

Performance Evaluation of the NVIDIA Tesla P100: Our Directive-Based Partitioning and Pipelining vs. NVIDIA's Unified Memory Xuewen Cui, Thomas R. W. Scogland, Bronis R. de Supinski and Wu-chun Feng

Abstract

- Heterogeneous supercomputing with accelerators (e.g., GPUs, FPGAs, APUs) continues to increase.
- Programming models for heterogeneous supercomputing (e.g., OpenMP, CUDA, OpenCL) enable offloading of computeintensive workloads to accelerators.

Motivation

Drawbacks of directive-based programming models (e.g., OpenMP):

- Manual partitioning of data by user whenever device memory exceeded.
- Use of the same variable for CPU & GPU in 2. current directive-based extensions limits the potential to split tasks.

Goal

A new directive-based partitioning and pipelined extension for OpenMP that

- ✓ Automates the overlap of data transfer & kernel computation.
- ✓ Automates the reduction of GPU memory usage.
- Maps data to a device buffer and automates memory-constrained array indexing and sub-task scheduling.

Summary

Relative to NVIDIA's Unified Memory (UM), our directive-based partitioning and pipelined extension on a NVIDIA Pascal P100 system

- ✓ Delivers 68% better performance (on average) for data that fits in GPU memory
- ✓ Delivers 550% better performance (on average) for data that does *not* fit in GPU memory, particularly for large data sets

Proposed Extension Syntax

<pre>hule_kind[chunk_size,hum_stream]) \ hap_type:array_split_list)\ .imit(<mem_size>)</mem_size></pre>
pipeline() inputs
Scheduler to use for this region(static, adaptic Sub-task chunk size Stream number to launch on GPU
_map() and pipeline_mem_limit() inputs
m/tofrom for input/ output / input & outp
array declaration
maximum memory usage
array_split_list structure
variable(array) to copy
<pre>split_iter: split start offset, size: split rang</pre>
other non-related dimensions

Environment Setup and Benchmarks

Benchmarks: **3D** Convolution

3.6
768^2
/00 5

#pragma omp target\ ninolino(cchodulo kind[chunk cizo num ctnoom]) \

CPU: IBM Power8 Processors

GPU: NVIDIA Tesla P100 16GB with NVlink

Matrix-Multiplication

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Performance Results and Conclusions

for OpenMP (Short Paper)," IEEE Cluster, 2016.

