppose that G |= rot(f), and consider the action of f on C.
We appeal to Theorem 2.1. We see that f cannot have any finite cycle, as
then its centralizer would not be abelian, and the same applies to the case
given in 2.1(iv). We deduce that case (iii) of the theorem must apply, so f
is conjugate to a rotation through an irrational multiple of π, as desired.

4. Interpreting (C,R) in its automorphism group. In this section
we show how to use the formulae whose properties were developed in the
previous section to provide an interpretation of (C,R) in G (up to reversal
of the orientation), and from this we deduce that its outer automorphism
group has order 2. To complete the interpretation, we require two more
formulae:

• grid(x, y): rigid(x, y) ∧ onefix(x),
• countorbit(x):

bump(x) ∧ ∃y∃z(grid(y, z) ∧ ∀t∃u(yu = uy ∧ zu = uz ∧ sameinit(xt, xu))).

Lemma 4.1. For any f, g ∈ G, G |= grid(f, g) ⇔ f and g both have the
same unique fixed point in C, and on its complement they act as transla-
tions through 1 and some irrational (under a suitable identification of this
complement with R).
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Proof. First suppose that G |= grid(f, g). Since G |= rigid(f, g), f and
g have the same support, and as G |= onefix(f), f has just one fixed point
in C, which is therefore also the unique fixed point of g. The rest follows by
Lemma 3.2.

Conversely, if f and g have the stated form, then their joint centralizer
consists just of translations (under the identification made with R), and so
the formula grid is satisfied.

Lemma 4.2. For any g ∈ G, G |= countorbit(f)⇔ f is a bump with the
initial point of its support lying in C.

Proof. Suppose that G |= countorbit(f), and let g and h be witnesses for
y and z, which therefore satisfy grid. Let a be the unique fixed point of g
and h, and identify C−{a} with R so that g and h are translations through 1
and an irrational α so that the points of R corresponding to points of C are
precisely of the form m + nα for integers m and n. Then the centralizer
of 〈g, h〉 consists of all translations which fix C setwise. This centralizer is
therefore countable. The condition in countorbit implies that the orbit of the
initial point of the support of f is countable and hence it lies in C.

Conversely, suppose f is a bump the initial point b of whose support lies
in C, and choose g, h such that grid(g, h) and the fixed point a of g, h is
different from b. In addition suppose that g, h are chosen so that C is an
orbit of 〈g, h〉. Then these are witnesses as required to verify countorbit since
any conjugate of f by a member of G takes b to a member c of C, so there
is a member of 〈g, h〉 taking b to c, witnessing u.

Theorem 4.3. There are interpretations of C in Aut(C,R, g) and of C
in Aut(C,R, f) for suitable f ∈ Aut(C,R) and g ∈ Aut(C,R).

Proof. We represent the members of C by either of the two conjugacy
classes of bounded bumps satisfying countorbit, where these are identified
if they have the same initial point, and under the relation circ. These two
conjugacy classes correspond to the two possible orientations of the circle.
Since we are allowed to choose a parameter, we can choose one which dis-
tinguishes between the two orientations, specifically we let f be one element
satisfying countorbit with positive orientation (i.e. it acts in an anticlockwise
direction), and then we can ensure that the conjugacy class used is the one
containing f .

The same methods apply to C, except that it is a little simpler, since
there is only one orbit of initial points of elements satisfying bump, so we
can just use elements satisfying bump, identified if they have the same initial
point, and under the relation circ.

Theorem 4.4. Suppose that (C1, R1) and (C2, R2) are countable dense
circular orders, and θ is an isomorphism from Aut(C1, R1) to Aut(C2, R2).
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Then there is a bijection f from C1 to C2 which is either orientation-
preserving or orientation-reversing , and such that θ(g) = fgf−1 for every
g ∈ Aut(C1, R1). A similar statement holds for C1 and C2. Hence the outer
automorphism groups of Aut(C,R) and Aut(C,R) have order 2.

Proof. Looking at the formulae we have constructed, we see that the
image under θ of any bounded bump must be a bounded bump. If θ reverses
the parity of some (and hence, as is easy to see, every) bounded bump, we
compose with a single orientation-reversing automorphism to reduce to the
case where it preserves the parity of every bounded bump. The remaining
formulae considered show that θ determines an automorphism of (C,R), and
standard arguments (for instance see [10]) show that θ is actually conjuga-
tion by this automorphism.
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